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We use Time-Dependent Ginzburg-Landau theory to study the nucleation of vortices in type II
superconductors in the presence of both geometric and material inhomogeneities. The supercon-
ducting Meissner state is meta-stable up to a critical magnetic field, known as the superheating field.
For a uniform surface and homogenous material, the superheating transition is driven by a non-local
critical mode in which an array of vortices simultaneously penetrate the surface. In contrast, we
show that even a small amount of disorder localizes the critical mode and can have a significant
reduction in the effective superheating field for a particular sample. Vortices can be nucleated by
either surface roughness or local variations in material parameters, such as Tc. Our approach uses
a finite element method to simulate a cylindrical geometry in 2 dimensions and a film geometry in
2 and 3 dimensions. We combine saddle node bifurcation analysis along with a novel fitting proce-
dure to evaluate the superheating field and identify the unstable mode. We demonstrate agreement
with previous results for homogenous geometries and surface roughness and extend the analysis to
include variations in material properties. Finally, we show that in three dimensions, suface divots
not aligned with the applied field can increase the super heating field. We discuss implications for
fabrication and performance of superconducting resonant frequency cavities in particle accelerators.

I. INTRODUCTION

A hallmark feature of type-II superconductors is a
phase transition from a purely superconducting (i.e.,
Meissner) state to a mixed state characterized by arrays
of magnetic vortices. The mixed state can be understood
as the compromise in the competition between magnetic
pressure and the condensation of Cooper pairs. If the
characteristic length scales for these phenomena are ap-
propriately separated, a balance is struck in which fila-
ments of magnetic field and small, non-superconducting
cores are trapped by vortices of supercurrent. This con-
figuration is thermodynamically stable between a lower
and upper critical field (Hc1 and Hc2 respectively). Olsen
et. al. beautifully captured this behavior using magneto-
optical imaging1. For time-independent configurations,
a stable array of vortices can be achieved, while for al-
ternating magnetic fields, vortex motion leads to heat
dissipation2.

Ginzburg-Landau (GL) theory succinctly captures the
relevant physics for describing the Meissner and vortex
states, as well as the transition between the two. The
theory is described by two characteristic length scales,
the London penetration depth λ and the superconduct-
ing coherence length ξ. For materials in which the ra-
tio κ = λ/ξ (known as the GL parameter) is less than

1/
√

2 the material is type I and will transition directly
from the Meissner state to the nonsuperconducting state.
However, for type II superconductors (κ > 1/

√
2) the

material transitions first to a mixed, vortex state. The
density of vortices increases with larger applied magnetic
field until the system transitions to a nonsuperconduct-
ing state at Hc2.

Although vortices are thermodynamically stable for
fields above Hc1, surface effects lead to an energy barrier

to vortex nucleation3. The Meissner state can persist
above Hc1 up to a maximum magnetic field, known as
the superheating field Hsh above which the energy bar-
rier vanishes. For homogenous materials with smooth
surfaces, this transition is driven by critical perturba-
tions with a characteristic wavenumber kc. For appli-
cations requiring a Meissner state (i.e., for which vor-
tex nucleation is detrimental), Hsh is the fundamental
limit to performance. As such, estimates of Hsh within
Ginzburg-Landau theory have a long history4–12. This
technique has since been extended to Eilenberger theory
in both the clean13 and dirty14 limits. Often real systems
have rough surfaces and interior defects that don’t match
this geometry. The role of surface roughness on Hsh in
two dimensional geometries with surface defects has been
studied extensively within Ginzburg-Landau theory15–18.
There has also been considerable effort to simulate vor-
tex nucleation and subsequent dynamics for more compli-
cated domains within time-dependent Ginzburg-Landau
(TDGL) theory19–29.

Particle accelerators are an application of importance
to a wide variety of fields30–32 to which quantitative
studies of the superheating field and vortex motion are
particularly relevant. Superconducting Radio Frequency
(SRF) cavities transfer energy to particle beams. Large
AC currents running along the interior surface of the cav-
ity induce electromagnetic fields that are timed to boost
particle bunches as they pass through33. Traditionally
cavities have been fabricated from Nb, but engineering
advances have pushed these cavities to near their funda-
mental limits34.

To more efficiently reach higher accelerating gradients,
the accelerator community is exploring new materials
for next-generation cavities35. Of particular interest is
Nb3Sn, which theoretically has Hsh = 425[mT ] and Tc =



2

18[K] (compared to Niobium which has Hsh = 219[mT ]
and Tc = 9.2[K])36. In practice current Nb3Sn cavities
perform far-below theoretical limits34,37.

In addition to surface roughness, the alloyed nature
of these materials often leads to variations in material
parameters, such as Sn concentration, that can have a
strong effect on the superconducting properties38–43. To
guide future development and keep pace with experi-
mental advancements, more sophisticated theoretical and
computational tools are needed to identify the relevant
physics for vortex nucleation and quantify their effect on
Hsh in real materials. They need to be flexible enough
to not only capture the impact of surface roughness, but
also interior material inhomogeneities. These advances
also offer an opportunity to validate theories of tradi-
tional superconductors in extreme conditions.

In this paper, we perform bifurcation analysis of the
Meissner state using TDGL and a finite-element formula-
tion. Our method quantitatively confirms previous esti-
mates of Hsh derived in the symmetric, time-independent
theory. We account for asymmetric geometries, such as
surface divots, and variation in material parameters in
two and three dimensions. We show a that local re-
ductions in the superconducting critical temperature is
a potentially important nucleation mechanism in inho-
mogenous alloyed superconductors. Our method iden-
tifies the critical fluctuations that drive the vortex nu-
cleation. Unlike the symmetric case in which arrays of
vortices nucleate in tandem, a small amount of disorder
acts as a nucleation site for individual vortices, indicating
that near Hsh, the free energy surface has several shal-
low directions. We quantify this effect for both surface

roughness and material inhomogeneity, a result that will
guide the manufacture of precision samples to maximize
performance. Finally, in three dimensions we show that
the relative orientation of defects and the external field
has a strong role in vortex nucleation. We demonstrate
that defects aligned perpendicular to the applied field
lead to an increase in Hsh.

The rest of this paper is organized as follows. Sec-
tion II formulates the time-dependent Ginzburg-Landau
(TDGL) equations to account for spatial variations in Tc
and introduces the two- and three-dimensional geome-
tries we consider. We also introduce saddle-node bifur-
cation analysis to efficiently identify the critical modes
that drive vortex nucleation and estimate Hsh. In section
III we first confirm that our simulations for homogenous
systems match previous work. Then we report on the
effect of surface roughness and material inhomogeneity
in two and three dimensions. Finally, in section IV, we
discuss implication and limitations of our approach and
potential future extensions.

II. METHODS

A. Problem Formulation

The time-dependent Ginzburg-Landau (TDGL) equa-
tions are a series of partial differential equations relat-
ing the superconducting order parameter to the electric
potential and magnetic vector potential on mesoscopic
scales. Although originally a phenomenological theory,
the equations can be rigorously derived from the time-
dependent Gorkov equations44. The TDGL equations in
Gaussian units given in ref.45 are

−Γ
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These equations depend on the order parameter ψ, the
magnetic vector potential A, and the electric potential
φ all of which can vary in space and time. The rest of
the quantities are materials parameters and fundamen-
tal constants: Γ is the rate of relaxation of the order
parameter, e is the charge of an electron, ~ is Plank’s
constant divided by 2π, c is the speed of light, α is a
material-specific constant proportional to 1− T/Tc (T is
temperature and Tc is the critical temperature), β is an-
ther material parameter that is approximately constant
with respect to Tc, γ is related to the effective mass of
the cooper pairs, and σn is the conductivity of the normal
electrons.

Typically, all physical constants can be absorbed into

the units of fields. However, we relax this assumption
in order to model spatial variations in Tc by allowing
α(r) ∝ 1− T/Tc to vary in space over a range of values.
This has been done previously to model pinning sites by
setting α(r) to zero at fixed points in the domain20,26–28.
We define α(r) = α0a(r) where α0 is a reference value (to
be subsumed by units), and a(r) is a dimensionless num-
ber characterizing the spatial material variation. The
quantities α0 and a(r) are defined with respect to some
reference point in the bulk material such that a(r0) = 1
and α(r0) = α0. With this convention, α0 can be ab-
sorbed into the units of the field. Values of a less than
one correspond to a local Tc less than the reference value
with a < 0 corresponding to Tc less than the operating
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temperature. The critical temperature of Nb3Sn can de-
pend strongly on the local concentration of Sn43, so local
reductions in Tc are an important potential mechanism
for vortex nucleation.

With these modifications and assuming our boundary
conditions are a fixed applied magnetic field on the sur-
face with no current leaking into vacuum, we arrive at

∂ψ

∂t
+ iφψ =− aψ + |ψ|2ψ +

(
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where we have introduced two new constants, u0 and κ0.
The constant u0 = τψ/τj is the ratio of the timescales for
variations in the order parameter and the current. They
are defined as,

τψ =
Γ

|α0|
(8)

τj =
βσn

8e2γ|α0|
=

σn
8e2γψ2

0

. (9)

The constant κ0 is the Ginzburg-Landau parameter, the
ratio of the penetration depth λ0 and the coherence
length ξ0. All of these are defined with respect to the
reference point r0.

Eqs.(3)-(7) are a set of coupled partial differential
equations in three dimensions. A common simplifica-
tion is to assume a symmetry in the z-direction and only
consider variations in the x-y plane. This assumption
leads to a two-dimensional formulation which greatly re-
duces the computational overhead, but does limit the
types of geometries that can be simulated. We perform
both two-dimensional and three-dimensional simulations
in this paper.

We numerically solve the TDGL equations using a fi-
nite element method (FEM) implemented in FEniCS46.
Because the TDGL equations are diffusion-like, the time-
step is implemented through an implicit formula. We use
a backwards Euler formula, but higher order backwards
difference formulas could also be applied. A more de-
tailed description of previous methods is given by Gao
et. al.25.

One reason for the large variety of FEM formulations
is the need to choose a gauge. Although physical quan-
tities should remain the same in different gauges, the
efficiency and accuracy of numerical methods with each
gauge varies. We follow the formulations and conven-

tions of Gao et. al.25,47. Although the TDGL equations
are nonlinear, by using solutions from the previous time
steps, each time step can be formulated as a series of lin-
ear equations. For the two-dimensional case, the prob-
lem can be reduced to a series of Laplace and diffusion
equations of coupled scalar fields which we implement
as Lagrange elements. In three dimensions, the problem
also reduces to a series of linear equations; however, the
geometric nature of the magnetic field and vector po-
tential in 3D require they be modeled as Ravier-Thomas
and Nedelec elements of different orders. The complexity
of the three-dimensional formulation incurs a substantial
computational cost (both in time and memory).

In the two dimensional case, we define two geometries:
an infinite cylinder and a thin film. In these geometries
the magnetic field points in the ẑ direction, i.e., perpen-
dicular to the plane of simulation. Fig. 1 show these cross
sections. For large radii and wide films these geometries
approximate an infinite flat surface, studied using linear-
stability analysis in reference4.

In the 3D case we consider a rectangular box cut out
of a thin film as in Fig. 2. This is done by extending the
domain of simulation along the z axis (the inner solid
box). In this geometry we can orient the applied mag-
netic field in many directions along the surface of the
film. The process of meshing these geometries is given in
the appendix.

We take as initial conditions the case of a perfectly su-
perconducting material in the absence of an applied field.
We raise the applied magnetic field exponentially to val-
ues near Hsh in order to capture the dynamics of vortex
nucleation. The time dependence of the magnetic field is
Ha(t) = Hmax(1−e−t/τ ). This allows us to quickly raise
the field but slow down close to the asymptotic value H
where vortex nucleation is sensitive to small fluctuations
in ψ and A.
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FIG. 1. Two Dimensional Geometries. We consider an
infinite superconducting cylinder (left) and an infinite super-
conducting film (right). In both cases, the magnetic field is
perpendicular to the plane of simulation and does not vary
spatially. Boundary conditions require matching the applied
magnetic field on the surface. For the film (right), we have
periodic boundary conditions on the left and right sides.

Ha

Ha

FIG. 2. Three Dimensional Geometry. We generalize
the 2D film geometry by extending the x-y plane along the ẑ
direction. In this geometry we are free to rotate the direction
of the magnetic field.

B. Inhomogeneities

This formulation allows for a wide variety of potential
simulations. We go beyond the bulk geometry4–12 by
considering the influence of surface roughness and spatial
variations of Tc (α).

We introduce surface roughness in two ways. First we
model the surface of a wire (cylinder) as a Gaussian pro-
cess (random sum of sinusoidal functions). Second, mo-
tivated by observed morphology of grain boundaries48,
we introduce a divot with a cutout of the form Ae−|x|/σ.
Examples of these geometries are shown along with re-
sults in the next section and are described further in the
appendix.

We model spatial variations of Tc within the cylindrical

geometry as a Gaussian function a(r, θ) = 1−Be
−θ2

2s2 ( rR )l,

FIG. 3. Spatial Dependence of a(r). The dependence
of the GL equations on the critical temperature comes from
a coefficient a. We model the influence of Sn segregation as a
local suppression of the superconducting critical temperature
by allowing a to vary spatially. Here we show the value of
a throughout the domain. a < 1 leads to a reduction of the
superconducting order parameter.

see Figure 3. B is the lowest value of alpha, s sets the
width of our defect, R is the cylinder radius, and l adjusts
how quickly a drops off radially. This “line” of lowered
Tc mimics the effect of Sn segregation in the grain bound-
aries of Nb3Sn cavities49.

C. Bifurcation Analysis and Mode Extraction

One of the contributions of this work is a method
for calculating Hsh for arbitrary geometries and mate-
rial properties. The superheating field occurs when the
meta-stable Meissner state becomes unstable to a criti-
cal fluctuation. At Hsh, the free energy landscape near
the Meissner state transitions from a local minimum to a
saddle point, and dynamics exhibit a saddle-node bifur-
cation. The free energy flattens (to lowest order) in the
direction characterizing the critical fluctuation that nu-
cleates magnetic vortices. Because the free energy land-
scape is flat near the bifurcation, simulation dynamics
are slow for applied fields near Hsh. Rather than solve
the TDGL equations near the bifurcation, we use normal-
form theory to quickly extract Hsh from simulations with
applied fields below Hsh.

The normal form of the saddle-node bifurcation is

dx

dt
= −r + x2 (10)

where r is the bifurcation parameter50 and, in our case,
an implicit, unknown function of the applied field. x is
some combination of finite element degrees of freedom
that becomes the unstable, critical fluctuation.

Eq. (10) is stable for r > 0 and unstable for r < 0.
Near the bifurcation, the system decays to equilibrium
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FIG. 4. Vortex Nucleation. The order parameter above
Hsh after vortex nucleation. Note how the vortices penetrate
uniformily around the cylinder.

with a characteristic rate γ = 1
2
√
r
. We extract the crit-

ical mode, x by first finding the meta-stable Meissner
state for applied fields below Hsh. We then perturb the
state with random white noise and extract the slowest
mode and the decay rate γ using a fitting procedure51.
Repeating this calculation for several different applied
fields, we then extrapolate to find the applied field at
which r becomes zero. We also apply an iterative tech-
nique to improve the numerical stability of this method.
We repeatedly amplify the remaining noise and relax the
system to cleanly separate the decaying mode and iden-
tify γ and r52. One of the benefits of this method is
that it avoids running simulations where r ≈ 0 and the
timescale diverges.

III. RESULTS

A. Agreement with Previous Work

We first demonstrate that our formulation correctly
reproduces several known qualitative and quantitative
results. We reproduce vortex nucleation and numerical
estimates of Hsh using a cylindrical geometry without
defects. Fig. 4 illustrates magnetic vortices shortly after
nucleation for an applied magnetic field of Ha = 0.8

√
2Hc

and a cylinder of radius 20λ with κ = 4. Note that mag-
netic fields will always be measured in units of

√
2Hc

where Hc is the thermodynamic critical field. We will
drop the

√
2Hc from now on.

As described in section II C we extract the slowest de-
caying mode for fluctuations in the order parameter be-
low but near Hsh. Fig. 5 shows this mode for a radius
of 20λ. This pattern is roughly sinusoidal on the surface
wth a wavenumber kc that we estimate from the num-
ber of times the pattern crosses zero. Fluctuations in

FIG. 5. Critical Fluctuation. During the relaxation back
to steady state after a random perturbation (Ha <Hsh), the
slowest decaying mode is the critical fluctuation that drives
the phase transition at Hsh. Note that the alternating pattern
of low and high values roughly match the pattern of vortices
in Figure 4 and previous calculations of kc in bulk geometries.

this mode drive the transition from the Meissner state
to the vortex state. Notice that the mode is non-local.
The coordination of multiple penetrating magnetic vo-
tices lowers the barrier to entry for any single vortex.

The procedure for calculating Hsh and kc differ from
those based on linear-stability analysis in the time-
independent case4. Here, using bifurcation analysis, we
extract the numerical value of the bifurcation parameter
r using the observed decay rate of the critical mode. Re-
peating this for several different applied fields gives an
empirical relationship between r and Ha, represented in
Figure 6. The superheating field occurs at Ha such that
r = 0. We estimate Hsh by fitting empirical estimates
of r(Ha) to a second-order polynomial and solving for
r = 0. We also calculate kc by counting the number of
sign changes in the critical mode in Fig. 5. Table I sum-
marizes our calculations of Hsh and kc for varying κ and
compares them to previous estimates from4.

In addition to linear stability analysis, previous work
has also used the time-dependent theory to estimate
the entry field15–29. An advantage of using the time-
dependent theory, is the ability to explore rough geome-
tries. Typically, the field is raised until vortices nucleate,
but efficiently and accurately determining the transition
point can be tedious as the relevant time scales diverge
near Hsh. The bifurcation analysis we describe above ex-
tracts the same information without having to explicitly
nucleate vortices. In the next section we demonstrate
qualitative agreement to previous studies.
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FIG. 6. Extracting Hsh. Extrapolating the bifurcation
parameter r to zero gives Hsh.

Cylinder Hsh Slab Hsh Absolute Relative Difference
κ = 2 0.803 0.7980 0.00615
κ = 4 0.721 0.7233 0.00320
κ = 6 0.683 0.6879 0.00711
κ = 8 0.660 0.6663 0.00944

Cylinder kc Slab kc
κ = 2 0.975 1.1423 0.1465
κ = 4 2.125 2.31769 0.0831
κ = 6 3.125 3.27868 0.0468
κ = 8 3.925 4.15077 0.0544

TABLE I. Numerical Results. Hsh and kc for different
values of κ calculated using bifurcation analysis with a cylin-
der of radius 40. For comparison, we include estimates from
time-independent calculations.

B. Random Surfaces

Vortex nucleation is a surface effect; surface roughness
changes how vortices nucleate. Fig. 7 shows a simula-
tion that captures vortex nucleation for a random sur-
face. Note that Ha = 0.7 for this simulation and is less
than Hsh for the symmetric case. Also note that the crit-
ical fluctuation is no longer a periodic array. Instead the
mode is large at concave regions of the surface, where
the vortices first form (See Fig. 8). Using bifurcation
analysis we calculate Hsh= 0.566 for this geometry, a
significant reduction in in the value for a smooth surface
(Hsh= 0.72).

The roughness in Figure 7 is somewhat extreme, but
illustrates the relevant physics in qualitative agreement
with previous results. Although, less roughness leads to
smaller reduction in Hsh, we find that even a very small
roughness leads to a large, qualitative change in the crit-
ical mode. Indeed, even very small, individual divots act
as nucleation points for vortices, as illustrated in Fig-
ures 9 and 10.

FIG. 7. Vortex Nucleation for Rough Surfaces. The
norm squared of the order parameter just after vortex nucle-
ation. Note how the vortices penetrate in the troughs of the
surface.

FIG. 8. Critical Mode for the Rough Surface. The
slowest decaying mode for rough surfaces is concentrated at
the troughs where the first vortex enters.

C. Single Divot

It has long been known that surface roughness is a rel-
evant parameter for vortex nucleation within GL theory.
To explore which geometric properties affect nucleation,
we introduce a single exponential cut out on the surface
of the cylinder. We vary the height and depth of this
defect and calculate the corresponding reduction in Hsh.
Results are summarized in Fig. 11; divots that are nar-
row and deep lead to the largest reduction in Hsh. A
similar study assuming large κ and using London theory
also found single divots to be detrimental17.

An alternative parametrization of the divot geometry
is in terms of the opening angle. A potential hypothesis
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FIG. 9. Vortex Nucleation for Small Roughness. Even
a little roughness qualitatively changes vortex nucleation pat-
tern. Here only one vortex nucleates.

FIG. 10. Critical Mode for Small Roughness. The crit-
ical mode is centered where the first vortex enters. Compare
with Fig.9.

is that the opening is the relevant parameter determining
vortex nucleation; however, Figure 12 shows that this is
not the case.

D. Variations of Tc

In addition to surface roughness, material inhomo-
geneities also act as nucleation sites. We model varia-
tions in material properties by spatially varying α(r) ∝
1− T/Tc as described in section II B. Fig. 13 shows that
for Ha > Hsh vortices first nucleate where Tc is lowest on
the surface. Similar to surface roughness, even a small,
local reduction in Tc leads to a localization in the critical
mode.

FIG. 11. Role of Geometry in Vortex Nucleation.
The ratio of Hsh in the presence of a divot to the bulk value.
Divots that are thin and deep are the most detrimental.

FIG. 12. Hshvs. Opening Angle. Divots with the same
opening angle may nucleate vortices at different applied fields.

Variation in Tc can also lead to a significant drop in
Hsh as seen in Fig. 14. As a point of comparison, for
Nb3Sn, the variation in Sn concentration can cause Tc
to vary from about 18K at the optimal stoichiometry to
as low at 6K in Sn depleted regions Sn seen in typical
SRF cavities38–43. For an SRF cavity operating near 4K,
this means that vortices could nucleate at an applied field
around 0.6, an effect comparable to the extreme rough-
ness of Figure 7. These results suggest that realistic vari-
ations in Tc could be an important mechanism for vortex
nucleation.

E. Film Geometry

Up to this point, all our results have been reported for
the two-dimensional cylindrical geometry. To control for
the effects of curvature, we repeat our calculations using a
film geometry. We apply the same magnetic fields to the
top and bottom of the rectangular domain and enforce
periodic boundary conditions on the left and right sides.
Our results for the film geometry are nearly identical to
those of the cylinder, indicating that the curvature effects
are minimal.
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FIG. 13. Nucleation Due to Material Inhomogeneity.
We plot the norm squared of the order parameter above Hsh

when a(r) varies as shown in Fig. 3. Vortices nucleate in
regions of low a ∝ 1− T/Tc (i.e., lower Tc).

FIG. 14. Reduction in Hsh vs. Material Parameter The
minimum value of α in the weakly-superconducting region
determines the field at which vortices first nucleate.

F. 3D Film

A major limitation of the two-dimensional analysis is
that the magnetic field must be parallel to the defects.

As mentioned in section II A, the 2D geometry is a
cross section of a 3D domain that does not vary in the
ẑ direction. In this geometry it is not possible to sim-
ulate defects that break symmetries in the direction the
magnetic field points, nor it is possible to have defects
oriented differently from the applied field. To consider
magnetic fields perpendicular to defects, we must move
into fully three-dimensional geometries. Because three-
dimensional simulations are more computationally ex-
pensive, we only consider volumes that accommodate a

Ha=0.9 Ha=0.9 Ha=1.00.9

|Ψ
|2

a) b) c)

FIG. 15. Vortex Nucleation in 3D. Plotting the square
of the order parameter shows that a vortex has nucleated at
Ha = 0.9 for the smooth surface but not the dented surface.
At Ha = 1.0 we do see vortex nucleation perpendicular to the
divot.

single vortex. Our geometry is a three-dimensional gen-
eralization of the 2D film. We fix the applied field on the
faces parallel to the z-plane and apply periodic boundary
conditions to the remaining sides. We use a mesh that is
2λ long in the x direction, 1.5λ in the y, and 5λ in the z
direction.

Our results indicate that when defects are perpendicu-
lar to the applied field the superheating field is effectively
raised. We illustrate in Fig. 15 in which we observe a vor-
tex nucleating on a smooth surface at an applied field of
Ha = 0.9. The magnetic field direction is indicated by
the black arrow. However, after introducing a defect per-
pendicular to the magnetic field, no vortex nucleates at
Ha = 0.9. After raising the field to Ha = 1.0, the vortex
fully enters the dented film. This demonstrates that the
relative orientation of defects and the applied also plays
a crucial role in nucleation mechanism and suggests that
the most dangerous divots are those parallel to the ap-
plied magnetic field.

IV. DISCUSSION AND CONCLUSIONS

This work combines TDGL simulations with bifurca-
tion analysis to study the transition of the metastable
Meissner state to the mixed state of type II supercon-
ductors. We have implemented a finite-element method
that accommodates rough geometries in two- and three-
dimensions, as well as variations in material parameters.
We have demonstrated accuracy by reproducing previ-
ous calculations of Hsh and kc for smooth geometries.
The flexibility of finite element methods enable simulat-
ing geometries that are more complex, including both
rough surfaces and material inhomogeneities. The bi-
furcation analysis allows us to efficiently extract both
the superheating field as well as the accompnying criti-
cal mode without explicitly simulating vortex nucleation
which occurs at diverging time scales.

We have shown that even very small surface roughness
and material inhomogeneity can change the nucleation
mechanism. In smooth geometries, arrays of vortices nu-
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cleate together. However, weak perturbations lead to a
localization of the critical model and significant reduction
in Hsh. Future work will further apply these tools to ge-
ometries and material-specific parameters motivated by
experimental observations.

As we are interested in defects about the size of a coher-
ence length we focus on mesoscopic scales. We’ve chosen
the penetration depth as our length scale in our simula-
tions. This means that for increasing κ we must consider
smaller coherence lengths. This further increases mesh
density and makes simulations more computationally ex-
pensive. The value of κ determines how large of a domain
we can simulate. For type-II materials, such as Nb3Sn,
simulations will be primarily limitd to mesoscopic scales.

This work has been based on Ginzburg-Landau the-
ory that has known limitations. Most importantly, GL
theory is formally exact only when the system is close
to its critical temperature; however, most SRF cavities
operate well below Tc. Previous work applying Eilen-
berger theory to uniform surfaces and materials sug-
gests that the Ginzburg-Landau predictions are surpris-
ingly accurate (within a few percent) even at very low
temperatures13. It is reasonable to expect that the rela-
tive effects of roughness and material inhomogeneity that
we have quantified will hold even at low temperatures,
and that inhomogeneities are likely to be bottlenecks to
performance.

A critical aspect that we have ignored here is field en-
hancement. The field enhancement effect refers to a lo-
cal increase in the applied field in response to surface
roughness. Our simulations have not accounted for any
field enhancement effects. This would require solving
Maxwell’s equations in the vacuum region outside the su-
perconductor. This could be added in future work, but
is beyond the scope of this study.

This analysis is a step toward sample-specific time-
independent calculations of Hsh that includes not only
surface defects, but spatially varying material parame-
ters. We have shown that realistic variations in Tc can
lower the barrier to vortex nucleation in ways similar to
surface roughness and such effects are likely to be present
in alloyed superconductors. We present these results as
an exploration of GL theory and as a tool for quantifying
detrimental defects in realistic superconducting samples.
In the future we plan to extend these results to incor-
porate more material parameters and specific geometries
into this framework and how these tools are bringing in-
sight to the development of Nb3Sn cavities.

We thank James Sethna, Danilo Liarte, Matthias
Liepe, Tomas Arias, Sam Posen, Richard Hennig, Nathan
Sitaraman, Michelle Kelley, Aiden Harbick, and Braedon
Jones for helpful discussions. This work was supported
by the US National Science Foundation under Award
OIA-1549132, the Center for Bright Beams.

FIG. 16. We solve the time-dependent Ginzburg-Landau
equations on a circular cutout of a cylinder. Forcing sym-
metry in the mesh insures vortices penetrate uniformly. We
refine the mesh near the surface as we are only interested in
initial vortex nucleation. Length is measured in penetration
depths

Appendix: Meshing

We simulate 3 geometries, the 2D cylinder, the 2D film,
and the 3D film. In all of these geometeries the mesh is
refined to capture length scales smaller than the order
parameter, otherwise the simulations do not accurately
capture vortex dynamics.

For the smooth cylinder we want to keep the simula-
tion as symmetric as possible to minimize the effect of
numerical noise. Near Hsh small defects in the mesh can
lead to vortex nucleation. For this reason we divide the
domain into concentric circles. Starting with the inner
circle we add points equally around the circumference.
We then add points to the second largest circle such that
if projected onto the inner circle they would be centered
between the first set of points. We repeat this process
adding extra points if the domain becomes too sparse.
Finally, we are interested in dynamics near the surface so
we push interior points radially outward. Fig.16 shows
the end result of this process for a cylinder of radius 10λ.

Once we introduce an inhomogeneity the local defect
dominates global behavior. It is no longer necessary to
keep the mesh symmetric. We can let FEniCS automat-
ically mesh the domain. We can define differing mesh
densities for different regions as in Fig.17. In Fig.18 we
can see the mesh close to the defect.

As a reference for future papers here is how we mesh
the film. The domain is broken up into rectangles. We
found that if we split the rectangles into an upper right
triangle and a lower left triangle then nucleated vortices
came in at an angle. To avoid this we divide each rect-
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FIG. 17. We introduce a geometric defect to the cylinder
based on experimentally observed grain boundaries.

FIG. 18. We etch out an exponential-like function from the
surface of our cylinder to match what is observed experimen-
tally.

angle into 4 triangles as seen in the Fig. 19. When we
introduce a divot the surface gets remeshed and this bias
disappears as seen in Fig. 20

In 3D we only considered a domain that was big enough
for 1 vortex to form. The surface has a symmetric grid
of points. When we introduced a defect we centered the
cusp on a line of vertex points. Interior points were not
symmetric.
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