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The transmission and reflection of a spin wave at an internal boundary created by the local
variation of anisotropy (or a bias magnetic field) are studied taking into account not only the
changes in the wave amplitude, but also the changes in the wave polarization. It is shown, that
the account of the changes in the spin wave polarization before and after the boundary leads to:
(i) increase of the spin wave amplitude reflection coefficient, (ii) appearance of an additional phase
shift ∆φ 6= 0, π in both transmitted and reflected waves, and (iii) creation of additional evanescent
waves in the vicinity of the boundary. It is also shown, that even when significant changes in
the transmitted wave polarization take place at the boundary, a spin wave could pass a finite-
width boundary without reflection, if a certain resonance condition is satisfied. The effect of the
polarization change at an internal boundary is especially pronounced for the exchange-dominated
spin waves, while in the case of the dipole-dominated spin waves this effect can vanish completely
for certain configurations of the static magnetization.

PACS numbers: 75.30.Ds, 75.78.-n

I. INTRODUCTION

Spin waves (SWs) in ferromagnetic materials are con-
sidered as promising candidates for signal carriers in the
next generation of signal processing devices. This is
closely related to the attractive intrinsic properties of
spin waves, such as relatively low damping, high fre-
quency, small wavelength, down to tens of nanometers,
and a variety of possible nonlinear SW interactions1–5.
In order to process information one should be able to
perform different linear and nonlinear operations with
SWs. In particular, the operations of interest for sig-
nal processing are controllable reflection/transmission of
SWs and variation of the SW phase, which can be per-
formed by a local variation of the SW spectrum. Such
local spectrum variations were realized many times in
bulk and sub-millimeter ferromagnetic (FM) samples by
the application of an additional localized static mag-
netic field. In particular, attenuation6,7 and frequency-
dependent reflection8 of SWs by a field-induced inhomo-
geneity were realized, as well as the resonance tunneling
of SWs through a potential barrier9, and generation of
SW pulse trains by magnetic field-induced mirrors10.
At nanoscale, however, application of local (10-

100 nm) magnetic field is technically complicated and
inefficient. Instead, it is much more convenient and en-
ergy efficient to vary the local magnetic properties of
the propagation medium using a variety of magnetoelec-
tric effects11–14, among which one of the most promising
for application at a nanoscale is the effect of voltage-
controlled magnetic anisotropy (VCMA) in ferromag-
netic metal/dielectric heterostructures15–17. The use of
the VCMA effect has been already proposed for mag-
netic recording18,19, excitation of SWs20–23 and magnetic
solitons24. In the VCMA effect, as well as in several
other magnetoelectric effects, the application of an elec-

tric field results in the variation of the FM magnetic
anisotropy which, of course, leads to the variation of the
SW spectrum25,26.

It is important to note, that SWs are characterized
not only by their dispersion relation, but also by the vec-
tor structure. Magnetization precession is circular only
in an isotropic ferromagnetic sample. The presence of
crystalline or shape anisotropy, as well as dynamic dipo-
lar interaction, which is anisotropic, leads to an elliptic
trajectory of the magnetization precession, i.e. to the ap-
pearance of a nonzero SW ellipticity ε = 1−mmin/mmax,
where mmin,max are the dynamic magnetization compo-
nents in the propagating SW. As the SW ellipticity is de-
termined by the total effective anisotropy, the variation
of the material anisotropy in the propagation medium,
caused, e.g., by an external bias electric field through the
VCMA effect, could significantly modify the ellipticity of
a propagating SW. Strictly speaking, the application of a
localized external static magnetic field could also changes
the SW ellipticity, except in some symmetric cases (like
the case of SW propagation in the perpendicularly mag-
netized isotropic FM film), because it changes the rela-
tion between the components of total effective magnetic
field acting on the magnetization. However, this effect
is much weaker, than the effect of the local anisotropy
variation.

This is illustrated by Fig. 1, where the SW spectra and
ellipticity are shown for SWs propagating in an in-plane
magnetized FM nanowire subjected to different in-plane
bias magnetic fields (Fig. 1(a, c)) and different perpendic-
ular electric fields (Fig. 1(b, d)), which modify the local
magnetic anisotropy due to the VCMA effect. One can
see, that in this example the parameters of the applied
static magnetic and electric fields were chosen in such a
way, that the SW spectral variations caused by the ap-
plication of these fields were very similar. At the same
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FIG. 1. Spectrum (a, b) and ellipticity (c, d) of SWs prop-
agating in a ferromagnetic nanowire under different applied
static magnetic fields (a, c), and electric fields, causing the
local anisotropy modification via VCMA effect (b, d). Pa-
rameters: Fe/MgO nanowire of the 20 nm width, Fe thick-
ness 0.86 nm, static magnetization and the bias magnetic
field are directed along the nanowire, saturation magnetiza-
tion Ms = 2.1 T, exchange length λex = 3.4 nm,constant of
the perpendicular surface anisotropy Ks = 1.36 mJ/m2, mag-
netoelectric coefficient β = 100 fJ/(Vm).27

time, the variation of the SW ellipticity in the case of the
anisotropy modification caused by the electric field are
much more pronounced. With the anisotropy modifica-
tion, the ellipticity variation takes place in a wider range
of the SW wave numbers, and even the major and minor
axes of the magnetization precession in the propagating
SW could be interchanged by the action of the external
electric field through the VCMA effect (see (Fig. 1(d)).

Thus, it is only natural to ask a question on how such
a significant modification of the SW vectorial structure
would affect the transmission and reflection of SWs from
the internal boundary created by the local variation of
the FM anisotropy, and under which circumstances this
effect becomes practically important.

Theoretically the problem of SW transmission between
different ferromagnetic materials or different regions of
the same material was studied for many years. Start-
ing from seminal work by Rado and Weertman28 there
were many research interest to the boundary conditions
at the ferromagnet interface, including study of the ef-
fect of magnetoelastic interaction29, finite width and
diffusive character of interfaces30–32, nonuniform dipo-
lar fields33,34, Dzyaloshinski-Moriya interaction35, mag-
netic anisotropy of interface36,37, etc. The problem of
the SW reflection from a sharp boundary was studied in
details for exchange-dominated SWs in isotropic, uniax-
ial and biaxial anisotropic ferromagnets38–40. The case
of smooth interface was studied for both dipolar6,7 and
exchange-dominated SWs30,31. A closely related prob-
lem of the phase accumulation of SWs propagating in

a nonuniform field was considered in Refs. 41 and 42.
Recently, the problem of transmission and reflection of
exchange-dominated SWs from an interface between two
bi-axial magnetic materials has been considered again43,
and formation of surface exchange SWs at the boundary
has been predicted for the first time.
In almost all the previously published papers the prob-

lem of the SW transmission through a boundary (or a
region with modified magnetic parameters) was consid-
ered within a scalar approximation, in which SW was de-
scribed by a single effective scalar variable. This scalar
variable can be introduced in a multiple ways. Either a
spin density formalism can be employed38,39, or a single
variable describing circularly polarized dynamic magne-
tization can be introduced41, or one of the dynamic mag-
netization components is simply neglected6,7.
In our current work we go beyond the scalar approxi-

mation, and study the SW transmission and reflection us-
ing the full vector equations of motion, accounting, thus,
for the SW polarization. As it will be shown below, the
variation of the SW polarization results in a qualitatively
different behavior of a SW transmitted through a bound-
ary, such as the appearance of localized modes near the
boundary, and appearance of a nonzero phase shift in the
transmitted wave. We develop an analytical theory of
the SW transmission through a sharp internal boundary
for dipole-exchange and exchange-dominated SWs, and
derive a criterion allowing one to determine the range of
validity of the commonly used scalar approximation. The
developed theory is general, and is not limited to the case
when the internal boundary is introduced by the VCMA.
This case will be discussed below simply to illustrate the
developed general formalism.
The article is organized as follows. In Sec. II the ge-

ometry of the problem, and the general equations of mo-
tion for the magnetization are introduced. The boundary
conditions, and the vectorial structure of SWs modes,
localized near the boundary, are described in Sec. III.
Analytical expressions for the coefficients of SW trans-
mission and reflection from an isolated boundary, and
from a finite-width region with modified magnetic pa-
rameters (two consequent boundaries separated by a fi-
nite distance) are derived and discussed in Sec. IV within
the exchange approximation. Effects of the dipolar in-
teraction on the obtained results are discussed in Sec. V.
Finally, conclusions are given in Sec. VI.

II. MODEL AND INITIAL EQUATIONS

The geometry of the considered problem is shown in
Fig. 2. We consider a quasi-one-dimensional problem,
when SWs propagate in a ferromagnetic waveguide (e.g.
stripe or nanowire) along the axis of a waveguide (y-axis
in Fig. 2). The boundary between the regions with differ-
ent magnetic properties is perpendicular to the SW prop-
agation direction (x-axis). We also assume that the SW
profile in the x-z plane (perpendicular to the propaga-
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FIG. 2. Geometry of an SW waveguide with a single internal
boundary: SW propagates along the FM waveguide through
a sharp internal boundary between the the two waveguide
regions which have different magnetic properties, and, there-
fore, different SW dispersion relations and different vector
structure (polarization) of the SW modes.

tion direction) remains unchanged in both regions. This
assumption is absolutely natural for relatively thin ferro-
magnetic films and nanowires with the thickness of the
order of several exchange lengths for a given FMmaterial.
In such a case the SW profile along the film thickness is
maintained uniform by the exchange interaction, and the
width profiles of different SW modes are defined by the
effective dipolar boundary conditions, which are almost
independent of the SW wave vector and values of the bias
magnetic field or anisotropy33,34,44. The assumption of a
constant SW transverse profile works also in much larger
samples, like micron-sized ferromagnetic strips or films, if
the propagation of the bulk SW modes is considered. For
example, such a case is realized if a FM film or a strip is
magnetized in the y or z directions. A well-known exemp-
tion, which cannot be considered within the above men-
tioned assumption, is the Damon-Eshbach surface SW
mode, which propagates in an in-plane magnetized film
perpendicularly to the direction of the static magnetiza-
tion (i.e. the static magnetization is along the x direction
in Fig. 2). The thickness profile of the Damon-Eshbach
mode depends on its wave number45 (in relatively thick
films), and the solution of the boundary problem in such
a case requires accounting of all the SW modes of the
film.

We consider the SW propagation in an FM waveguide
through an internal boundary – a boundary between 2 re-
gions of the same FM waveguide. This boundary can be
created by any external influence, e.g., by the application
of an external bias magnetic field, electric field or strain.
Thus, the regions of the FM waveguide separated by the
boundary can differ by the values of the static internal
magnetic field or magnetic anisotropy, while the satura-
tion magnetization Ms and the exchange length λex are
the same in both regions. The static magnetization is as-
sumed to be uniform, and have the same direction in both
separated regions of the waveguide. The boundary is con-
sidered to be sharp, which physically means that the area
in which the external control parameter (magnetic field,
electric field, strain, etc.) varies is much smaller tnan
the SW wavelength. For ultrathin nanowires , where the
magnetic anisotropy could be modified by the VCMA
effect, this is an absolutely natural approximation for
all the range of the experimentally achievable SW wave-

lengths. It should be noted, that below we do not use
any specific features of VCMA-induced anisotropy vari-
ation. All the theory uses only the SW dispersion rela-
tion and vector structure, and, thus, could be applied to
boundaries created by any physical effects within the lim-
its described above. Also, the theory can be generalized
to the case of the interface between the different ferro-
magnetic materials, and one should expect qualitatively
similar effects.
Within the above formulated approach the propaga-

tion of SWs is described by the following equation (see
Refs. 46–48 for the details of this formalism):

∂m(y, t)

∂t
= µ× Ω̂ ∗m(y′, t) , (2.1)

where the tensor operator

Ω̂ =δ(y − y′)

(

γB − ωMλ
2
ex

∂2

∂y2
+ ωMN̂an

)

+ωM

∫

dy′Ĝdip(y − y′) .

(2.2)

Here µ (|µ| = 1) and m(y, t) are the dimensionless
static and dynamic magnetization components, so that
the full magnetization vector is written as M(y, t) =
Ms (µ+m(y, t)), B is the static internal magnetic field
inside the FM waveguide, λex is the exchange length of
the FM material, tensor N̂an = −Ban/(µ0Ms)(ez′ ⊗
ez′) describes the uniaxial anisotropy with effective

anisotropy field Ban and anisotropy axis ez′ ,47, and Ĝdip

is the magnetostatic Green’s function, which depends on
the sample geometry49. For the considered problem, ob-
viously, B and N̂an can be different in different regions
of the FM waveguide. Since the magnetic damping is not
of a qualitative importance for the particular scattering
problem considered here, in the following it is neglected.
Note, that if the profile of the propagating SW mode is
not uniform in the x-z plane, Eq. (2.2) remains valid, but

proper expression for the Green’s function Ĝdip should
be used (i.e., when averaging standard two-dimensional
Green’s function over the nanowire width actual SW pro-
file should be taken into account49).
Considering transmission of a monochromatic SW with

the angular frequency ω, we represent the SW dynamic
magnetization via its complex amplitudes: m(y, t) =
(m(y) exp[−iωt] + c.c.), which results in the replacement
∂m(y, t)/∂t → −iωm(y) in Eq. (2.1). In a general
case, the resulting integral-differential equation can not
be solved analytically. However, for a sufficiently large
SW wave number k (see criteria below) the exchange in-
teraction becomes dominant, and the integral operator in
Eq. (2.2) can be replaced with its Fourier-transform F̂k =
∫

Ĝdip(y)e
−ikydy. Consequently, Eq. (2.1) becomes an

ordinary differential equation, which for the considered
case of a sharp boundary can be solved in each region
separately, and a proper boundary conditions should be
applied. In both regions separated by the boundary the
SW has the form of a harmonic wave with the wave vector
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k = key: m(y, t) = (mk exp[i(ky − ωkt)] + c.c.). The
SW dispersion relation ωk(k) and the vector structure
mk of the propagating SW mode are determined from
the following eigenvalue problem46,47:

−iωkmk = µ× Ω̂k ·mk , (2.3)

Ω̂k =
(

γB + ωMλ
2
exk

2
)

Î + ωM

(

F̂k + N̂an
)

. (2.4)

The range of validity of the above described exchange
approximation can be easily evaluated from Eqs. (2.3,
2.4). Comparing the exchange contribution to the SW
energy (frequency) and maximal possible dipolar con-
tributions one finds that the last one is negligible if
λ2exk

2 ≫ maxα,β |Fk,αβ − F0,αβ |. Note, that F̂0 is the
simple static demagnetization tensor of the used FM
waveguide.

III. BOUNDARY CONDITIONS AND

EVANESCENT SPIN WAVES

In the case when M0 and λex are the same in both
regions, the following conditions of continuity of the dy-
namic magnetization m(y) and its derivative should be
satisfied at the boundary (located at y = 0):

m(y = 0−) = m(y = 0+) ,
∂m

∂y

∣

∣

∣

∣

y=0−

=
∂m

∂y

∣

∣

∣

∣

y=0+

.

(3.1)
If the SW vector structure is the same in both re-

gions, one can represent dynamic magnetization using
a scalar variable a(y): m(y) = m0a(y). In such a
scalar approximation the conditions Eq. (3.1) are re-
duced to two scalar equations, and it is easy to cal-
culate the SW reflection R and transmission T coeffi-
cients at the boundary by choosing the solution as a
sum of incident and reflected waves before the bound-
ary, a(y < 0) = eik0y +Re−ik0y, and a single transmitted
wave after the boundary, a(y > 0) = Teik1y. This solu-
tion is well-known:

R =
k0 − k1
k0 + k1

, T =
2k0

k0 + k1
. (3.2)

The wave number k1, of course, is determined form the
dispersion relation, so that the frequencies of the incident
and transmitted SWs are the same: ω0(k0) = ω1(k1).
From Eq. (3.2) it is clear, that the SW reflection coef-
ficient increases when the difference of SW wave num-
bers, determined by the difference of the external con-
trol parameters before and after the boundary becomes
larger. One can also see, that the transmitted SW is al-
ways in phase with the incident one, while the reflected
SWs could be in phase, or acquire a phase shift ∆φ = π
depending whether k0 > k1 or not.
In a general “vectorial” case, however, one should use

the full boundary conditions Eq. (3.1). It is clear, that

choosing solution as a sum of the incident and reflected
SWs before the boundary and as a single transmitted
SW after the boundary, it is not possible to satisfy the
boundary conditions as there are only 2 scalar parame-
ters to be determined (R and T ) and 4 scalar equations
to be satisfied (since m is, effectively, a two-component
vector perpendicular to the static magnetization). Con-
sequently, there should be the other waves, which, to-
gether with the incident, reflected and transmitted SWs,
will allow us to satisfy the boundary conditions.

To understand what are these “other” additional SWs,
let us look closer at the Eq. (2.3). For a fixed SW fre-
quency ω Eq. (2.3) can be considered as an eigenvalue
problem for the SW wave vector k2 and the vector mk

characterizing the vectorial structure of the SW mode.
In the range of existence of the propagating SW mode
this eigenvalue problem has two solutions: one with the
k2 > 0, which describes the propagating SWs having
the vectorial profile mk, and the second solution with
k2 = −κ2 < 0, which corresponds to the exponentially
localized (evanescent) SWs with the spatial distribution
m(y) ∼ exp[±κy]. The “wave number” of these evanes-
cent SWs for an arbitrary anisotropy and static magne-
tization can be represented as:

κ2 =
2ωk|mk|

2

ωMα2
exAk

− k2 , (3.3)

where Ak = i (m∗

k · µ×mk) is the norm of the propa-
gating SW mode mk

46. The vector structure of these
localized waves (to the accuracy of an arbitrary multi-
plier) is determined as:

mev = µ×m∗

k . (3.4)

For example, if a propagating SW has polarization mk =
mxex+imyey, then the structure of the evanescent SW is
described by mev = myex − imxey. In other words, the
evanescent wave has the opposite direction of the mag-
netization vector rotation compared to the incident SW,
and the precession ellipse in the case of an evanescent
wave is rotated on 90 degrees. Note, that in a general
case the polarizations of the propagating incident and
the localized evanescent SWs are orthogonal, in the sense
m∗

ev ·mk = 0, that is expected. The existence of the simi-
lar evanescent SWs near the boundary was first predicted
in43.

The existence of these evanescent SWs is natural. The
SWs with orthogonal polarization cannot propagate in a
FM waveguide. Consequently, if such an SW is injected
into the waveguide, it should decay at a certain decay
length. Eq. (3.3) determines the magnitude of the char-
acteristic decay length l = 1/κ of these evanescent SWs.
It can be shown that κ2 > k2 for any parameters of the
waveguide, i.e the evanescent SW decays on the length
which is of the order, or smaller, than the wavelength of
the propagating SW of the same frequency.
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FIG. 3. Profiles of an SW mode near the boundary of two
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polarizations: (a) scalar approximation (Eq. (3.2)); (b)full
vectorial solution. Figures show the profiles of both com-
ponents of the SW dynamical magnetization, and, also, the
profile of the effective scalar variable a(y) (in (a) only).
The position of the boundary is shown by a vertical dashed
line. Calculation parameters: λexk0 = 0.39, mk,0 = [1, 1],
λexk1 = 0.2, mk,1 = [1.77, 1] (which correspond to an FM
waveguide magnetized in the y-direction by the bias mag-
netic field Be = 0.1µ0Ms, isotropic in the 0-th region, and
having perpendicular hard-axis anisotropy in the first region

N
(an)
zz,1 = 0.3. The SW frequency is ω = 0.25ωM ).

IV. TRANSMISSION AND REFLECTION OF

THE SPIN WAVES AT A BOUNDARY IN THE

EXCHANGE APPROXIMATION

A. Single internal boundary

In this section we calculate the transmission and re-
flection coefficients for a SW passing through a single
internal boundary, as shown in Fig. 2. As it was pointed
out in the previous section, for the proper description of
scattering from the boundary one should represent the
dynamical magnetization before the boundary as a sum
of incident, reflected and evanescent SWs:

m(y < 0) = mk,0

(

eik0y +Re−ik0y
)

+ C1mev,0e
κ0y ,
(4.1)

and the magnetization after the boundary as a sum of a
transmitted and another evanescent SWs:

m(y > 0) = Tmk,1e
ik1y + C2mev,1e

−κ1y . (4.2)

The amplitude of the incident propagating SW is as-
sumed to be equal to 1. Substituting these equations
for the wave amplitudes into the boundary conditions
Eq. (3.1), one obtains four linear equations for the coef-
ficients R, T , C1 and C2, which can be solved by well-
known methods.
An example of the SW profiles Eqs. (4.1, 4.2) calcu-

lated using the full vectorial approach is presented in
Fig. 3(b), and, for comparison, the similar profiles cal-
culated within the traditional scalar approximation are
presented in Fig. 3(a). For clarity we have chosen the pa-
rameters of the scattering problem in such a way, that the

incident and reflected SWs are circularly polarized (dy-
namic magnetization components |mx| = |mz|), while
the transmitted SW has the elliptical polarization. In
Fig. 3(b) one can clearly see the influence of the lo-
calized evanescent SWs, which allow the components of
the dynamic magnetization to vary continuously across
the boundary. In contrast, in the scalar approxima-
tion Fig. 3(a) only the effective scalar parameter a(y)
(e.g. spin density) is continuous, while dynamic magne-
tization components have an unphysical discontinuity at
the boundary. The oscillations before the boundary are
caused by the interference of the incident and reflected
SWs. We would like to note, that the localization length
of the evanescent SWs does not depend on the polariza-
tion difference in the two regions, and that these waves
always appear if any polarization difference exists.
The transmission and reflection coefficients in the vec-

torial formalism have the following form:

T =
2k0 (κ0 + κ1) |mk,0|

2/(m∗

k,0 ·mk,1)

(k0 + k1)(κ0 + κ1)− iE2
01(k0 + iκ1)(k1 + iκ0)

,

(4.3a)

R =
(k0 − k1)(κ0 + κ1)− iE2

01(k0 − iκ1)(k1 + iκ0)

(k0 + k1)(κ0 + κ1)− iE2
01(k0 + iκ1)(k1 + iκ0)

.

(4.3b)
Here the quantity E01 is defined as

E01 =

∣

∣

∣

∣

∣

mk,0 · µ×mk,1

m∗

k,0 ·mk,1

∣

∣

∣

∣

∣

. (4.4)

This quantity serves as a natural measure of difference
in the SW polarization mk,0 and mk,1. In particular, it
is equal to zero, if mk,0 = mk,1, and E → ∞ for almost
orthogonal SW polarizations when m∗

k,0 ·mk,1 → 0.
It is clear, that for identical SW polarizations, when

E01 = 0, the vectorial expressions for the SW transmis-
sion and reflection coefficients Eq. (4.3) are reduces to
Eq. (3.2), obtained in the scalar approximation. Inequal-
ity of the SW polarizations before and after the bound-
ary leads to an increase of the SW reflection from the
boundary, and a consequent decrease of the SW trans-
mission. Additionally, it leads to the appearance of the
phase shifts in both the reflected and transmitted waves
relative to the incident one, which can take any value
∆φ ∈ [−π, π] (recall, that in the scalar approximation
∆φ = 0, π for the reflected wave, and there is now phase
shift for the transmitted wave). It is important to note,
that even if the SW wave vectors are identical, the SW
would not be fully transmitted through the boundary
if the polarization mismatch exists: T 6= 1, R 6= 0 for
k0 = k1 and E01 6= 0. Finally, it is interesting to note,
that for a large SW polarization difference (E01 ≫ 1) the
transmission coefficient is reduced to zero, T → 0, while
the reflection coefficient approaches the value :

R →
k0 − iκ1
k0 + iκ1

, (4.5)
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which coincides with Eq. (3.2), obtained in the scalar
approximation, assuming that the only SW existing after
the boundary is the evanescent one, having the inverse
localization length κ1. Naturally, |R| → 1 in this case.
Let us now look quantitatively at the influence of the

SW polarization mismatch on the SW reflection and
transmission coefficients. For this purpose, we calculate
the R and T coefficient for a model system, assuming
that the SW wave numbers in both regions are the same,
k0 = k1 and κ0 = κ1, while the polarization difference E01
is non-zero. In this case the SW reflection is caused only
by the SW polarization difference. Such a situation is not
just an abstract theoretical model, but it can be realized,
for example, at the interface between the FM waveguides
having the same anisotropy field, but the anisotropy axes
that are perpendicular to each other.
The calculated dependences of the SW reflection coef-

ficient |R| are shown in Fig. 4. As one can see, the effect
of the polarization mismatch on the SW reflection and
transmission depends, also, on the ratio of the SW wave
number k to the inverse localization length of the corre-
sponding evanescent wave κ: for a larger ratio κ/k the
reflection is stronger.
This can be easily understood by recalling, that in the

well-known scalar case the reflection is proportional to
the difference of the wave vectors of between the inci-
dent and the transmitted waves. Similarly, in our case
when the difference in characteristic scales of the inci-
dent and the localized waves increases, a greater part of
the incident SW is reflected from the boundary. As it
was pointed out earlier, κ2 ≥ k2 for any stable magnetic
configuration, and the ratio κ/k increases with the in-
crease of the bandgap in the SW spectrum (i.e. with the
increase of the value ω0).
It should be noted, that the influence of the polariza-

tion mismatch on the reflection is proportional to E2
01 ,

and, consequently, it is almost unnoticeable for he small
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FIG. 5. Dependence of the SW reflection coefficient (a) and
the phase shift of the reflected SW (b) on the control param-
eter (electric field applied in the region after the boundary)
for different wave number of the incident SW; lines –theory,
symbols – results of micromagnetic simulations. The material
and geometrical parameters are as in Fig. 1.

polarization difference (E01 < 0.1− 0.2 in Fig. 4). Obvi-
ously, when the SW wave vectors are also different, which
results in a nonzero reflection for E01 = 0, the effect of the
polarization mismatch on the amplitude of the reflected
wave will be pronounced only for even higher values of
E01.
As an example, in Fig. 5 we calculated the reflection

coefficient |R| and the phase shift ∆φ of an SW reflected
in an ultrathin nanowire where the sharp internal bound-
ary was created by an external electric field via VCMA,
so the perpendicular magnetic anisotropy was changed at
the boundary. As it was shown in Fig. 1 the SW polar-
ization can significantly change in such a case, resulting
in the polarization mismatch up to E01 = 0.3 in the stud-
ied range of applied electric field values. We found that
the difference between the values of the reflection coef-
ficient |R| in the full vectorial solution Eq. (4.3) and in
the scalar approximation Eq. (3.2) does not exceed 1%.
However, at the same time one can clearly see in Fig. 5 an
additional phase shift in the reflected SW up to 0.15 rad,
which could be easily detected and should be taken into
account in the design of SW signal processing devices.
We have also verified our theoretical calculations by

micromagnetic simulations using MuMax3 micromag-
netic solver50. In these simulations, we set the nanowire
length to 4µm, SWs are exited by a local, 50 nm in
length, application of microwave magnetic field bz of the
magnitude bz = 0.1mT and the frequency of 5.52 GHz
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(corresponding to k0 = 0.07 nm−1) and 8.85 GHz (k0 =
0.1 nm−1), and the internal boundary is separated by
1µm from the excitation source. To increase the preci-
sion of the determination of reflected wave amplitude and
phase, the damping rate is set to αG = 10−4, except for
the regions near the nanowire beginning and end, where
it increases quadratically, which ensures absence of SW
reflections form these edges. The complex reflection co-
efficient R is extracted from the magnetization dynamics
in the region between the excitation area and internal
boundary (but not close to the boundary, so that evanes-
cent waves become negligible), by its fitting by the sum
of incident and reflected waves.
As one can see in Fig. 5, the modulus of the reflec-

tion rate |R| is nicely reproduced by micromagnetic sim-
ulations. In the case of shorter incident SW having
k0 = 0.1 nm−1, our theory predicts well also the phase
shift of the reflected wave. In the case of longer inci-
dent SW, k0 = 0.07 nm−1, we also see clear additional
phase shift of the reflected SWs, induced by the polar-
ization mismatch, however, this shift is somewhat smaller
than predicted one. The reason of this discrepancy is the
increased role of the dipolar interaction in the propaga-
tion of longer SWs, which is discussed in more details in
Sec. V.
Thus, we can conclude that the SW polarization mis-

match before and after the boundary leads to 3 main
effects. First one, which is clearly visible for any po-
larization mismatch, is the appearance of the localized
evanescent SWs at the boundary. Second effect is the
additional phase shift for both reflected and transmitted
SWs. Finally, the third one is a decrease of the transmis-
sion and increase of reflection coefficients which, however,
is measurable only for sufficiently large values of the po-
larization mismatch E01.

B. Finite region with different SW dispersion and

polarization

In this subsection we consider the SW scattering from
a region (“gate”) of a finite gate length Lg, inside which
the magnetic parameters (magnetic field or anisotropy)
of a waveguide are modified (see Fig. 6). Such structures
can be used for the effective control of the phase and
amplitude of a propagating SW in the SW-based signal
processing. In experiment, such a geometry can be real-
ized by applying a control voltage in a spatially extended
region of the SW waveguide (middle region in Fig. 6).
Within a standard scalar approximation the solution of

this transmission problem is well-known, and the trans-
mission coefficient T is given by:

|T |2 =

[

1 +
1

4

(

k0
k1

−
k1
k0

)2

sin2(k1Lg)

]

−1

. (4.6)

The reflection coefficient can be calculated from the
equality |T |2 + |R|2 = 1. Of course, this solution is valid

x

y

z

i��i�	�
 ��

r	
�	�
	� ��

transmitte� ��

Lg

ω
k,�� mk,� ω

k,�� mk,�ω
k,�� mk,�

FIG. 6. Geometry of an SW waveguide with a finite-length
internal boundary: SW in the course of propagation in an
FM waveguide encounters a region of a finite length Lg with
different magnetic parameters

if the gate length Lg is significantly smaller, than the SW
mean free path.

For the calculation of the transmission coefficient
within the full vectorial approach one should take into
account an incident (eik0y), reflected (Re−ik0y) and one
evanescent (C1e

κ0y) SW in the first region (left one in
Fig. 6), two propagating (C2e

ik1y and C3e
−ik1y) and two

evanescent (C4e
−κ1y and C5e

κ1(y−Lg)) SWs inside the
middle (gate) region, and one transmitted propagating
SW (Teik0(y−Lg)) and one evanescent SW (C6e

−κ0(y−Lg))
in the last (right) region. In this geometry the positions
of the sharp internal boundaries are assumed to be at
y = 0 and y = Lg, respectively. By the application
of two pairs of conditions Eq. (3.1) at both boundaries
one can obtain the amplitudes of all the propagating and
evanescent waves. The exact solution of the problem is
too cumbersome to be presented here. Thus, below we
will show only the solutions obtained in several most im-
portant particular cases.

To illustrate the qualitative influence of the polariza-
tion mismatch on the SW propagation through a gate
of a finite length we present below the dependence of
the transmission coefficient on the gate length Lg for a
model problem illustrated in Fig. 7, and compare it with
the similar results obtained in the scalar approximation
Eq. (4.6). The following features of the SW scattering
from the finite-size gate can be seen from Fig. 7. First,
the function |T |2(Lg) is still a periodic function, except
in the case of small gate lengths, when the amplitudes
of the evanescent SWs localized at one of the boundaries
are not vanishing the other another boundary, i.e. when
exp[κ1Lg] is not a negligible value. The period of the
function |T |2(Lg) is the same as in the scalar approxima-
tion, and is equal to 2π/k1. Second, the minimum value
of the transmission coefficient becomes smaller due to the
influence of polarization difference. Finally, the most in-
teresting feature is the fact, that the maximum value of
transmission coefficient can be max |T |(Lg) = 1, i.e. an
SW can pass the gate region resonantly. This resonance
transmission could appear to be rather surprising, since
the SW passes two boundaries where a part of the SW
polarization is lost. In a certain sense, this is an ana-
log of the well-known resonance tunneling of particles in
quantum mechanics, and the role of the tunnel barriers
is played by the internal boundaries. The resonant trans-
mission takes place if the condition k1Lg+ψ = πn, n ∈ Z
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FIG. 7. Coefficient of SW transmission through a gate
of a finite length Lg ; solid lines – full vectorial solution,
dashed lines– scalar approximation. Parameters: internal
field B/µ0Ms = 0.1, effective anisotropy tensor (including

static demagnetization tensor) N
(an)
xx,1 = 0.8, N

(an)
yy,1 = 0.2

within the gate region and N
(an)
xx,0 = 0.35, N

(an)
yy,0 = 0.65 outside

this region, SW frequency ωSW = 0.6ωM . The corresponding
SW spectra are shown in the inset, dashed line - within the
gate region, solid - outside this region; for these parameters
the SW polarization difference is E01 = 0.37.

is satisfied (see the definition of ψ below). In a scalar ap-
proximation the resonant transmission also takes place,
under the condition k1Lg = πn (see Eq. (4.6) or Ref. 40).
The appearance of the phase ψ in the resonance condi-
tions is related to the additional phase shift, which is
acquired by an SW reflected from a boundary due to a
nonzero polarization mismatch.

An reasonably simple analytical expression for the SW
transmission coefficient can be derived assuming that am-
plitude of the evanescent SW localized at one of the
boundaries is vanishingly small at the other boundary,
i.e. if exp[−κ1Lg] ≪ 1. Within this approximation the
SW transmission coefficient can be written as:

|T |2 =

[

1 +
1

4

[

(

k0
k1

−
k1
k0

)2

+ E2
01f

]

sin2(k1Lg + ψ)

]

−1

.

(4.7)
Here f and ψ are the coefficients which depend on the
SW wave numbers ki, “wave numbers” κi of the localized
evanescent waves, and the SW vector structure. In a gen-
eral case the explicit expressions for f and ψ are rather
cumbersome, and we will not present them below. It is
clear, that for a negligible difference of the SW polariza-
tion, E01 ≪ 1, the above presented equation is reduced
to Eq. (4.6) (ψ = 0 for E01 = 0, see below).

The expressions for f and ψ in a compact explicit form
can be also derived in several limiting cases. For a small
polarization mismatch, E01 ≪ 1 these expressions have

the following form:

f = 2

(

k20 − k21
) (

k20κ0 − k21κ1
)

k20k
2
1 (κ0 + κ1)

, (4.8a)

ψ =
1

2
arcsin

[

4E2
01

k1(k
2
0 + κ0κ1)

(k20 − k21)(κ0 + κ1)

]

. (4.8b)

It is clear, that for E01 = 0 the phase ψ = 0, as it was
pointed out above. In particular, using Eq. (4.8), we
can calculate the effect of the polarization mismatch on
the SW transmission for a VCMA gate (all the param-
eters used are the same as in Fig. 5). When the ap-
plied gate voltage E = 2V/nm the value E2

01f is only 4%
of the polarization-independent term (k0/k1 − k1/k0)

2.
Consequently, the minimum transmission coefficient also
decreases by around 4% . The phase ψ which affects
the condition of the resonance transmission through the
finite-length gate is equal to ψ = 0.15 rad, which is not a
negligible value, and should be taken into account.
Another limiting case, in which compact expressions

for f and ψ can be derived, is the case of a large polar-
ization mismatch, i.e. the case when E01 ≫ 1. In this
limit the coefficients in Eq. (4.7) can be calculated as:

f = E2
01

(

k20 + κ21
)2 (

k21 + κ20
)2

k20k
2
1(κ0 + κ1)4

, (4.9a)

ψ =
1

2
arcsin

[

4k1κ0
(

κ20 − k21
)

(κ20 + k21)
2

]

. (4.9b)

The case of a large polarization mismatch is, basically
the case of a large ellipticity of the SW precession, for
which typically κ ≫ k. Consequently, one can see that
in such a case ψ → 0, similarly to the case of small values
of E01.

V. EFFECT OF DIPOLAR INTERACTION

In the previous sections we neglected the effect of the
dynamic dipolar interaction on the SW propagation and
transmission through an internal boundary. For a suffi-
ciently short SWs and thin ferromagnetic films this ap-
proximation is natural and correct. However, in the range
of relatively small SW wave numbers the dynamic dipolar
interaction becomes important, and, also, its influence is
more pronounced in relatively thick ferromagnetic films.
The problem of transmission of dipole-exchange SWs

through an internal boundary is a complex challenging
task, which has not been solved analytically even within
the scalar approximation. In order to understand main
features of the SW transmission in the dipole-exchange
case we, first, consider the case of purely dipolar SWs
(magnetostatic waves), neglecting the exchange interac-
tion. This approximation is valid if all the dimensions of
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a ferromagnetic waveguide and the SW wavelength are
much larger than the exchange length in the waveguide
FM material.
The propagation of the dipolar SWs is described by

the Walker’s equation51 for magnetostatic potential ψ:

div (µ̂ · ∇ψ) = 0 , (5.1)

where µ̂ = µ̂(ω) = Î+χ̂ is the tensor of magnetic perme-
ability, and χ̂ is the tensor of magnetic susceptibility. In
the coordinate system where the z′ axis is aligned along
the direction of static magnetization the susceptibility
tensor χ̂ has only 4 nonzero components:

χ̂ =
ωM

ω2
0 − ω2





ωH + ωan,y′ iω 0
−iω ωH + ωan,x′ 0
0 0 0



 , (5.2)

where ωan,i = γBan,i, Ban,x′ and Ban,y′ are the
anisotropy fields in the x′ and y′ directions (anisotropy
is assumed to be biaxial), and ω2

0 = (ωH + ωan,x)(ωH +
ωan,y) is the ferromagnetic resonance frequency in the
waveguide.
In order to make the calculations simple and clear,

we consider a metalized FM waveguide where the static
magnetization direction is along the z axis (the case of a
perpendicularly magnetized waveguide). The coordinate
system is the same as the one shown in Fig. 2. In this case
from the boundary conditions at the metalized surfaces,
which require (µ̂∇ψ)z = 0, one gets a profile of the dipo-
lar SW eigenmodes: ψn = cos[κnz]e

iky, where κn = π/tz,
where tz is the film thickness. Also, form Eq. (5.1) one
can get a dispersion relation for the magnetostatic waves
in the form: κ2n = µyy(ω)k

2. The thickness profile of
a magnetostatic SW mode does not depend on its wave
vector, so we can consider the transmission problem for
only one magnetostatic mode.
The magnetostatic boundary conditions at an inter-

nal boundary require continuity of the tangential com-
ponents of the magnetic field H = ∇ψ (x and z com-
ponents in our geometry) and of the normal component
of the magnetic induction B = µ̂ · ∇ψ (y-component).
These conditions can be satisfied by the selection of a
solution as a sum of incident, reflected and transmit-
ted waves: ψ(y < 0) = cos[κz](eik0y + Re−ik0y), and
ψ(y > 0) = T cos[κnz]e

ik1y. Then, the transmission and
reflection coefficients are equal to:

R =
µyy,0k0 − µyy,1k1
µyy,0k0 + µyy,1k1

, T =
2µyy,0k0

µyy,0k0 + µyy,1k1
.

(5.3)
This solution is similar to the one obtained in the scalar
exchange approximation (Eq. (3.2)). The only difference
is the fact, that the magnetostatic wave is sensitive to
the variation of the product of a wave number by the yy-
component of the magnetic permeability tensor, but not
sensitive to the variation of the SW wave vector alone.
Another two features of this solution should be pointed
out: (i) the solution of the transmission problem in the

range of dipolar SWs does not contain any localized SW
modes independently of the presence or absence of the
SW polarization mismatch, and (ii) there is no explicit
dependence of the SW transmission coefficient on the SW
polarization.

A dependence of the SW transmission coefficient on
SW polarization may, however, be present implicitly in
the dependence µ̂(ω). To check this point let us look
at the case when the SW wave vectors in the regions
before and after the boundary are the same, k0 = k1.
From the dispersion law it follows that this case requires
µyy,0 = µyy,1. Consequently, the reflected wave is ab-
sent (see Eq. (5.3)), and the incident wave passes fully
through internal boundary. The polarization of the mag-
netostatic wave is given by m = χ̂∇ψ, i.e. the relation
between the dynamic magnetization components has the
form: to mx/my = χxy/χyy = iω/(ωH + ωan,x). As it
was mentioned above, the yy-components of the suscep-
tibility tensor, χyy, are the same in both regions, but the
xy-components can be different.

Indeed, one can easily find values of ωH,0(1), ωan,0(1)

such, that χyy,0 = χyy,1, but χxy,0 6= χxy,1 for a certain
frequency ω, see Eq. (5.2). Note, that this is possible
not only in a specific case of biaxial anisotropy, but also
can happen in a case of an uniaxial anisotropy. Thus, we
can conclude, that a dipolar SWs can be absolutely in-
sensitive to the variation of the SW polarization, at least
in certain geometries. This is in a sharp contrast with
the properties of the exchange SWs, which are always
sensitive to the SW polarization mismatch.

Absolutely the same calculations with the similar con-
clusions one can made for the case when the FM waveg-
uide is magnetized in-plane along the direction of the
wave propagation µ = ey. The only difference is in the
values of the transmission and reflection coefficients (see
Eq. (5.3)), where µyy = 1 (since µz′z′ = 1 + χz′z′ = 1,
see Eq. (5.2)). For any other directions of the waveguide
static magnetization such a simple analysis can not be
performed, because the SW profile across the film thick-
ness becomes dependent on the SW wave vector, and the
conditions at an internal boundary can not be satisfied
using a single thickness SW mode. Therefore, in a com-
plex magnetization geometry the scattering into multiple
thickness magnetostatic modes takes place at a boundary.
In such a complex case, obviously, it would be difficult
to try to isolate the effect of SW polarization mismatch
in the scattering problem.

Let us now return to the initial problem of the trans-
mission of a dipole-exchange SWs through a boundary.
If an FM waveguide is sufficiently thin (of the order of
10-100 nm, depending on the material exchange length),
the thickness profile of a propagating SW is maintained
uniform by the exchange interaction independently of the
static magnetization direction. Based on the above de-
scribed properties of the magnetostatic waves, one can
expect, that, at least in certain geometries, the SW would
become insensitive to the polarization mismatch when
the role of the dipolar interaction increases. To ver-
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ify this hypothesis we performed numerical simulation of
Eq. (2.1) accounting for the dipolar interaction via the in-
tegral operator with Green’s function kernel (Eq. (2.2)).
Equation (2.1) was solved using finite-difference method
in the stationary mode (i.e. ∂m/∂t = −iωm). The
length of simulation area was chosen 10-20 times larger
than SW wavelength, and the boundary conditions were
set as the sum of harmonic incident and reflected waves at
one boundary, and transmitted wave at other boundary,
with unknown reflection and transmission rates. This
approach leads, finally, to a linear equation system for
the coefficients R, T and a set discretized magnetization
values.

These numerical calculations showed that the above
described behavior takes place if the waveguide static
magnetization does not have in-plane components that
are perpendicular to the SW propagation direction, µx =
0, i.e. it takes place for perpendicular magnetization
(µ = ez), for “backward volume waves geometry” (µ =
ey), and for any magnetization configuration between
these two. For such magnetization geometries the SW
transmission through a boundary becomes less sensitive
to the polarization mismatch with the increase of the role
of the dipolar interaction (this increase was simulated by
the increase of the film thickness), and in the limit of a
negligible exchange interaction the effect of polarization
disappears completely. The same feature was pointed
above in our micromagnetic simulations (see Fig. 5).

However, if µx 6= 0, in particular, in the case of a
“Damon-Eshbach geometry” (µ = ex), the effect of the
SW polarization does not disappear completely even for
the dipole-dominated SWs. In particular, the SW reflec-
tion takes place if k0 = k1, but m0 6= m1. Such a drastic
dependence on the direction of the static magnetization
can be understood recalling the above mentioned solu-
tion of the Walker’s equation. In the above considered
dipolar case of perpendicular magnetization, the SW po-
larization is defined by the xy- and yy-components of the
susceptibility tensor, however, the xy-component of the
same tensor does not contribute to the SW dispersion law,
and, consequently, to the SW propagation and scattering.
Thus, the SW propagation would not be affected by the
mx component of the dynamic magnetization in the con-
sidered case. A similar situation takes place in the case of
the dipole-exchange SW propagating in thin films when
µx = 0, because xx and xy-components of the magneto-
dipolar Green function in Eq. (2.1) are identically zero,
Gxx = Gxy = 0. However, as soon as µx 6= 0, both
dynamic magnetization component have the y or/and z-
components, and, thus, both of them contribute to the
SW propagation, since Gyy , Gzz 6= 0. Also, we should
note, that different symmetry of dynamic magnetic fields
of a SW in the Damon-Eshbach geometry leads to dif-
ferent SW transmission features in general, not only re-
garding the SW polarization.52

Concluding this section we can state, that the effect
of the SW polarization mismatch on the transmission
through an internal boundary is more complex in the

case of dipole-dominated SWs, compared to the case
of the exchange-dominated SWs. In certain geometries
(µx = 0), this effect disappears, while in other geometries
it is still present. Also, in the case of dipolar SWs the
polarization difference does not lead to the formation of
dipolar-dominated localized SWs. The evanescent SWs,
discussed in Sec. III, are, of course, still present, because
the exchange interaction requires the magnetization con-
tinuity. However, these localized SWs do not contribute
to the transmission and reflection coefficients of the dipo-
lar SWs. In the intermediate region, when both dipolar
and exchange interaction are important, one should ex-
pect a smooth transition from the transmission rules for
the exchange-dominated SWs to the transmission rules
characteristic to the dipole-dominated SWs. In partic-
ular, one should expect a smooth disappearance of the
effect of the SW polarization mismatch in the case of
a static magnetization with µx = 0. The characteris-
tic values of the SW wave number, when this transition
occurs can be obtained from the comparison of the term
m∗

k ·(F̂k−F̂0)·mk/Ak evaluating the dipolar contribution
and the term λ2exk

2 evaluating the exchange contribution

to the SW dispersion. If λ2exk
2 ≫ m∗

k ·(F̂k−F̂0)·mk/Ak,
one can safely neglect the dynamic dipolar interaction,
and use the above developed analytical vectorial scatter-
ing theory for exchange-dominated SWs (see Sec. IV of
the current paper). Otherwise a numerical solution of
the full problem Eq. (2.1) should be used.

VI. SUMMARY

In this work we have developed a theory of an SW
transmission and reflection from a sharp internal bound-
ary, taking into account the SW polarization. The dif-
ference in the SW polarizations before and after the
boundary accompanies the difference in the SW wave
numbers in almost all the cases, except some symmetric
ones. However, the difference in polarizations is much
more pronounced if the regions, separated by an internal
boundary, differ by the value of anisotropy, as it happens
in the case of a magnetoelectric (e.g. VCMA) control of
the SW dispersion, or/and by the direction of anisotropy
axes, as it takes place at an interface between two differ-
ent anisotropic ferromagnets. While the above presented
theory was developed for an internal boundary within a
single ferromagnet, assuming a constant static magneti-
zation M0, λex in all the sample, it can be generalized
to the case of an interface of two different ferromagnets,
and one should expect qualitatively similar SW behavior
at the boundary.
The SW polarization difference leads to three main ef-

fects. First, the exponentially localized (evanescent) SWs
appear in the vicinity of the boundary. The appearance
of these localized evanescent SW modes is a direct con-
sequence of the necessity to satisfy the continuity condi-
tions for the magnetization and its derivative within the
whole ferromagnetic sample, which cannot be satisfied by
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propagating SWs only. The localized SWs are orthogo-
nal to the propagating SWs of the same frequency, and
have the localization lengths equal or smaller than the
wavelength of a corresponding propagating SW. The ex-
istence of the localized modes results in the second effect
– appearance of an additional phase shift for both re-
flected and transmitted SWs. This phase shift can be of
any value ∆φ ∈ [−π, π], and only for the case of a zero
SW polarization mismatch it is reduced to ∆φ = 0, π for
the reflected SW and to ∆φ = 0 for the transmitted SW.
Finally, a nonzero SW polarization mismatch E01 results
in a decrease of the SW transmission coefficient and in an
increase of the SW reflection coefficient. However, this
effect is pronounced only for a sufficiently large polariza-
tion mismatch E01 (characteristic value depends on the
difference of the SW wave numbers for the incident and
transmitted SWs).
In spite of a nonzero polarization mismatch before and

after a finite-length region with different magnetic pa-
rameters, an SW can pass this region resonantly, i.e.
without reflection and with a transmission coefficient
|T | = 1 , if the propagation losses within that region are
negligible. The conditions of the resonant transmission
through a finite-length ”gate” are affected by the SW po-

larization mismatch, and has the form k1Lg + ψ = πn,
n ∈ Z, where the additional phase ψ = ψ(E01) is the
function of the polarization difference. In particular for
relatively small polarization mismatch the phase is pro-
portional to ψ ∼ E2

01.

All these features are intrinsic for the exchange-
dominated SW, since exchange interaction requires con-
tinuity of the magnetization and its derivatives. In the
case of dipole-dominated SWs the influence of SW polar-
ization difference is not as pronounced, and can disappear
completely in certain magnetization geometries.
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