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A system gradually driven through a symmetry-breaking phase transition is subject to the Kibble-
Zurek mechanism (KZM). As a consequence of the critical slowing down, its state cannot follow
local equilibrium, and its evolution becomes non-adiabatic near the critical point. In the simplest
approximation, that stage can be regarded as “impulse” where the state of the system remains
unchanged. It leads to the correct KZM scaling laws. However, such “freeze-out” might suggest
that the coherence length of the nascent order parameter remains unchanged as the critical region
is traversed. By contrast, the original causality-based discussion emphasized the role of the sonic
horizon: domains of the broken symmetry phase can expand with a velocity limited by the speed of
the relevant sound. This effect was demonstrated in the quantum Ising chain where the dynamical
exponent z = 1 and quasiparticles excited by the transition have a fixed speed of sound. To
elucidate the role of the sonic horizon, in this paper we study two systems with z > 1 where the
speed of sound is no longer fixed, and the fastest excited quasiparticles set the size of the sonic
horizon. Their effective speed decays with the increasing transition time. In the extreme case, the
dynamical exponent z can diverge such as in the Griffiths region of the random Ising chain where
localization of excited quasiparticles freezes the growth of the correlation range when the critical
region is traversed. Of particular interest is an example with z < 1 — the long-range extended Ising
chain, where there is no upper limit to the velocity of excited quasiparticles with small momenta.
Initially, the power-law tail of the correlation function grows adiabatically, but in the non-adiabatic
stage it lags behind the adiabatic evolution.

I. INTRODUCTION

Kibble-Zurek mechanism (KZM) evolved from the
scenario for defect creation in cosmological symmetry-
breaking phase transitions1. As the post-Big-Bang Uni-
verse cools, causally disconnected regions must choose
broken symmetry vacuum independently. Such random
choices lead to topologically nontrivial configurations
that survive phase ordering as topological defects. In
the cosmological setting average size of the causally con-
nected regions (hence, the average density of defects) is
set by the Hubble radius at the time of the transition.
This early Universe scenario relies on the speed of light
and does not apply to the laboratory phase transitions.
However, it was the point of departure for the dynamical
theory2,3 that employs critical exponents of the transition
and the quench time to predict the scaling of the result-
ing density of defects. KZM was successfully tested using
numerical simulations4–16 and laboratory experiments in
condensed matter systems17–41. More recently, KZM was
adapted to quantum phase transitions42–47. Theoretical
developments48–67 and experimental tests68–76 of quan-
tum KZM (QKZM) followed. The recent experiment76,
where a quantum Ising chain in the transverse field is
emulated using Rydberg atoms, is fully consistent with
the predicted scaling44,45.

The KZM is often presented in its cartoon version
where – due to the critical slowing down / closing of the
energy gap – the dynamics of the system literally freezes-
out in the neighborhood of the critical point. Today, as
the experiments are able not only to count the final num-

ber of defects but can also monitor and probe the state
of the system during the transition, it is timely to re-
investigate the causally limited spreading of correlations
during the putative “freeze-out” stage of the evolution.

In QKZM a system initially prepared in its ground
state is smoothly ramped across a critical point to the
other side of the quantum phase transition. A distance
from the critical point, measured by a dimensionless pa-
rameter ε controlling a Hamiltonian, can be linearized
close to the critical point as

ε(t) =
t

τQ
. (1)

Here τQ is a quench time. Initially, far from the critical
point, the evolution is adiabatic, and the system follows
its adiabatic ground state, see Fig. 1. The adiabaticity
fails at −t̂ when the reaction time of the system given by
the inverse of the gap becomes slower than the timescale
|ε/ε̇| = |t| on which the transition is being imposed. The
gap closes like ∆ ' |ε|zν , where z and ν are the dynamical
and correlation length exponents, respectively. From the

equation |t| ' |t/τQ|−zν we obtain t̂ ' τzν/(1+zν)
Q and the

corresponding ε̂ = t̂/τQ ' τ1/(1+zν)
Q . In the naive “freeze-

out” version of the impulse approximation the ground
state at −ε̂, with a corresponding correlation length

ξ̂ ' τν/(1+zν)
Q , (2)

is expected to characterize the state of the system un-

til +t̂, when the evolution can restart. In this way, ξ̂
becomes imprinted on the initial state for the final adia-
batic stage of the evolution after +t̂. Simplistic as it is,
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FIG. 1. Adiabatic-impulse-adiabatic view of KZM.
Linear ramp crosses the critical point at time t = 0. The in-
stantaneous transition rate, |ε̇/ε| = 1/|t|, diverges at the crit-
ical point and the relevant energy gap closes like |ε|zν . Conse-
quently, while before −t̂ the state follows the adiabatic ground
state, near the critical point (between −t̂ and t̂) its evolu-
tion is non-adiabatic. The freeze-out assumes that the state
is “frozen” at −t̂ – size of the domains of the nascent phase
does not change until +t̂, where the state starts to “catch up”
with the Hamiltonian. This version of KZM ignores propa-
gation of the new phase front in the time interval (−t̂,+t̂).
It yields correct scalings, but it does not capture what hap-
pens – for example – in the paramagnetic-ferromagnetic quan-
tum phase transition in the quantum Ising chain in transverse
field77,78. Nevertheless, it may well be relevant in phase tran-
sitions where the conserved order parameter or other causes
(localization) impede propagation of phase fronts of the bro-
ken symmetry phase.

the adiabatic-impulse-adiabatic approximation correctly

predicts the scaling of the characteristic lengthscale ξ̂ and
the timescale

t̂ ' ξ̂z, (3)

with the critical exponents and τQ. They both diverge
in the adiabatic limit, τQ → ∞, where they become the
unique relevant scales in the KZ scaling ansatz77–79. For
instance, a two-point correlation function CR(t), between
two sites separated by a distance R, should satisfy

ξ̂∆CR(t) = F
(
t/ξ̂z, R/ξ̂

)
. (4)

Here ∆ is a scaling dimension and F a non-universal
scaling function. Eq. (4) is expected to be accurate in the
long-wavelength and low-frequency limit. It is worth to
observe here, that the crude adiabatic-impulse-adiabatic
approximation is consistent with the scaling hypothesis
(4). However, it implies a particular (time independent)
form of the scaling function F .

As emphasized already in the early papers, see Ref. 2,
and 3, the freeze-out is not the complete story, and often
not even a good approximation. A simple “sonic hori-
zon” argument appealing to causality that goes beyond
the impulse approximation is often more accurate. It is
illustrated schematically in Fig. 2. As long as the evo-
lution is adiabatic, the rate of growth of the diverging
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FIG. 2. Sonic horizon view of KZM. Initially, the cor-
relation length ξ follows adiabatically the equilibrium healing
length that – in the adiabatic ground state (black) – diverges
at the critical point. Critical slowing down means that the
size of the correlation length will begin to lag behind the val-
ues dictated by the ground state of the Hamiltonian at about
−t̂. Pre-transition fluctuations reach size ξ̂ at that instant
and seed subsequent evolution of the system. The new bro-
ken symmetry phase is therefore selected by fluctuations in
domains if size ξ̂ at −t̂. Broken symmetry spreads within the
impulse time interval of 2t̂ with the velocity 2v̂ in every di-
rection, enlarging the resulting “sound cone” to roughly 5ξ̂
by t̂. In the freeze-out approximation (blue), after −t̂ the
correlation length freezes, and remains close to the adiabatic
correlation length at −t̂. Both the freeze-out and the sonic
horizon views lead to the same scalings, but they result in dif-
ferent estimates of the pre-factors for domain sizes and defect
densities.

adiabatic correlation length, ξ ' |ε|−ν , is

dξ

dt
=
dε

dt

dξ

dε
=

1

τQ

ν

|ε|ν+1
. (5)

This rate diverges at the critical point. Hence there must
be time −t̂ when it exceeds the speed limit set by twice

v̂ ' ξ̂

t̂
' τ−ν(z−1)/(1+zν)

Q . (6)

The scaling of −t̂ obtained in this way is the same as in
Eq. (3).

Causality and the KZ velocity v̂ are also central for
the short-cuts to adiabaticity via inhomogeneous KZM.
Therein, the external driving field has a smooth posi-
tion dependence, gradually taking the system across the
critical point—one part after another. Velocity of the
driven critical front below v̂ (which in general depends
on the shape of the above position dependence) is ex-
pected to pave the way to adiabatic dynamics, both for
classical6,80–84 and for quantum85–90 systems.

In the QKZM the speed limit is central to the causal
argument. It originates from the dispersion of quasipar-
ticles at the critical point: ω ' kz. Their speed for a
quasimomentum k is v = dω/dk ' kz−1. Between −t̂
and t̂ the quench excites quasiparticles with the magni-

tude of k up to k̂ ' ξ̂−1. The speed of quasiparticles with

the largest excited k is therefore v̂ ' k̂z−1 ' ξ̂1−z ' ξ̂/t̂.
When z ≥ 1, v̂ is an upper bound on the velocity of
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quasiparticles. A quench in a translationally invariant
system excites entangled pairs of quasiparticles with op-
posite quasimomenta: k and −k. When moving apart,
they are spreading correlations across the system. For
z ≥ 1 the rate of correlation spreading is limited by twice
the speed v̂ of the fastest quasiparticles.

In the crudest version, neglecting in particular depen-
dence of v̂ on the distance from the critical point, the ar-
gument implies that after −t̂ the correlation range (i.e.,
the “sonic cone”) continues to grow at the rate 2v̂ until

+t̂. By this time, the range increases from the initial ξ̂

at −t̂ to a final ξ̂ + 2v̂ × 2t̂ ≈ 5ξ̂. The growth is roughly
five-fold. Even if the 5 is just a very rough estimate,
it shows how much the actual evolution can differ from
the impulse approximation. Nevertheless, this argument

confirms the role of ξ̂ as the key relevant scale of length.
With or without the prefactor of 5, the final correlation

length is proportional to ξ̂, i.e., it scales with τQ in the
same way as given by Eq. (2).

From another perspective, in the impulse approxima-
tion, the adiabatic ground state |ψ〉 corresponding to −t̂
freezes out as the state of the system. After −t̂ the
adiabatic ground state departs from the frozen state.
The frozen state becomes a superposition over adiabatic
eigenbasis |n〉: ∑n cn(t)|n〉, where cn(t) = 〈n|ψ〉. As a
first step beyond the impulse approximation, we can in-
clude approximate dynamical phases:

∑
n cn(t)e−iωnt|n〉,

where ωn is the adiabatic eigenfrequency at the criti-
cal point. In a (non-interacting) translationally invariant
system, the eigenstates consist of pairs of excited quasi-
particles, |k,−k〉, and the eigenfrequencies are sums of
2ωk. The dynamical phase factors become scrambled
– and the phases begin to appear random – when the

largest of them, 2ωk̂t ∝ k̂zt, becomes comparable to 1

near t̂. The dephasing begins when the evolution crosses
over from the non-adiabatic KZ stage to the post-KZ
adiabatic stage. That is when the phases definitely can
no longer be ignored, but even before the cross-over the
phase factors e−2iωkt make the quasiparticle phase fronts
propagate and let the quasiparticles spread the correla-
tions across the system.

For z = 1, when the dispersion is linear in k and the
quasiparticles have a definite speed of sound. This ef-
fect was termed the quasiparticle event horizon91. In the
QKZM context, it was considered in Refs. 77 and 78—
see Fig. 3 for an example of the prototypical 1D quantum
Ising model.

In this paper we go beyond z = 1 and present two
examples with z > 1: the classical Ising model with
Glauber dynamics in Section II and the generalized quan-
tum XY chain in Section III. They both exhibit an ef-
fective event horizon with a speed limit that depends on
the quench time τQ. The generic scenario is delimited
by two examples where the sonic horizon effect cease to
manifest because one of its underlying assumptions is
not satisfied. The first one is the random Ising model
in Section IV, where localization of excited quasiparti-

−2 −1 0 1 2
0

2

4
τQ = 1024

t/t̂

ξ/
ξ̂

FIG. 3. Quantum Ising chain. The correlation length
during the quench in the 1D quantum Ising model, H =
−∑

n(1 − ε)σzn + σxnσ
x
n+1, where the dynamical critical ex-

ponent z = 1 and the excited quasiparticles posses definite
speed of sound. Compare with Fig. 2. Data from Ref. 78.

cles prevents the spreading of correlations, thus yielding
in effect a “freeze-out”. The other is the extended Ising
model with long-range interactions in Section V, where
the dynamical exponent z is less than 1. The excited
quasiparticles with k → 0 have infinite velocity, and the

speed v̂ at the maximal excited k̂ is not an upper but a
lower speed limit. Consequently, there is no sonic horizon
effect, and the correlations have a long-range power-law
tail that can evolve in time. After −t̂ the tail begins to
lag behind its adiabatic evolution. However, instead of
completely freezing out, it continues to grow at a finite
rate.

II. CLASSICAL ISING MODEL: z = 2

We begin with the classic example of the classical Ising
model on a periodic square lattice of size L× L:

H = −
∑
〈j,j′〉

σzjσ
z
j′ . (7)

On an infinite lattice, the critical inverse temperature
would be βc = ln(1+

√
2)/2 ' 0.4407. The relevant equi-

librium exponents are ν = 1 and η = 1/492. We model
relaxation to an external heat bath with the Glauber dy-
namics: Monte Carlo update thermalizes one spin (cho-
sen at random) at a time. The time needed for L2 such
one-spin updates sets unit of time. For such simple relax-
ation, the dynamical exponent is z = 2, belonging to the
universality class of model-A dynamics93. We performed
all our numerical simulations on a 4096 × 4096 lattice.
This lattice size is 100 times longer than the longest cor-
relation range encountered in the simulations, hence any
finite size effects are eliminated with a wide safety mar-
gin. All results were averaged over 50 repetitions of the
quench, each of them starting from a different initial ran-
dom spin configuration at infinite temperature.

The inverse temperature of the heat bath is ramped
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linearly in time,

β(t) = βc

(
1 +

t

τQ

)
, (8)

starting with random spin configuration at β(−τQ) = 0.
Figure 4(a) shows the energy E during the ramp as a
function of β for different quench times τQ. Generally,
the system is more ordered for slower quenches. For slow
enough quenches, the KZ picture emerges. The system
evolves adiabatically until it begins to go out of equilib-

rium around −t̂, where t̂ ' τ2/3
Q is the KZ timescale.

In order to see how the excitation energy should de-
pend on the quench time, let us consider the equilibrium
internal energy. Near the critical point it is

U(β) = − [1 +A(β − βc) ln |β − βc|] / tanhβc, (9)

where A ' 1 is a constant. In the adiabatic-impulse
approximation the state becomes effectively frozen near

−t̂ when βc − β̂ ' τ
−1/3
Q . At βc the energies of the

frozen state (i.e. the instantaneous state at −t̂) and the

0 0.1 0.2 0.3 0.4 0.5 0.6
−2

−1.5

−1

−0.5

0

β(t)

E

τQ = 20

τQ = 21

...

τQ = 215

equilibrium

−4 −2 0 2 4
0

1

2

t/t̂

τ Q
1
/
3
∆
E
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(b)

FIG. 4. Classical Ising in 2D on a square lattice.
In (a), energy per site, E, as a function of β(t) for different
quench times τQ. For reference, the black line is the equilib-
rium internal energy U(β). With increasing quench time, the
quench curves converge to the equilibrium one. In (b), exci-
tation energy per site, ∆E = E − U , as a function of scaled
time for different quench times τQ. Here, both ∆E and t are
rescaled according to the KZM predictions. For large τQ � 1
the scaling makes them collapse in the KZ regime between
t ≈ −t̂ and t ≈ t̂, corresponding to the rescaled times −1 and
+1, respectively. At later times the phase ordering kinetics
steps in, which goes beyond the KZ physics.

equilibrium one differ by

∆E(βc) = U(β̂)− U(βc)

= A(βc − β̂) ln
∣∣∣β̂ − βc∣∣∣ / tanhβc

' τ−1/3
Q ln (τQ/τ0) . (10)

Here τ0 ' 1 is a constant. We can see that, up to a
subleading logarithmic correction, the KZ scale of energy

is ' τ
−1/3
Q . Accordingly, in Figure 4(b) we show scaled

excitation energy τ
1/3
Q (E − U) in function of scaled time

t/t̂. For τQ � 1 the plots for different τQ collapse in

the KZ regime: −1 < t/t̂ < 1. There is no collapse at
later times when phase ordering kinetics94 brings in new
physics beyond the KZ mechanism. Having seen how the
excitations build up, we can have a closer look at the
ferromagnetic correlator

CR(t) = 〈σzi σzj 〉 − 〈σzi 〉〈σzj 〉. (11)

Here, the sites i and j are separated by a distance R
along one of the axes and the average is taken in the
state at time t. Figure 5 shows the scaled correlator

ξ̂ηCR in function of the scaled distance R/ξ̂ for three

scaled times t/t̂ = −1, 0, 1. Here ξ̂ = τ
1/3
Q is the scale of

length in Eq. (2) and t̂ = ξ̂z = τ
1/3
Q is the scale of time in

Eq. (3). In accordance with the scaling hypothesis (4),
for each scaled time the plots with different τQ collapse
to a common scaling function when τQ is large enough.
The plot for the longest τQ = 215 is practically equal to

the scaling function F (t/t̂, R/ξ̂).
Comparing the three panels in Figure 5 we can see

that (at odds with the impulse approximation) the range
of correlations increases several times between −t̂ and
t̂. This observation is further corroborated by Fig. 6(a)
where we collect scaled plots for τQ = 215 at different

scaled times. Using ξ̂ as a natural unit of length, this
figure shows how the correlation spreads in the KZ regime
between −t̂ and +t̂.

Figure 6(b) shows how a scaled range of the correlator
in Fig. 6(a) depends on the scaled time s = t/t̂. Here,
the range is defined as the distance at which the scaled
correlator falls below a threshold—set here at 0.1. The
nearly linear time dependence is fitted with a line whose
slope estimates the scaled velocity of correlation spread-
ing. We repeated the same procedure for thresholds down
to 0.02 (below 0.02 the tail of the correlator becomes too
noisy for an unambiguous estimation of the correlation
range). The estimated slopes/velocities are collected in
Fig. 6(c). The velocity increases rather slowly with a
decreasing threshold. In the limit of zero threshold –
probing the longest correlation tail – it extrapolates to
0.93. We can conclude that the speed limit in this model
is v̂, which allows the size of the sonic horizon to expand
with

2v̂ = 0.93
ξ̂

t̂
= 0.93 τ

−1/2
Q . (12)
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FIG. 5. Classical Ising model in 2D. The scaled correlator ξ̂ηCR as a function of the scaled distance R/ξ̂ for scaled times
t/t̂ = −1, 0, 1 (left to right) and different quench times τQ. For each scaled time, when τQ � 1 the plots with different τQ
collapse to a single scaling function F (t/t̂, R/ξ̂) demonstrating the KZ scaling (4) hypothesis for slow enough quenches.

In natural units, in accordance with KZ prediction
in Eq. (6), the speed limit becomes slower for slower
quenches.
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FIG. 6. Classical Ising model in 2D. In (a), the scaled

correlator ξ̂ηCR as a function of the scaled distance R/ξ̂ for
τQ = 215 at different scaled times t/t̂ ∈ [−1, 1]. The dashed
line marks a cut-off c (here c = 0.1) whose crossing point is a

working definition of a scaled correlation range ξc/ξ̂. In (b),

the scaled correlation range ξc/ξ̂ as a function of the scaled
time t/t̂ for the cut-off c = 0.1. The best linear fit yields a
slope 0.72 as an estimate of the scaled velocity. In (c), the
scaled velocity (slope) as a function of the cut-off. A linear
extrapolation to zero cut-off yields 0.93. This number is an
estimate for (scaled) velocity at which the furthest correlation
tail is spreading.

III. EXTENDED QUANTUM XY CHAIN: z = 3

We step into the quantum realm with the extended
quantum XY periodic spin chain,

H = −
N∑
n=1

[
(1− ε)σzn + Jxxσxnσ

x
n+1 + Jyyσynσ

y
n+1+

Jxzxσxnσ
z
n+1σ

x
n+2 + Jyzyσynσ

z
n+1σ

y
n+2

]
, (13)

a generalization of the quantum XY chain. It combines
the desired z > 1 with exact solvability. Here we consider
an anisotropic model:

(Jxx, Jyy, Jxzx, Jyzy) =(
a

1 + γ

2
, a

1− γ
2

, b
1 + δ

2
, b

1− δ
2

)
(14)

with the external magnetic field parametrized by ε ∈
[−1, 1]. The parameter is driven linearly (1) from an
initial ε = −1 in the paramagnetic phase, across the crit-
ical point at ε = 0, to a final ε = 1 in the ferromagnetic
phase. After the Jordan-Wigner and Fourier transforma-
tions (A1,A4), the Hamiltonian becomes:

H =
∑
k>0Ak(ε)

(
c†kck + c†−kc−k

)
+Bk

(
ckc−k + c†−kc

†
k

)
, (15)

where,

Ak(ε) = 1− ε− a cos k − b cos 2k,

Bk = aγ sin k + bδ sin 2k. (16)

It is diagonalized by eigenmodes of the stationary
Bogoliubov-de Gennes equations:

ωk

(
Uk
Vk

)
= 2 [σzAk(ε) + σxBk]

(
Uk
Vk

)
, (17)

with eigenfrequencies ωk = 2
√
A2
k(ε) +B2

k. Here, we set
a = 4/3, b = −1/3, γ = 1/2, δ = 1. For the critical ε = 0,
we obtain a cubic dispersion relation

ωk ' |k|3, (18)
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FIG. 7. Extended quantum XY chain. Scaled ferromagnetic correlations CxxR as a function of scaled distance R/ξ̂ for the
extended XY model in (13) plotted for different quench times τQ and at different scaled times t/t̂ = −1, 0, 1. For large enough

τQ plots collapse towards a universal scaling function F (t/t̂, R/ξ̂) demonstrating the KZ scaling hypothesis (4).
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FIG. 8. Extended quantum XY chain. In (a), function (20) is fitted (dashed lines) to the scaled ferromagnetic correlators

ξ̂1/4CxxR for different scaled times during the non-adiabatic stage of the evolution: t/t̂ ∈ [−2, 2]. Here τQ = 220. In (b), the fits

provide the scaled correlation length ξ/ξ̂ plotted against the scaled time t/t̂. The slope of this plot is an estimate of the scaled
velocity v/v̂ = 0.84 at which the correlations are spreading. In (c), a more accurate approximation of the velocity is obtained
by taking a derivative of the plot (b) with respect to the scaled time, which yields the scaled velocity v/v̂ as a function of the
scaled time. Maximal velocity is vmax/v̂ = 0.84 for τQ = 220. In (d), the maximal velocity is shown as a function of τQ. The
red line is a fit, which, for large τQ, saturates at vmax/v̂ = 0.868.

expanding ωk around k = 0, and the dynamical exponent
z = 3. On the other hand, setting k = 0 and expanding
in small ε, we obtain the gap opening as ω0 ' |ε|1. Hence
zν = 1 and ν = 1/3. The dominant static ferromagnetic
correlations have oscillatory tails:

CR = 〈σxi σxi+R〉 − 〈σxi 〉〈σxi+R〉
∼ R−ηe−R/ξ cos(b R/ξ + c). (19)

Here ξ ∼ |ε|−ν is a static correlation length and η =
1/4. Given the exponents z and ν, we can define the

dynamical length (2) and time (3) scales: ξ̂ = τ
1/6
Q and

t̂ = τ
1/2
Q , respectively. The fastest excited quasiparticles

have velocity v̂ ' τ−1/3
Q , see Eq. (6).

The time-dependent quench is solved in appendix C in
a standard way45 by mapping to the Landau-Zener prob-
lem, see appendix B. The KZ scaling hypothesis (4) is
demonstrated in Fig. 7 by collapse of the plots for differ-
ent τQ. A perfect collapse requires very large τQ ' 220, as
explained by Eq. (C4). The oscillatory behaviour of CR
in the original paramagnetic phase survives through the
transition. In order to estimate the range of the scaled

correlators, in Fig. 7 we fit their tails with oscillatory
functions of the form:

ξ̂1/4CR(t) = a (R/ξ̂)−1/4 e
−R/ξ̂
ξ/ξ̂ cos(b R/ξ̂ + c), (20)

where a, b, c and ξ/ξ̂ are the fitting parameters. We

are interested how fast the scaled correlation length ξ/ξ̂
grows with the scaled time t/t̂. In order to reveal the
universal behavior undisturbed by any short-range ef-
fects, we perform the fit in the range of scaled dis-

tances R/ξ̂ > 2.5. Ferromagnetic correlations for dif-
ferent scaled times t/t̂, together with the fits, are shown

in Fig. 8(a) (for τQ = 220). The correlation length ξ/ξ̂
as a function of scaled time is shown in Fig. 8(b). Its
slope, equal to 0.838, provides an estimate of the scaled
velocity at which the correlations are spreading. For com-
pleteness, in Fig. 8(c) we plot the derivative of the plot
in Fig. 8(b) with respect to the scaled time. Its maximal
value is shown in Fig. 8(d) as a function of τQ ∈ [210, 220].
For large τQ it extrapolates to

2v̂ = 0.868
ξ̂

t̂
= 0.868 τ

−1/3
Q . (21)
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As in the classical 2D Ising model, where also z > 1, the
correlation spreading becomes slower for slower quenches.

IV. RANDOM ISING MODEL

In order to break the translational invariance and im-
pede the propagation of excited quasiparticles that could
spread correlations, next we consider the random Ising
model (RIM) in one dimension defined by the Hamilto-
nian

H = −
N∑
n=1

[
(hn − ε)σzn + Jnσ

x
nσ

x
n+1

]
. (22)

Here both transverse fields hn’s and nearest-neighbor
couplings Jn’s are randomly selected from a uniform dis-
tribution between 0 and 1. The quantum critical point at
ε = 0 is separating the paramagnetic phase (ε < 0) from
the ferromagnetic one (ε > 0). The critical point in this
model is surrounded by Griffiths region95–97, where the
presence of the so-called rare regions primarily manifests
in two features: the activated dynamical scaling (the dy-
namical exponent z →∞) at the quantum critical point
and the existence of singular regions where the linear
susceptibility diverges even away from the critical point.
The locally ordered rare regions act as giant spins that
flip as a whole and are responsible for the exponentially
slow dynamics near the critical point. These features are
encapsulated in a dynamical exponent that diverges at
the critical point as z ∼ |ε|−1, see Ref. 98 and 99 which
also shows that the correlation length exponent is ν = 2.
The average correlation function at criticality is a power
law100:

CxxR = 〈σxi σxi+R〉 ∼ R−η, (23)

where η = 3−
√

5
2 ≈ 0.38.

We consider ramping the parameter ε linearly as a
function of time (1) driving the Hamiltonian from the ini-
tial paramagnetic ground state, across the critical point
at t = 0, into the ordered phase. Ref. 101–103 showed

that the KZ correlation length ξ̂ of the model varies log-
arithmically with the quench rate τQ:

ξ̂ = ln2 (τQ/a), (24)

when ln (τQ/a) � 1. Here a ' 1 is a non-universal con-
stant. We can see, that the dependence on τQ is very
weak compared to any of the usual KZ power-law scal-
ings (2). Taking into account that the correlation-length
exponent near the critical point is ν = 2, we get an esti-
mate of the characteristic timescale,

t̂ =
τQ

ln (τQ/a)
, (25)

for ln (τQ/a)� 1.

FIG. 9. Random Ising model. Average scaled density of
excitations ξ̂dex during the quench as a function of scaled time
t/t̂ for different quench times τQ. Here, we use Eqs. (24,25)
with a = 0.118. This a was tuned to obtain the best pos-
sible collapse at t/t̂ = 0 but the plots collapse well during
the whole quench. The KZ diabatic stage (shaded in green)
extends roughly from −0.25t/t̂ to 0.25t/t̂. This is where the
excitation grows before it saturates in the last adiabatic stage.
Averaging was done over 30 random realizations for a lattice
of size N = 128.

In order to solve the dynamics, we map the Hamil-
tonian by the Jordan-Wigner transformation (A1) to a
quadratic spinless free-fermionic model

H =
∑
n

(hn − ε)c†ncn − Jnc†ncn+1 − Jncn+1cn + h.c.(26)

Following the convention of this article, we confine our-
selves to the subspace of even parity of c-quasiparticles
(anti-periodic boundary conditions, i.e., cN+1 = −c1)
and in this subspace, we diagonalize the Hamiltonian by
a Bogoliubov transformation:

cn =

N∑
m=1

(Unmγm + V ∗nmγ
†
m) (27)

The index m labels the (Bogoliubov) eigenmodes of the
stationary Bogoliubov-de Gennes equation

ωmU
±
n,m = 2hnU

∓
n,m − 2jn−1U

∓
n−1,m, (28)

where ωm > 0, U±nm = Unm ± Vnm and anti-periodic
boundary conditions (U±N+1,m = −U±1,m, U±0,m = −U±N,m)

is implemented. The eigenstates (Unm, Vnm), with pos-
itive energy, ωm > 0 normalized so that

∑
n(|Unm|2 +

|Vnm|2) = 1, define quasiparticle operators γm =
U∗nmcn + Vnmc

†
n. We have corresponding negative en-

ergy components of the eigenstates labelled (Unegnm , V negnm )
with energy −ωm, which defines a quasiparticle op-
erator γnegm = (Unegnm )∗cn + V negnm c†n. The Bogoliubov
transformation renders the Hamiltonian to be H =∑N
m=1 ωm(γ†mγm − 1

2 ). In the even parity subspace only
states with even number of quasi-particles belong to the
spectrum of H.
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FIG. 10. Random Ising model. Average scaled ferromagnetic correlations ξ̂ηCxxR as a function of scaled distance R/ξ̂ for
the random Ising model (22) plotted for different quench times τQ and at different scaled times t/t̂ = −0.25, 0, 0.25. For large

enough τQ plots collapse towards a universal scaling function F (t/t̂, R/ξ̂) demonstrating the KZ scaling hypothesis (4).

In order to find whether the RIM fits into our narrative
of the uniform scaled velocity of the correlation spreading
by quasiparticles, we proceed with the numerical simu-
lation of the quench. We prepare the initial state of the
system deep in the paramagnetic phase in the ground
state, i.e., in the Bogoliubov vacuum state for quasipar-
ticles at an initial time t0 where ε(t0) = 5. As we tune
the parameter ε(t) towards 0, see Eq. (1), the state of
the systems departs from its adiabatic ground state and
gets excited due to closing of the energy gap near the
critical point. We work in the Heisenberg picture where
we assume that the excited state is a Bogoliubov vac-
uum while the time-dependence is ascribed to a set of
time-dependent quasi-particle operators

γm(t) = u∗nm(t)cn + v∗nm(t)c†n (29)

The Bogoliubov modes unm and vnm solve the time-
dependent Bogoliubov-de Gennes equations:

i
du±nm
dt

= 2(hn − ε(t))u∓nm − 2Jnu
∓
n∓1,m (30)

We integrate equation (30) numerically using the 2nd
order Suzuki-Trotter method, see Appendix D. The den-
sity of excited Bogoliubov quasiparticles dex(t) can be
calculated at each time step by projecting the time-
dependent Bogoliubov modes (unm(t), vnm(t)) onto the
corresponding instantaneous static negative Bogoliubov
modes (Uneg

nm , V
neg
nm ):

dex(t) =
1

N

N∑
s

N∑
p

∣∣〈Uneg
p , V neg

p |us(t), vs(t)〉
∣∣2 . (31)

While in the initial adiabatic stage, the system remains
in the instantaneous ground state and hence the density
of quasiparticle excitations is 0. On tuning the field ε(t)
towards its critical value at t/t̂ = 0, the system gets ex-
cited and consequently dex starts to grow. As we keep
increasing the field ε(t), dex saturates as the system ends
its non-adiabatic journey across the critical point. In
Fig. 9 we see that the scaled plots (averaged over dis-
order) for different τQ collapse in accordance with the
dynamical scaling hypothesis (4).

The hypothesis for correlations in Eq. (4) is verified
by a similar collapse of the plots in Fig. 10. We consider
large τQ as the logarithmic KZ scaling laws are only valid
in that regime. The correlation function is averaged over
100 instances of disorder and lattice translations on a
lattice of N = 256. This lattice is a few times longer than

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3 τQ = 211

cut-off

R/ξ̂

ξ̂η
C
x
x
R

t/t̂ = −0.25

t/t̂ = −0.2

...

t/t̂ = 0.25

−0.2 0 0.2

0.18

0.2

0.22
cut-off c = 0.5

t/t̂

ξ c
/
ξ̂

0 0.5 1

0.08

0.1

0.12

0.14

cut-off

sl
op

e

(a)

(b) (c)

FIG. 11. Random Ising model. In (a), the scaled correla-

tor ξ̂ηCR as a function of the scaled distance R/ξ̂ for τQ = 211

at different scaled times t/t̂ in [−0.25, 0.25]. The dashed line
marks a cut-off (here 1) whose crossing point is a working def-

inition of a scaled correlation range ξc/ξ̂. In (b), the scaled

correlation range ξc/ξ̂ as a function of the scaled time t/t̂ for
the cut-off c = 0.5. The best linear fit yields a slope of 0.113
as an estimate of the scaled velocity. In (c), the scaled ve-
locity (slope) as a function of the cut-off, with the error bars
indicating fitting errors.
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the longest correlation range. The details of calculating
the correlation functions are given in Appendix E.

A close look at Fig. 10 reveals that the scaled dynami-
cal correlation function grows with scaled time. In order
to appreciate the growth, we collect the scaled correla-
tors for different scaled times in Fig. 11(a). In order to

estimate the scaled correlation range ξc/ξ̂ as a function
of scaled time, we choose a cut-off c for the scaled cor-
relation and calculate scaled distances corresponding to
the cut-off by spline interpolation. Fig. 11(b) shows the
scaled range in function of the scaled time for the cut-off
(selected equal to 0.5) in Fig. 11(a). Near the critical
point, we approximate it with linear dependence where

the slope is 0.113ξ̂/t̂. We repeat the same procedure for
other cut-offs. We present the enumerated slopes for var-
ious cut-offs in Fig. 11(c), with the error bars indicating
the fitting error. Finally, we estimate the sonic horizon
expansion speed in this model with the maximal observed
value

2v̂ = 0.12
ξ̂

t̂
= 0.12

ln3(τQ/a)

τQ
(32)

Compared to the previous models, with the prefactor
0.12, the speed limit is significantly below expectations
in this case. The entangled Bogoliubov quasiparticles get
excited but, due to their localization by disorder, they do
not propagate to spread correlations appreciably. In the
spin language, the locally ordered regions are excited,
but they essentially stay where they are. One may even
argue that in this case, the adiabatic-impulse-adiabatic
freeze-out approximation captures the essential physics.

V. LONG-RANGE EXTENDED ISING MODEL:
0 < z < 1

The long-range extended Ising model is a further gen-
eralization of the extended XY model that we have dis-
cussed in Sec. III. Now the Hamiltonian of the system
includes not only the nearest-neighbor and next-nearest-
neighbor interaction, but all possible long-range cluster
terms:

H = −
N∑
n=1

[
(1− ε)σzn +

N−1∑
r=1

Jrσ
x
nσ

x
n+r

n+r−1∏
i=n+1

σzi

]
.(33)

Here

Jr =
1

ζ(α)

1

rα
, (34)

and the normalization by the Riemann zeta function,
possible for α > 1, is such that

∑
r Jr = 1. The case

of α > 2 is not the most interesting here because the
model behaves effectively like the short-range one104–108.
Similarly, when 0 ≤ α ≤ 1 we would need to restrict
ourselves to a finite system because the thermodynamic
limit does not exist in this case, and the model behaves
effectively like the Lipkin-Meshkov-Glick model109 with

infinite-range interactions. Therefore, we focus here on
the intermediate 1 < α < 2, where a cross-over between
the short and infinite-ranges happens. In this regime, we
consider the linear quench (1) driving the system from
the initial paramagnetic phase at t = −∞, across the
critical point at t = 0, to the final ferromagnetic phase.

Thanks to the string operator in the long-range inter-
action terms, the model can be mapped to a quadratic
free fermion model and solved analytically. After the
Jordan-Wigner transformation (A1) the Hamiltonian
(33) becomes:

H = −
∑
n

(1− ε)
(
cnc
†
n − c†ncn

)
−
∑
n,r

Jr

(
c†ncn+r + c†nc

†
n+r + h.c.

)
, (35)

for the anti-periodic boundary conditions. This rep-
resentation is also known as the long-range Kitaev
model104,105, where the hopping and pairing terms are
of equal strength. After Fourier transformation (A4),

H = −2
∑
k>0

(1− ε−<(J̃k))
(
c†kck + c†−kc−k

)
+ =(J̃k)

(
c†kc
†
−k + c−kck

)
, (36)

where <(J̃k) and =(J̃k) are, respectively, real and imagi-

nary parts of the Fourier transform J̃k =
∑
r Jre

ikr. We

have J̃k = Liα(eik)
ζ(α) , where Li is the polylogarithm func-

tion: Liα(x) =
∑∞
n=1

xn

nα .

100 101 102
10−4

10−3

10−2

10−1

∼ R−1.002

∼ R−1.45

R

C
R

ε = 0

ε = −2

10−2 100 102

10−3

10−1

101

∼ (R/ξ)−1.42

∼ (R/ξ)−1.085

R/ξ

ξC
R

ε = −0.05

ε = −0.1

ε = −0.2

ε = −0.3

ε = −0.4

ε = −0.5

(a) (b)

FIG. 12. Long-range extended Ising model. In (a), the
static correlation function CR at the critical ε = 0 for α = 3/2.
The solid line is a linear fit with a slope −1.002 ≈ −1. The
same panel shows the same function far from the critical point
at ε = −2. The solid line is a linear fit with a slope −1.45 ≈
−(3 − α). In (b), the scaled static correlation function ξCR
as a function of scaled distance R/ξ. In accordance with the
static scaling hypothesis (39), the plots for different ε collapse
to a unique scaling function. We can see a crossover from the
critical (R/ξ)−1 to the off-critical (R/ξ)−3/2 near R/ξ = 1.
The straight lines are linear fits with slopes −1.085 ≈ −1 and
−1.42 ≈ −(3− α) for smaller and larger R/ξ, respectively.
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FIG. 13. Long-range extended Ising model. The scaled dynamical correlation function ξ̂CR for different quench times
τQ at different scaled times, s = t/t̂, during the quench. Here α = 3/2. From left to right: s = −1, 0, 0.35, 0.4. In (a) at
s = −1, the evolution is still adiabatic and the plots for different τQ collapse according to the static scaling hypothesis which is
equivalent to the KZ hypothesis in this early adiabatic regime. In (b) at s = 0, when crossing the critical point the evolution

is diabatic. Different τQ collapse to a common scaling function F (s,R/ξ̂) in accordance with the KZ scaling hypothesis (4). In

(c) at s = 0.35, the correlation function begins to bend down at distances between R/ξ̂ = 10 and 100. Different τQ collapse, as
the evolution is still in the KZ regime. Finally in (d) at s = 0.4, the collapse fails due to the phase ordering after the system

left the KZ regime and entered the adiabatic one. At the distances between R/ξ̂ = 10 and 100 the correlations become negative
for longer τQ.

We can now find the stationary Bogoliubov-de Gennes
equations (17) with Ak(ε) = 1− ε−<(J̃k), Bk = =(J̃k)

and eigenfrequencies ωk = 2
√
A2
k(ε) +B2

k. We have a
critical point at ε = 0 where the gap closes for k = 0.
Another critical point, not to be considered here, is at
ε = 2(1− 2−α) and k = π. The dispersion relation at the
critical ε = 0 is

ωk ' |k|α−1, (37)

hence the dynamical exponent is z = α − 1 ∈ (0, 1). On
the other hand, for small ε, the gap at k = 0 closes as
ω0 = 2|ε|, hence zν = 1.

In a short range model for large R the correlation func-
tion decays exponentially withR when the system is away
from the critical point but this does not need to hold for
long-range interactions. Indeed, our system has a power
law scaling even far away from the critical point104,105:

CR = 〈σxi σzi+1 . . . σ
z
i+R−1σ

x
i+R〉 ∼ 1/R3−α, (38)

compare Fig. 12(a). On the other hand, as discussed in
more detail in Ref. 110, at the critical point we expect
a critical power law CR ∼ 1/rη with η < α. Indeed, in
Fig. 12(a) we find that η = 1 for α = 3/2. Similarly
as for short-range interactions, for a small ε we expect a
cross-over between the two power laws when R is close
to ξ ∼ ε−ν . Note that here ξ is not the usual exponential
correlation length, even though it scales with ε in the
characteristic way. The crossover can be verified with a
static scaling hypothesis:

ξη CR = Fst (R/ξ) . (39)

With ξ = ε−ν the plots of the scaled correlator ξηCR as a
function of the scaled distance R/ξ for different ε should
collapse to a common static scaling function Fst(x). We
expect Fst(x) to cross-over around x = 1 between the
critical tail x−1 for small x and x3−α for large x. Indeed,

this is what we see in Fig. 12(b). The unscaled leading
static tail is, therefore,

CR ' ξ1/2R−3/2 (40)

for R� ξ.
Having verified the static hypothesis, we are encour-

aged to propose its dynamical version in the same form
(4) as for local interactions. The dynamics is de-
scribed by the time-dependent Bogoliubov-de Gennes
equations (C1) whose solution is presented in Appendix
F. The KZ mechanism has recently been verified in a
similar model111, where defect density was found to

scale as τ
−1/2(α−1)
Q in agreement with the KZ predic-

tion τ
−ν/(1+zν)
Q , see also Ref.112. Further developments,

like scaling of excitation energy (consistent with KZ) or
possible experimental implementation, were considered
in Refs. 113 and 114. Here, we are interested in the
build-up of correlations during the quench. In Fig. 13(a)
we show scaled correlation functions at different scaled
times. For definiteness, in this figure we set t̂ = τ

1/2
Q

and ξ̂ = τ
1/2(α−1)
Q with both numerical prefactors equal

to 1. We can see that up to t = 0.35t̂ the scaled cor-
relators for different τQ collapse demonstrating the KZ

scaling hypothesis in Eq. (4). At t/t̂ ≈ 0.4 they already
fail to collapse, signalling the end of the KZ regime and
the beginning of phase ordering in the second adiabatic
stage.

In Fig. 14(a), we collect scaled correlators for different
scaled times, s = t/t̂, in the KZ regime. In order to
gain better insight, in Fig. 14(b) we fit their tails with a
function

ξ̂CR(s) = A(s)(R/ξ̂)−3/2+B(s)(R/ξ̂)−2+C(s)(R/ξ̂)−5/2.
(41)

Its form is motivated by correlation tails after a sudden
quench considered in appendices G and H. Here, the co-
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efficients A,B,C are functions of the scaled time shown
in Fig. 14(c). On top of the leading A(s) tail, sub-leading
dynamical correlations build up in time, with B(s) grow-
ing negative and C(s) positive. Their behavior is similar
to what is observed after a sudden quench to the critical
ε = 0 either from ε = −∞ or ε = −1, see appendices
G and H, respectively. The main Fig. 14(b) shows A(s),
i.e., the coefficient of the leading long-range tail ∝ R−3/2.

The same figure shows Aad(s), i.e., the same coefficient
but in case the evolution were adiabatic. Aad(s) was ob-
tained by a fit to the far tail of the static correlation
function at ε(s) = s/(τQ/t̂). The same Aad(s) can be ob-
tained by equating the static tail (40) with the adiabatic

tail CR = Aad(s)ξ̂1/2/R3/2, compare (41):

Aad(s) '
[
ξ(s)

ξ̂

]1/2

'
[
ε(s)−ν

ξ̂

]1/2

∼ s−ν/2. (42)

Aad(s) ∼ s−1 for α = 3/2 is consistent with the diver-
gence we observe in Fig. 14(b). We can also see that,
as expected, A(s) follows Aad(s) in the initial adiabatic
stage up to s ' −1. After that, in the diabatic KZ stage,
it lags behind as it cannot catch up with the diverging
Aad(s). If it did not, and the evolution were adiabatic,
then the correlation range – defined by R where CR falls
below a fixed small cutoff – would diverge near the criti-
cal point as |t|−2/3.
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ξ̂CR = AR̃−3/2 + BR̃−2 + CR̃−5/2; R̃ = R/ξ̂

R/ξ̂

ξ̂C
R
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t/t̂ = −0.2

...

t/t̂ = 0.3

−2 −1 0 0.3
−0.5
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0.5

1
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Aad
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−2
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2
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t/t̂
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B

C

(a)
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FIG. 14. Long-range extended Ising model. In (a),

scaled correlator ξ̂CR for α = 3/2 as a function of scaled
distance for different scaled times in the log-log scale. In (b),
in the inset the coefficients A,B,C in Eq. (41) fitted to the
tail of the scaled correlator are shown as a function of scaled
time s = t/t̂. The main picture shows A(t/t̂) together with
the adiabatic Aad(t/t̂). In the initial adiabatic stage A follows
Aad. In the KZ stage Aad diverges to infinity at the critical
point forcing A to lag behind.

After A(s) begins to lag behind the adiabatic evolu-
tion, it continues to grow at a finite rate until the critical
point. This is the stage where the long-range model is
the most reminescent of the standard causal KZ picture.
After the critical point A(s) begins to dip down around
s ≈ 0.2 but this is where the KZ scaling hypothesis (4)
begins to be violated, see Fig. 13(d).

VI. CONCLUSION

We recall the causal/sonic horizon version of the
Kibble-Zurek mechanism (KZM). In the initial adiabatic
stage of the evolution, the correlation range follows its
adiabatic counterpart. At −t̂ it begins to lag behind
the diverging adiabatic range and continues to grow at

a finite rate set by the speed limit ' ξ̂/t̂. This way,
between −t̂ and +t̂, the correlation range can increase
several times at odds with the impulse approximation
where it remains frozen.

There are notable exceptions, like the random quan-
tum Ising chain, where the increase is small due to local-
ization of excited quasiparticles that prevents them from
spreading entanglement. There are interesting general-
izations, like the long-range extended Ising model, where
it is the power law correlation tail, rather than the expo-
nential correlation length, that lags behind its diverging
adiabatic evolution.
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Appendix A: Jordan Wigner, Fourier and
Bogoliubov transformations

After the Jordan-Wigner transformation,

σxn = −
(
cn + c†n

) ∏
m<n

(1− 2c†mcm) ,

σyn = i
(
cn − c†n

) ∏
m<n

(1− 2c†mcm) , (A1)

σzn = 1 − 2c†ncn ,

introducing fermionic operators cn that satisfy{
cm, c

†
n

}
= δmn and {cm, cn} =

{
c†m, c

†
n

}
= 0 the

Hamiltonian H becomes92

H = P+ H+ P+ + P− H− P− . (A2)

Above P± = 1
2 [1± P ] are projectors on subspaces with

even (+) and odd (−) parity,

P =

N∏
n=1

σzn =

N∏
n=1

(
1− 2c†ncn

)
, (A3)

and H± are corresponding reduced Hamiltonians. The
cn’s in H− satisfy periodic boundary condition cN+1 =
c1, but the cn’s in H+ are anti-periodic, cN+1 = −c1.

The initial ground state at ε → −∞ has even parity,
hence we can confine to the even subspace. The transla-
tionally invariant H+ is diagonalised by a Fourier trans-
form followed by a Bogoliubov transformation92. The
anti-periodic Fourier transform is

cn =
e−iπ/4√

N

∑
k

cke
ikn , (A4)

where the pseudomomentum takes half-integer values

k = ± 1

2

2π

N
,±3

2

2π

N
, . . . ,±N − 1

2

2π

N
. (A5)

Diagonalization of H+ is completed by a Bogoliubov
transformation,

ck = Ukγk + V ∗−kγ
†
−k, (A6)

provided that Bogoliubov modes (Uk, Vk) are eigenstates
of stationary Bogoliubov-de Gennes equations with pos-
itive eigenfrequency ωk.

Appendix B: Landau-Zener model

The canonical LZ model is

i
d

dt′

(
uk
vk

)
=

1

2

[
− t
′

τk
σz + σx

](
uk
vk

)
, (B1)

where τk is a transition time. Its solution is

uk = e−
π
16 τkD 1

4 iτk
(z)eiπ/4, (B2)

vk =
1

2
e−

π
16 τkD−1+ 1

4 iτk
(z)
√
τk. (B3)

Here Dm(z) is the Weber function with an argument

z = e3πi/4 t′√
τk
, (B4)

see for instance Ref. 115.

Appendix C: Time-dependent extended XY model

The time-dependent problem is

i
d

dt

(
uk
vk

)
= 2 [σzAk(t/τQ) + σxBk]

(
uk
vk

)
. (C1)

It can be mapped to the canonical LZ model where

τk = 4τQ(aγ sin k + bδ sin 2k)2 (C2)

t′ = 4τQ(aγ sin k + bδ sin 2k)×(
t

τQ
− (1− a cos k − b cos 2k)

)
. (C3)

Only small quasimomenta up to k̂ ' τ
−1/6
Q become ex-

cited, hence for k � 1 we can approximate:

uk = e−
1
4πq

2

Diq2(z) eiπ/4,

vk = e−
1
4πq

2

D−1+iq2(z) 2q,

z = 4e3πi/4

(
2s− q4/331/3

τ
1/6
Q

)
, (C4)

where q = 1
3k

3√τQ is a scaled quasimomentum and s =
t/
√
τQ is a scaled time. These formulas are consistent

with ξ̂ ' τ1/6
Q and t̂ ' τ1/2

Q , respectively.
Only q up to q ≈ 1 get excited. For them, when τQ is

large enough, we can further approximate

z = 4e3πi/4

(
2s− q4/331/3

τ
1/6
Q

)
≈ 8e3πi/4s (C5)

and obtain

uk = e−
1
4πq

2

Diq2

(
8e3πi/4s

)
eiπ/4,

vk = e−
1
4πq

2

D−1+iq2

(
8e3πi/4s

)
2q. (C6)

In accordance with the KZ scaling hypothesis (4), these
non-adiabatic modes depend on the scaled variables s
and q only. However, the approximation in (C5) requires

τ
1/6
Q � 1 – which is why we consider large τQ ' 220 in

Fig. 8.

Appendix D: Solving the time-dependent
Bogoliubov-de Gennes equations

The time-dependent problem in Eq. (30) is
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i
du±nm
dt

= 2(hn − ε(t))u∓nm − 2Jnu
∓
n∓1,m (D1)

The central theme in the time-evolution of quantum
mechanical states is that of exponentiation of the Hamil-
tonian which can be attributed to the unitary nature
of its dynamics. This becomes notoriously hard when
the Hamiltonian consists of non-commuting terms. To
add to that, the Random Ising Model also lacks trans-
lational invariance. It renders useless the mapping of
time-dependent Bogoliubov-de Gennes equations to the
canonical LZ model—unlike the other models used in this
article. Consequently we resort to techniques like the
Suzuki-Trotter (ST) expansion of the exponential which
has the desirable feature of conserving the norm of the
evolution. The ST approximation deals with approxi-
mating the exponential, expressed in terms of the two
non-commuting pieces, by a product of exponential. ST
of second order can be written as

eδ(A+B) = lim
δ→0

e
δ
2AeδBe

δ
2A +O(δ)3

We separate the field part (A) and the coupling part (B)
and solve them separately for a small time dt.

field:

(
u+
n (t+ dt)
u−n (t+ dt)

)
= e−iA(t+dt/2)dt

(
u+
n (t)
u−n (t)

)
,

coupling:

(
u+
n+1(t+ dt)
u−n (t+ dt)

)
= e−iBdt

(
u+
n+1(t)
u−n (t)

)
,

where A(t) = (hn − ε(t))σx and B = −2Jnσx, and drop
the index m for convenience. We begin our quench at
ε(t) = 5.

Appendix E: Calculation of Two-Site Correlation
function in the Random Ising Model

Let us define two operators ai and bi in terms of

fermionic operators as ai = c†i + ci and bi = c†i − ci.
Using Jordan-Wigner transformation(see A1) and equa-
tion(27), the two site correlation function along the lon-
gitudinal direction can be written as

CxxR = 〈Ψ(t)|σxi σxi+R|Ψ(t)〉 (E1)

= 〈biai+1bi+1ai+2...ai+R−1bi+R−1ai+R〉 (E2)

where |Ψ(t)〉 is the evolving state. Our final longitudinal
correlation looks like

| CxxR |=
√
| det(AxxR ) |, (E3)

where

AxxR =

[
〈ai+1aj+1〉 〈biaj+1〉
〈ai+1bj〉 〈bibj〉

]
i,j=1,...,R

(E4)

and where we redefine 〈aiai〉 = 〈bibi〉 = 0. Eqs. (E3)
and (E4) follows from (E2) using the Wick theorem. See

for instance Ref. 116 and 117 for more details on similar
calculations. Finally, two-point correlation functions are
obtained as

〈aiaj〉 =
∑
m

u+
imu

+∗
jm,

〈aibj〉 =
∑
m

u+
imu

−∗
jm,

〈biaj〉 = −
∑
m

u−imu
+∗
jm,

〈bibj〉 = −
∑
m

u−imu
−∗
jm.

where
∑
m denotes the summation over all Bogoliubov

modes.

Appendix F: Time-dependent long-range Ising
model

The time-dependent Bogoliubov-de Gennes equations
map to the canonical LZ model (B1) where

τk = 4τQ=(J̃k)2

t′ = 4τQ =(J̃k)

(
t

τQ
− 1 + <(J̃k)

)
(F1)

For the relevant k � 1, its exact solution can be approx-
imated by

uk = e−
1
4πq

2

Diq2(z) eiπ/4,

vk = e−
1
4πq

2

D−1+iq2(z) q,

z = 2e3πi/4

(
s− C q

τQ

)
, (F2)

where C ' 1 is a constant, q ' k1/2τQ
1/2 is a scaled

quasi-momentum and s = t/
√
τQ a scaled time. These

formulas are consistent with the KZ scales t̂ ' τ
1/2
Q and

ξ̂ ' τQ for α = 3/2. When τQ � 1 we can approximate

z ≈ 2e3πi/4s and the solution depends on the scaled vari-
ables only. In this regime we also expect

v̂ = ξ̂/t̂ ' τ1/2
Q . (F3)

as a relevant velocity of quasiparticles excited during the
quench.

With the exact solution, one can calculate the correla-
tion function,

CR = δR,0 − 2αR + 2<(βR), (F4)

where αR = 1
π

∫ π
0
dk |uk|2 cos kR and βR =

1
π

∫ π
0
dk ukv

∗
k sin kR.
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FIG. 15. Long-range extended Ising model—sudden
quench. Spreading of correlation after a sudden quench from
ε = −∞ to ε = 0. The tail of CR can be fitted with R−1.96

in good agreement with the predicted R−2. CR changes sign
from positive for small R to negative for large R as manifested
by the kinks in the plot of |CR| versus R.

Appendix G: Infinite sudden quench from ε = −∞
to the critical point in the long-range Ising model

In this and the next appendix, we consider sud-
den quenches that have also been considered before
in the context of dynamical phase transitions in the
Lochschmidt echo118. At ε = −∞ (corresponding to in-
finite transverse field) the ground state—with all spins
pointing in +x direction—has no correlations. The cor-
relations begin to build up after a sudden quench at t = 0
from ε = −∞ to the critical ε = 0. The initial Bogoliubov
modes at t = 0 are [

uk(0)
vk(0)

]
=

[
1
0

]
. (G1)

After the quench they evolve as[
uk(t)
vk(t)

]
=

[
U2
ke
−iωkt + V 2

k e
iωkt

UkVk(e−iωkt − eiωkt)

]
. (G2)

Here ωk are the frequencies and (Uk, Vk) the stationary
Bogoliubov modes at ε = 0. With this solution we can
now calculate the correlation function in (F4) consisting
of two terms: αR and βR.

Let us focus first on αR. It is useful to notice that

|uk(t)|2 = 1 + 2U2
kV

2
k (cos 2ωkt− 1),

= 1 + 2U2
kV

2
k

∞∑
n=1

(−1)n
(2ωkt)

2n

(2n)!
(G3)

Correlations at the largest distances R are provided by
pairs of correlated quasiparticles with the largest veloc-
ities. From the spectrum ωk for 1 < α < 2 it can be
readily seen that the fastest quasiparticles are those with
k → 0. Their velocity tends to infinity. For small k we
can approximate119

=(J̃k) ≈ Aαkα−1 + Cαk,

<(J̃k) ≈ Bαkα−1 + 1, (G4)

100 101 102 103
10−6

10−3

100

CR ' AR−3/2 + BR−2 + CR−5/2

R

C
R

t = 0.0

t = 0.5

t = 1.0

0 0.2 0.4 0.6 0.8 1
−5

0

5

10

t

A

B

C

(a)

(b)

FIG. 16. Long-range extended Ising model—sudden
quench. In (a), evolution of the correlations (dots) after
a finite sudden quench from ε = −1 to the critical ε = 0.
The correlators are fitted with the formula (H1) in the range
900 < R < 1000. The fits (solid lines) are plotted in the full
range of R. In (b), the coefficients A,B,C in Eq. (H1) as a
function of time (dots). Their time-dependence is fitted with
parabolas c0 + c2t

2 (solid lines).

where Aα = Γ(1−α) cos (πα/2)
ζ(α) , Bα = Γ(1−α) sin (πα/2)

ζ(α) and

Cα = ζ(α−1)
ζ(α) . Using these approximations we obtain the

following asymptotes:

ωk ≈ 2
Γ(1− α)

ζ(α)
kα−1,

U2
kV

2
k ≈ Cα1 (1 + Cα2 k

2−α), (G5)

with Cα1 = 1
4

A2
α

A2
α+B2

α
and Cα2 = 2(CαAα −

AαCα
A2
α+B2

α
). Inserting

(G3) and (G5) we obtain

αR ≈
1

π

∫ π

0

dk |uk(t)|2 cos kR

≈ δ0,R +
2

π

∞∑
n=1

(−1)n
(4Γ(1−α)

ζ(α) t)2n

(2n)!
×

[
Cα1

∫ π

0

k2n(α−1) cos (kR)dk

+ Cα1 C
α
2

∫ π

0

k2−α+2n(α−1) cos (kR)dk
]

(G6)

This approximation is valid for large R where the inte-
grals are dominated by small k. For small k the integrand
of the second integral is negligible as compared to the first
one. By the same token we can neglect all terms except
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for n = 1. For n = 1 the first integral is∫ π

0

k2(α−1) cos(kR)dk =

π2α−1

2α− 1
1F2

[
α− 1

2
;

1

2
, α+

1

2
;−π

2R2

4

]
≈

−Γ(2α− 1) sin(π(α− 1))

R2α−1
. (G7)

Here 1F2 is the generalized Hypergeometric function?

and the last approximation is valid for large integer R.
Combining (G6) and (G7) we obtain

αR ≈ −
2

π
Cα1

Γ[1− α]
2

ζ(α)
2 (1 + cosπα)

t2

R2α−1
. (G8)

For α = 3/2 we have αR ∼ t2

R2 .
Performing similar analysis, for α = 3/2 we obtain

<(βR) ∼ 1
R5/2 which decays faster than αR. Therefore,

in the correlation function (F4), it is αR that dominates

the tail: CR ∼ t2

R2 . In Fig. 15 we show the numerically
exact correlation function to confirm the validity of this
asymptotic result for large R.

Before the infinite sudden quench, there is no static
correlation tail, ∼ R−3/2, to be frozen into the state af-
ter the quench. All correlations have to build up dy-
namically by spreading of entangled pairs of quasiparti-
cles with opposite quasimomenta excited by the sudden
quench. The dynamical correlations develop a negative
leading power-law tail ∝ R−2 and a positive next-to-
leading term ∝ R−5/2. In the next appendix, we will

see that after a finite quench, similar dynamical correla-
tions build-up on top of a frozen static pre-quench tail
∝ R−3/2.

Appendix H: Finite sudden quench from ε = −1 to
the critical point in the long-range Ising model

In the previous appendix, the initial state before the
quench was a product state with no correlations. Here,
we consider a sudden quench from an initial state at a
finite ε = −1 where, for α = 3/2, the static correla-
tion function decays like R−3/2 for large R. Figure 16(a)
shows the correlation function at different times after the
sudden quench. In Fig. 16(b) we fit its tail with

CR(t) = A(t)R−3/2 +B(t)R−2 + C(t)R−5/2 (H1)

that includes also two sub-leading terms. A(t) changes
negligibly with respect to its pre-quench value, compar-
ing to B(t) and C(t). The leading pre-quench static tail
∝ R−3/2 remains frozen after the sudden quench.

The build-up of dynamical correlations is captured by
the sub-leading terms. Their initial values are small cor-
rections to the leading pre-quench static correlator. With
time, they evolve away from the initial values like ∝ t2.
Similarly as for the infinite sudden quench, B(t) grows
negative and C(t) positive. Consequently, the dynamical
part on top of the frozen static tail grows positive for
small and negative for large R, see Fig. 16(a).
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