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The magnetic hedgehog lattice (HL) is a noncoplanar magnetic texture with a periodic array of
magnetic monopoles and anti-monopoles. Despite phenomenological and numerical studies thus far,
there remain open issues on the microscopic origin, especially with respect to the recent experimental
findings of two different types of HLs even at zero magnetic field. Here, we study the stability of
the HLs for an effective spin model with long-range interactions arising from itinerant nature of
electrons. By variational calculations and simulated annealing, we find that the HLs are stabilized
in the ground state at zero magnetic field by the synergetic effect of the anti-symmetric exchange
interactions generated by the spin-orbit coupling and the multiple-spin interactions generated by
the spin-charge coupling. We also clarify the phase diagram in the magnetic fields, which includes
topological phase transitions with pair annihilation of the monopoles and anti-monopoles depending
on the field directions.

I. INTRODUCTION

Chirality, often termed as handedness, is a key concept
in a broad field of science, ranging from particle physics
to biology. In condensed matter physics, chiral magnetic
textures, which break both inversion and mirror symme-
tries in addition to time-reversal symmetry, have recently
attracted considerable attention for potential applica-
tions to next-generation electronic devices. There are a
variety of the chiral magnetic textures, such as skyrmion
lattices [1] and chiral soliton lattices [2]. Noncollinear and
noncoplanar spin arrangements in these textures generate
emergent electromagnetic fields through the Berry phase
mechanism, which induce unconventional transport, op-
tical, and magnetoelectric properties [3–5].

Recently, a three-dimensional chiral magnetic texture,
which is called the hedgehog lattice (HL), was discovered
in the B20-type compound MnGe [6, 7]. The magnetic
structure is characterized by cubic three wave vectors,
and hence, it is referred as the triple-Q hedgehog lattice
(3Q-HL) [Fig. 1(b)]. The 3Q-HL has a periodic array
of hyperbolic hedgehog and anti-hedgehog spin textures,
which generates an emergent magnetic field with a pe-
riodic array of radial hedgehogs and anti-hedgehogs re-
garded as magnetic monopoles and anti-monopoles, as
shown in Fig. 1(c) [8–10]. The peculiar magnetic field
was discussed as a source of the enormous topological
Hall effect [11] and thermoelectric effect [12, 13]. In ad-
dition, by a substitution of Ge by Si, the 3Q-HL changes
into a different HL characterized by tetrahedral four wave
vectors, dubbed the quadruple-Q hedgehog lattice (4Q-
HL) [Fig. 1(a)] [14]. Remarkably, the magnetic periods
of these 3Q- and 4Q-HLs are very short ∼ 2-3 nm, in
contrast to most of the skyrmion lattices.

Such magnetic HLs have been theoretically stud-
ied prior to the experimental discovery, e.g., by
the Ginzburg-Landau theory [15], variational calcula-
tions [16], and Monte Carlo (MC) simulations [17]. The
variational study for a classical spin model showed that
the 3Q-HL is not stabilized, whereas the 4Q-HL is ob-
tained in an applied magnetic field [16]. The 4Q-HL
in a field was also confirmed by MC simulations [17].

The previous studies, however, do not predict the sta-
ble HLs in the absence of magnetic fields, contradict-
ing the experimental observations. Furthermore, to ac-
count for the short-period twist, the localized spin pic-
ture requires a large Dzyaloshinskii-Moriya (DM) interac-
tion [18, 19], but it was estimated to be very weak [20–22].
Indeed, recent analyses based on first-principles calcula-
tions showed that the stable HLs are not obtained by two
spin interactions including the DM interaction [23]. The
importance of four- and six-spin interactions including
spin chirality was also proposed [24, 25].

In this paper, we study the stability of 4Q- and 3Q-HLs
from a different viewpoint from the previous studies, by
taking into account itinerant nature of electrons. We con-
sider an effective model with long-range exchange interac-
tions originating from the coupling between charge, spin,
and orbital degrees of freedom. By variational calcula-
tions and simulated annealing, we show that the model
realizes both 4Q- and 3Q-HLs at zero field, through the
cooperation between the DM-type asymmetric exchange
interactions arising from the spin-orbit coupling and the
multiple-spin interactions from the spin-charge coupling.
We also study the effect of an applied magnetic field on
these HLs. Depending on the field directions, we find
that the system exhibits multiple phase transitions while
changing from the 4Q- and 3Q-HLs to the forced ferro-
magnetic (FFM) state. Notably, we show that some of
them are topological phase transitions with pair annihi-
lation of the monopoles and anti-monopoles. We demon-
strate how the pair annihilation takes place by tracing
the positions of the monopoles and anti-monopoles.

The rest of the paper is organized as follows. In Sec. II,
we introduce the effective spin model derived from an
itinerant electron model. In Sec. III, we describe the
methods that we use in this study to investigate the
ground state of the effective spin model. In Sec. IV, we
show the phase diagram at zero field including the HLs.
In Sec. V, we show the phase diagram in magnetic fields
applied in three symmetric directions. In Sec. VI, we dis-
cuss field-induced topological phase transitions caused by
pair annihilation of monopoles and anti-monopoles. Sec-
tion VII is devoted to the summary.
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FIG. 1. Spin textures of (a) 4Q and (b) 3Q hedgehog lattices
obtained by simulated annealing for the model in Eq. (2). The
enlarged pictures display the magnetic unit cell with the spin
configurations on every two [001] layers for clarity. The ma-
genta (cyan) balls represent the (anti-)monopoles at the (anti-
)hedgehog cores, which locate at the interstitial positions of
the cubic lattice sites. In (a), there are eight monopoles and
eight anti-monopoles in the magnetic unit cell, forming two
inter-penetrating body-centered-cubic lattices (one of them
is shown by the green guides). Meanwhile, there are four
monopoles and four anti-monopoles in (b), which comprise
spirals running in the [100], [010], and [001] directions. The
right panels show the ordering vectors for the (a) 4Q and (b)
3Q cases. The thick arrows (gray) represent the directions of
the magnetic field along the [001], [110], and [111] axes. (c)
Correspondences between the spin textures and the effective
magnetic fields. The cube represents the lattice unit com-
posed of the eight lattice sites surrounding a monopole and
an anti-monopole.

II. MODEL

In this section, we present the model which we use
in the present study. Starting from an itinerant elec-
tron model with spin-charge and spin orbit couplings in
Sec. II A, we discuss the effective model with long-ranged
exchange interactions induced by the itinerant nature of
electrons in Sec. II B.

A. Itinerant electron model

In order to investigate the microscopic origin of mag-
netic HLs, we begin with a minimal model including itin-
erant electrons, an extended Kondo lattice model that de-
scribes the coupling between the itinerant electron spins
and localized magnetic moments. While the Kondo lat-
tice model has been studied for f electron systems, where
the f electrons comprises the localized moments [26, 27],
we note that it is also regarded as an effective model for
the Hubbard-type models, which have been used widely,
e.g., for d electron systems, at the level of the mean-
field approximation [28]. In the current study, we include
an anti-symmetric spin-orbit coupling arising from spa-
tial inversion symmetry breaking in noncentrosymmetric
systems. The Hamiltonian in the wave-number represen-
tation is given by

H =
∑
kσ

(εk − µ)c†kσckσ + JK
∑

kqσσ′

c†kσσσσ′ck+qσ′ · Sq

+
∑
kσσ′

gk · c†kσσσσ′ckσ′ , (1)

where c†kσ (ckσ) is a creation (annihilation) operator of
an itinerant electron with wave vector k and spin σ =↑ or
↓. The first term describes the kinetic energy of itinerant
electrons; εk is the energy dispersion and µ is the chemi-
cal potential. The second term is for the Kondo coupling
between itinerant electron spins and localized spin mo-
ments; σ = (σx, σy, σz) is the vector of Pauli matrices,
and Sq = 1√

N

∑
l Srle

−iq·rl is the Fourier transform of

a localized moment Srl = (Sxrl , S
y
rl
, Szrl) defined at site l,

where N is the number of lattice sites. For simplicity, Srl

is regarded as a classical spin with the length |Srl | = 1.
JK is the exchange coupling constant whose sign is irrel-
evant for the classical spins. The last term represents the
anti-symmetric spin-orbit coupling induced by spatial in-
version symmetry breaking; gk = (gxk, g

y
k, g

z
k) is called the

g-vector, which plays an important role in chiral magnets.
In the following, we consider the model on a simple cubic
lattice with the lattice constant being unity for simplic-
ity; noncentrosymmetric nature is effectively taken into
account in the g-vector gk with an odd-function of k.

B. Effective spin model

In general, the coupling between itinerant electrons
and localized spins generates effective exchange interac-
tions between the localized spins. For instance, in the
strong-coupling case with JK � |εk − µ|, an effective
ferromagnetic interaction is generated to maximize the
kinetic energy of itinerant electrons by aligning neigh-
boring spins, which is called the double-exchange inter-
action [29, 30]. On the other hand, in the weak-coupling
case with JK � |εk − µ|, the effective magnetic interac-
tion becomes long-ranged and oscillating in space, which
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is called the Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction [31–33]. In this study, we consider the weak-
coupling case of the model in Eq. (1) by an effective
spin model derived by perturbation expansion in terms of
JK. Our model includes a higher-order effect of the spin-
charge coupling beyond the RKKY interaction discussed
in the previous studies [34–36], and also a DM-type in-
teraction originating from the spin-orbit coupling in the
last term in Eq. (1) [37]. The Hamiltonian reads

H =
∑
η

[
− JSQη · S−Qη +

K

N
(SQη · S−Qη )2

− iDη · SQη
× S−Qη

]
−
∑
l

h · Srl . (2)

The first term denotes the RKKY interaction, which is
derived by the second-order perturbation with respect to
JK [31–33]. In general, this tends to stabilize a spiral
magnetic texture. The second term is the biquadratic
interaction, which is most relevant among the higher-
order perturbations with respect to JK [36]. Hereafter,
we consider the positive coupling constant K > 0, which
is known to prefer noncollinear and noncoplanar spin con-
figurations [34–36]. The third term represents a DM-
type interaction arising from the anti-symmetric spin-
orbit coupling, which is derived by the second-order per-
turbation with respect to JK [37]. This also brings a twist
in spin textures, and plays a role in not only choosing the
chirality but also giving an anisotropy in spin space. Note
that we ignore other anisotropic exchange interactions
originating from the anti-symmetric spin-orbit coupling,
for simplicity [37]. The last term describes the Zeeman
coupling to an external magnetic field h.

In Eq. (2), all the exchange interactions are long-
ranged in real space and specified by particular wave
numbers Qη. This inherits the itinerant nature of elec-
trons; specifically, the wave vectors Qη are set by the
multiple maxima in the spin-dependent bare susceptibil-
ity of itinerant electrons [35, 36]. Corresponding to the
3Q- and 4Q-HLs, we assume two sets of Qη: One is a set
of the tetrahedral wave vectors as Q1 = (Q,−Q,−Q),
Q2 = (−Q,Q,−Q), Q3 = (−Q,−Q,Q), and Q4 =
(Q,Q,Q) [Fig. 1(a)], and the other is a set of the cu-
bic wave vectors as Q1 = (Q, 0, 0), Q2 = (0, Q, 0),
and Q3 = (0, 0, Q), which are orthogonal to each other
[Fig. 1(b)]. In the following calculations, we set Q = π/4
(period of eight lattice sites); we confirm that the fol-
lowing results remain qualitatively the same for different
choices of Q. Although the direction of Dη is indepen-
dent of that of Qη in general, we assume Dη ‖ Qη that
stabilizes proper-screw type spin textures [38]. We note
that the HLs can be composed of superpositions of the
proper screws. The magnetic field h is applied along the
[001], [110], and [111] directions as shown in the right
panels of Figs. 1(a) and 1(b). We set the energy scale
as J = 1. We consider the system with N = 163 spins
under periodic boundary conditions. We confirmed that
the following results remain the same for N = 243 spins

(not shown here).

III. METHOD

In this section, we present the methods to study the
ground state of the model in Eq. (2). At zero magnetic
field, we mainly adopt variational calculations by com-
paring the energy of several different spin states, as intro-
duced in Sec. III A. In addition, we use simulated anneal-
ing, which is introduced in Sec. III B, not only to confirm
the variational results but also to study the ground state
in an applied magnetic field where it is difficult to infer
the variational states.

A. Variational calculations

In the variational calculations, we consider the follow-
ing spin textures as the variational states at zero mag-
netic field. The simplest one is given by

Srl ∝
n∑
η=1

âη cosQηl, (3)

where âη is the unit vector parallel to Qη and Qηl =
Qη · rl + ϕη (ϕη represents the phase shift); n = 1, 2, 3
for the 3Q case and n = 1, 2, 3, 4 for the 4Q case. This
is a set of nonchiral states that has no energy gain from
the DM-type interaction. Another variational state is a
chiral one described as the equal superpositions of proper
screws,

Srl ∝
n∑
η=1

(b̂η sinQηl + ĉη cosQηl), (4)

where b̂η and ĉη are the unit vectors orthogonal to âη
and each other (âη, b̂η, and ĉη form a right-handed sys-
tem). Note that the n = 3 (n = 4) state for 3Q (4Q)
corresponds to the 3Q(4Q)-HL shown in Fig. 1(a)[(b)].
In addition, we include another variational state called
the double-Q chiral stripe (2Q-CS) found in the previous
study [39],

Srl ∝
√

1− u2b̂1 sinQ1l +
√

1− u2ĉ1 cosQ1l + uâ1,
(5)

where u = v sinQ2l. In the variational calculations, we
compare the energy for all the variational states by vary-
ing ϕη from 0 to Q and v from 0 to 1 to find the lowest-
energy candidate for the ground state.

B. Simulated annealing

In the simulated annealing, we numerically find the
candidate for the ground state by mean of MC simula-
tion. We gradually reduce the temperature of the system
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from T = 1 to T = 10−5 with a condition Tn = 10−0.1n,
where Tn is the temperature in the nth step. During the
annealing, we spend a total of 105 − 106 MC sweeps by
using the standard Metropolis algorithm. After anneal-
ing at a particular value of the field strength h = |h|, we
increase or decrease h successively by ∆h = 0.01. At ev-
ery shift by ∆h, we heat the system up to T = 10−3 and
cool down again to T = 10−5 by annealing. Carefully
comparing the energy by starting from various values of
h, we map out the magnetic phase diagram.

For the state obtained by the simulated annealing, we
calculate the magnetization per site along the field direc-
tion,

m =
1

N

∑
l

Srl · ĥ. (6)

where ĥ is the unit vector in the field direction, and the
magnetic susceptibility,

χ =
m(h+ ∆h)−m(h)

∆h
. (7)

To identify the multiple-Q magnetic orders, we also cal-
culate the magnetic moment with wave vector q,

mq =

√
S(q)

N
, (8)

where S(q) is the spin structure factor defined by

S(q) =
1

N

∑
l,l′

Srl · Srl′ e
iq·(rl−rl′ ). (9)

In addition, following Ref. [17], we define the monopole
charge in each unit cube by using the fluxes Ωp penetrat-
ing six square plaquettes of the cube as [40]

Qm(rc) =
1

4π

∑
p∈unit cube

Ωp · n̂p, (10)

where rc is the center position of the unit cube and n̂p
is the normal unit vector of the pth plaquette pointing
outward of the cube. We compute the flux Ωp by dividing
the pth plaquette into two triangles and taking the sum
of the solid angles of three spins on the two triangles i = 1
and 2. Each solid angle is calculated by

Ωi = 2 tan−1
{

S1 · (S2 × S3)

1 + S1 · S2 + S2 · S3 + S3 · S1

}
, (11)

where S1, S2, and S3 are the three spins on the ith trian-
gle in the clockwise order viewed from the center of the
cube, and the sign of Ωi is taken to be the same as that
of S1 · [S2 × S3]: Ωi ∈ [−2π, 2π]. The flux Ωp is defined
as a perpendicular vector to the pth plaquette as

Ωp =
∑
i∈p

Ωin̂p. (12)

By substituting Eq. (12) into Eq. (10), we obtain the
monopole charge Qm(rc). This quantity detects the
monopoles and anti-monopoles as it takes the value of
+1 (-1) when a monopole (anti-monopole) exists in the
unit cube. The monopoles and anti-monopoles are con-
nected by a flow of the flux Ωp in Eq. (12). We compute
the total number of monopoles and anti-monopoles in the
magnetic unit cell, Nm, as

Nm =
∑

rc∈Vm

|Qm(rc)|, (13)

where Vm is the magnetic unit cell (83 sites in the follow-
ing calculations). We also measure the distances between
the monopoles and anti-monopoles by using rc where
Qm(rc) = ±1. In particular, we compute the minimum
distance between the monopole and anti-monopole by

dm = min|rmc − rac |, (14)

where rmc and rac denote rc for the monopoles and anti-
monopoles. This is an important quantity for not only
monitoring topological phase transitions by pair annihila-
tion between monopoles and anti-monopoles but also un-
derstanding the behavior of the net scalar spin chirality

introduced below. We note, however, that r
m(a)
c gives an

approximate position of the (anti-)monopole core within
an accuracy of the lattice constant, and dm changes dis-
continuously by definition.

Finally, we calculate the net scalar spin chirality. We
define the scalar spin chirality at each lattice site rl by
the sum of spin triple products on four triangles on the
αβ plane (α, β = x, y, z) as [40]

χγsc(rl) =
1

2

∑
αβνανβ

εαβγνανβSrl · (Srl+ναδ̂α
× Srl+νβ δ̂β

),

(15)

where γ is the perpendicular direction to the αβ plane,

εαβγ is the Levi-Civita symbol, να(β) = ±1, and δ̂α(β)
is the unit translation vector in the α(β) direction. By
taking the sum over all the sites and three planes, we
obtain the net spin chirality:

χsc =
1

N

∑
γl

χγsc(rl). (16)

Since Eqs. (11) and (15) share the spin triple products,
χsc is related with the (oriented) summation of the flux
Ωp in Eq. (12). As mentioned above, the flows of the flux
connect the monopoles and anti-monopoles, and hence,
the lengths of the flux flows, which are approximately
given by the distances |rmc −rac |, affect χsc. We will discuss
such a relation in Sec. VI.

IV. PHASE DIAGRAM AT ZERO FIELD

First, we show the results in the absence of the mag-
netic field obtained by the variational calculations in
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FIG. 2. Phase diagrams of the model in Eq. (2) at zero field for
the (a) 4Q and (b) 3Q cases. 4Q(3Q)-HL, 4Q(3Q)-NC, 2Q-
VC, 2Q-CS, and 1Q-H represent the chiral 4Q (3Q) hedgehog
lattice, the nonchiral 4Q (3Q), the chiral 2Q vortex crystal,
the 2Q chiral stripe, and the 1Q helical states, respectively.

Sec. III A. Figures 2(a) and 2(b) display the magnetic
phase diagrams for the 4Q and 3Q cases, respectively,
while varying D = |Dη| and K in Eq. (2). When K = 0,
a nonzero D stabilizes the chiral 1Q helical state (1Q-H),
which remains stable in the small K region for D > 0 in
both 4Q and 3Q cases. On the other hand, when intro-
ducing K with D = 0, the 2Q-CS is stabilized in both
cases, but replaced by the nonchiral 4Q and 3Q states
in the larger K region. Similar sequence of the phase
transitions was found in two dimensions [36, 39]. When
D and K are both relevant, however, we find the 4Q-
and 3Q-HLs in the wide parameter range, in addition to
a chiral 2Q state in the 3Q case, which is a Bloch-type
vortex crystal (2Q-VC) [37]. We confirm the stability of
these HLs also by the simulated annealing in Sec. III B;
typical spin configurations for the 4Q- and 3Q-HLs are
presented in Figs. 1(a) and 1(b), respectively.

Thus, our results indicate that the 4Q- and 3Q-HLs
are stabilized by cooperation between the RKKY interac-
tion, the biquadratic interaction, and the DM-type inter-
action. In other words, both spin-charge and spin-orbit
couplings play a crucial role in the stabilization of the
4Q- and 3Q-HLs.

From the variational calculations, we find that the sta-
ble positions of all the monopoles and anti-monopoles of
the 4Q- and 3Q-HLs locate not at the lattice sites but
at the interstitial positions (centers of unit cubes). This
is concluded for the 3Q-HL by that the optimized phase
shift in Eq. (4) always takes ϕη = π/8. In this case, the
eight spins surrounding the (anti-)monopole comprise a
hyperbolic (anti-)hedgehog whose north and south poles
are in the [111] direction, as shown in Fig. 1(c). Mean-
while, for the 4Q-HL, the set of ϕη depends on D and
K since the four ordering vectors Qη are dependent on
each other. In this case, however, the eight spins com-
prise a hyperbolic (anti-)hedgehog with the north and
south poles in the [001] direction. In both cases, the
(anti-)hedgehogs generates an effective (anti-)monopole
field, as shown in Fig. 1(c). We deduce that the stable
monopoles and anti-monopoles centered at the intersti-
tial positions might be ubiquitous to the systems with

fixed spin length on the discrete lattice since their cores
are singular points where the spins vanish in the contin-
uum limit.

V. PHASE TRANSITIONS IN MAGNETIC
FIELDS

Next, we show the results for the phase diagrams of the
model in Eq. (2) in the magnetic fields along the [001],
[110], and [111] directions obtained by the simulated an-
nealing in Sec. III B. In Secs. V A and V B, we present
the results for the 4Q and 3Q cases, respectively.

A. 4Q case

Let us first discuss the 4Q case, whose ordering vectors
are shown in Fig. 1(a). Figure 3 summarizes the results
for the 4Q-HL at D = 0.3 and K = 0.6.

First, we discuss the results for the [001] field, h001 =
(0, 0, h), shown in Fig. 3(a). As plotted in the top panel,
the magnetizationm shows kinks at h ' 0.575, 1.395, and
2.335, and a small jump at h ' 0.595. Correspondingly,
the magnetic susceptibility χ shows peaks at h ' 0.575
and 0.595, a broad hump at h ' 1.395, and a shoulder
at h ' 2.335. These indicate the existence of at least
four phase transitions: one at h ' 0.595 is of first order,
while the rest three are of second order. The magnetic
moments mQη

plotted in the middle panel show that the
four phases below h ' 2.335 are 4Q states with the equal
amplitudes for the four mQη

, whereas the phase for h &
2.335 is a FFM state. We note that these 4Q states are
distinguished by the higher Fourier components of the
spin structure factor S(q) (see Appendix A).

The number of monopoles and anti-monopoles, Nm, is
plotted in the bottom panel. The result shows that Nm is
halved and vanishes through the second-order phase tran-
sitions at h ' 0.575 and 1.395, respectively (black dashed
lines). As plotted in the inset, the minimum distance
between the monopoles and anti-monopoles, dm, gets
shorter from dm = 2

√
3 to 1 and 3 to 1 while approach-

ing h ' 0.575 and 1.395, respectively. These suggest that
the phase transitions are topological ones caused by pair
annihilation of monopoles and anti-monopoles. We will
discuss the details in Sec. VI A.

In the bottom panel, we also plot the net scalar spin
chirality χsc, which gives rise to the topological Hall effect
in itinerant electron systems [41]. χsc rapidly increases
before the phase transition at h ' 0.575. After showing
a sharp peak at the phase transition at h ' 0.595, χsc

exhibits a broad peak at h ∼ 1, rapidly decreases around
the phase transition at h ' 1.395, and smoothly reduces
to zero while approaching the phase transition to a FFM
state at h ' 2.335. The change of χsc is closely related
with the change in the lengths of flows of the flux Ωp in
Eq. (12); see Sec. VI A.
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FIG. 3. Phase transitions in the magnetic fields along the (a) [001], (b) [110], and (c) [111] directions in the 4Q case: the
magnetization m in Eq. (6), the magnetic susceptibility χ in Eq. (7), the magnetic moments with wave vector Qη, mQη

in Eq. (8), the number of monopoles and anti-monopoles, Nm in Eq. (13), and the net scalar spin chirality χsc in Eq. (16)
(note that −χsc is plotted in the figure). The green, purple, gray, and white regions represent the 4Q-HLs (Nm 6= 0), the
noncoplanar 4Q states (Nm = 0), the 1Q conical states, and the FFM state, respectively. The black-dashed vertical lines
represent the topological transitions by pair annihilation of monopoles and anti-monopoles, while the gray ones represent other
non-topological phase transitions. The insets in (a) and (b) show the changes in the minimum distance between monopoles
and anti-monopoles, dm, in Eq. (14) when increasing the field before the topological transitions. See also Figs. 5 and 6.

Next, we discuss the results for the [110] field, h110 =
1√
2
(h, h, 0), shown in Fig. 3(b). As shown in the top

panel, m and χ show jumps and sharp peaks, respec-
tively, at h ' 0.795, 0.845, and 1.435. m also has kinks at
h ' 1.325 and 2.495, where χ shows a broad hump and a
shoulder, respectively. These indicate the existence of at
least five phase transitions: three at h ' 0.795, 0.845, and
1.435 are of first order, while the rest two at h ' 1.325
and 2.495 are of second order. mQη plotted in the mid-
dle panel show that the four phases for h . 1.435 are 4Q
states, the phase for 1.435 . h . 2.495 is a single-Q (1Q)
conical state, and that for h & 2.495 is a FFM state. In
the 4Q states, the amplitudes of mQη

are equal at zero
field, while they split into two groups for nonzero fields.
We note that the 1Q conical phase breaks C2 rotational
symmetry spontaneously by choosing one of two equiva-
lent wave vectors Q3 and Q4 (we denote the chosen wave
vector as Q4 in the figure).

As shown in the bottom panel of Fig. 3(b), Nm is
halved through the first-order phase transition at h '
0.845 and vanishes through the second-order one at h '
1.325. As plotted in the inset, dm gets shorter when ap-
proaching h ' 1.325, similar to the cases of h001 with
h ' 0.575 and 1.395. This also suggests a topological
transition by pair annihilation. On the other hand, χsc

has a nonzero value in all the 4Q states. Notably, χsc

is almost doubled at h ' 0.845 where Nm is halved,
and rapidly decreases through the phase transition at
h ' 1.325 where Nm vanishes. We will discuss the rela-
tion to the flux flows in Sec. VI A.

Finally, we discuss the results for the [111] field, h111 =
1√
3
(h, h, h), shown in Fig. 3(c). m, χ, and mQη in the top

and middle panels signal two first-order phase transitions
at h ' 0.775 and 0.845 among the 4Q-HLs, a first-order
one to the 1Q conical state at h ' 1.095, and a second-
order one to a FFM state at h ' 2.595. In the 4Q states,
all four mQη

become inequivalent for 0.775 . h . 0.845,
while two of them have the same amplitudes for h . 0.775
and 0.845 . h . 1.095. This indicates that the 4Q state
for 0.775 . h . 0.845 has lower symmetry compared to
the other two 4Q states, while C3 rotational symmetry
around the [111] axis (‖ Q4) is broken in all three phases
except at h = 0.

As plotted in the bottom panel in Fig. 3(c), Nm is re-
duced to half through the first-order phase transition at
h ' 0.845. This leads to the enhancement of χsc, similar
to the case with h110. In the [111] field, however, the sys-
tem does not exhibit a continuous phase transition that
might be ascribed to the topological phase transition.
This is presumably due to the fact that the 1Q conical
state is more stable down to a lower field, compared to
the [001] and [110] cases, since the field is applied in par-
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FIG. 4. Phase transitions in the magnetic field along the (a) [001], (b) [110], and (c) [111] directions in the 3Q case. The
plotted quantities and the dashed vertical lines for the phase transitions are common to those in Fig. 3. The red, orange, blue,
gray, and white regions represent the 3Q-HLs (Nm 6= 0), the noncoplanar 3Q states (Nm = 0), the 2Q vortex crystal states,
the 1Q conical state, and the FFM state, respectively. See also Figs. 7 and 8 for the changes of dm shown in the insets of the
bottom panels of (b) and (c).

allel to one of the wave vectors, Q4.

B. 3Q case

Next, we discuss the 3Q case with the ordering vectors
shown in Fig. 1(b). Figure 4 summarizes the results for
the 3Q-HL at D = 0.3 and K = 0.7.

First, we discuss the results for the [001] field, h001 =
(0, 0, h), shown in Fig. 4(a). As shown in the top and
middle panels, m, χ, and mQη

signal at least five phase
transitions: first-order ones at h ' 0.275, 0.695, and
0.775, and second-order ones at h ' 1.035 and 2.595.
The four low-field phases for h . 1.035 are 3Q states
with nonzero three mQη

, the phase for 1.035 . h . 2.595
is a 1Q conical state with only mQ3 6= 0, and that for
h & 2.595 is a FFM state. Furthermore, when we look
closer mQη , we find that mQ1 becomes inequivalent to
mQ2 at 0.695 . h . 0.775, whereas mQ1 = mQ2 in
the other three 3Q states. These 3Q states are also dis-
tinguished by the higher Fourier components of the spin
structure factor S(q) and the structure factor of the local
scalar spin chirality (see Appendix B).

As shown in the bottom panel of Fig. 4(a), Nm is un-
changed in the three low-field 3Q phases, but it vanishes
through the first-order phase transition at h ' 0.775. On
the other hand, χsc increases in the two low-field phases,
while it rapidly decreases in the third phase and vanishes
through the second-order phase transition to the 1Q con-

ical state at h ' 1.035. The change of χsc in the 3Q-HL
phases is accounted for by the change in the lengths of the
flux flows connecting the monopoles and anti-monopoles,
similar to the 4Q case in Sec. V A (see Sec. VI B).

Next, we discuss the results for the [110] field, h110 =
1√
2
(h, h, 0), shown in Fig. 4(b). As plotted in the top

panel, the data of m and χ signal seven first-order phase
transitions at h ' 0.405, 0.525, 0.725, 0.975, 0.995,
1.125, and 1.245, and a second-order phase transition
at h ' 2.415. In addition, mQη in the middle panel
and Nm in the bottom panel indicate additional phase
transitions at h ' 0.445, 0.745, 0.945, and 1.355. mQη

shows that all the phases for h . 1.245 are 3Q states,
the two phases for 1.245 . h . 2.415 are 2Q states, and
the phase for h ' 2.415 is a FFM state. We note that
mQ1

becomes inequivalent to mQ2
in the 3Q states for

0.405 . h . 0.525 and 0.725 . h . 0.975, and the 2Q
state for 1.245 . h . 1.355. This indicates spontaneous
symmetry breaking by choosing one of the two equivalent
wave vectors in these states.

Within the 3Q phases for h . 1.245, Nm changes in
a complicated manner, as plotted in the bottom panel
of Fig. 4(b): In contrast to the other cases, Nm is not
reduced monotonically but changes from 8, 6, 10, 6, to
2 stepwisely. By tracing dm plotted in the insets, we
find that the three phase transitions at h ' 0.445, 0.745,
and 0.945 appear to be topological ones caused by pair
annihilation of monopoles and anti-monopoles (dm does
not change from 1 before the transitions since the lattice
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spacing is larger than the positional changes of monopoles
and anti-monopoles; see Sec. VI B for the details). The
net scalar spin chirality χsc is nonzero in all the 3Q-HLs
for 0 < h . 1.245. It exhibits a broad peak at h ∼ 1 and
vanishes through the first-order phase transition to the
2Q state at h ' 1.245.

Finally, we discuss the results for the [111] field, h111 =
1√
3
(h, h, h), shown in Fig. 4(c). In this case, m and χ

plotted in the top panel signal four first-order phase tran-
sitions at h ' 0.585, 1.105, 1.135, and 1.255, and two
second-order ones at h ' 1.305 and 2.335. In addition,
Nm in the bottom panel indicates an additional phase
transition at h ' 0.495. mQη

in the middle panel shows
that all the phases for h . 2.335 are 3Q states, while the
phase for h & 2.335 is a FFM state. All the 3Q phases
have the equal amplitudes for the three mQη ; namely,
they retain C3 rotational symmetry with respect to the
[111] axis.

As plotted in the bottom panel of Fig. 4(c), Nm is
nonzero in the 3Q phases below h ' 1.305. By moni-
toring dm plotted in the insets, we find that the tran-
sitions at h ' 0.495 and 1.305 appears to be topolog-
ical ones by pair annihilation of monopoles and anti-
monopoles. χsc is nonzero for all the 3Q-HLs but de-
creases rapidly through the second-order phase transi-
tion at h ' 1.305 where Nm vanishes. We will discuss

(a) (b)

𝑑! = 3
𝑑! = 1

ℎ = 0.60 ℎ = 1.39

𝐡!!"

𝑥
𝑦

𝑧

(c) (d)

𝑑! = 1

ℎ = 0.00 ℎ = 0.57

𝑑! = 2 3

FIG. 5. Positions of monopoles (magenta) and anti-
monopoles (cyan) in the magnetic unit cell (cube) when ap-
proaching the topological transition at h ' 0.575 and 1.395
for the [001] field (denoted by the gray arrow) in the 4Q case:
(a) h = 0.00, (b) 0.57, (c) 0.60, and (d) 1.39. The arrows at
the bottom show the slice of the spin texture on the plane
just below some of the monopoles and anti-monopoles. The
black arrows represent the minimum distances between the
monopoles and anti-monopoles, dm. The vertical dashed lines
and the dots at the bottom end represent the projections onto
the bottom plane as guide for the eye.

the details in Sec. VI B.

VI. TOPOLOGICAL PHASE TRANSITIONS BY
PAIR ANNIHILATION OF MONOPOLES AND

ANTI-MONOPOLES

In Sec. V, we found several phase transitions in the
4Q- and 3Q-HL phases where no discontinuous changes
are observed in m and mQη

but Nm changes. These
suggest continuous phase transitions with a topological
change caused by pair annihilation of monopoles and
anti-monopoles. Such topological transitions under the
[001] field were discussed for an ansatz of the 3Q-HL state
in the continuum limit [10] and also for a metastable
3Q-HL in the model in Eq. (2) [40]. Our results in
Sec. V, however, appear to offer several examples in the
ground state for both 4Q- and 3Q-HLs. In this section,
we analyze these phase transitions by tracing the posi-
tions of monopoles and anti-monopoles in real space. In
Secs. VI A and VI B, we present the results for the 4Q
and 3Q cases, respectively.

A. 4Q case

In Sec. V A, we found three possible topological phase
transitions in the 4Q-HLs: Two are at h ' 0.575 and
1.395 for the [001] field and the other is at h ' 1.325
for the [110] field. We discuss how the monopoles and
anti-monopoles move and pair annihilate as a function of
the field strength through each transition.

In the case of the [001] field, Nm changes from 16 to 8 at
h ' 0.575 and from 8 to 0 at h ' 1.395, both suggesting
four pairs of monopoles and anti-monopoles annihilate
simultaneously at the phase transition. They are visual-
ized in real space in Fig. 5. At zero field, the monopoles
and anti-monopoles form two inter-penetrating body-
centered-cubic lattices with dm = 2

√
3 as shown in

Fig. 5(a). While increasing h, half of the monopoles and
anti-monopoles move toward each other in the field di-

(a)

𝑑! = 3 𝑑! = 1

ℎ = 0.85 ℎ = 1.32𝐡!!"

(b)

𝑥

𝑦

𝑧

FIG. 6. Positions of monopoles and anti-monopoles when
approaching the topological transition at h ' 1.325 for the
[110] field in the 4Q case: (a) h = 0.85 and (b) h = 1.30. The
notations are common to those in Fig. 5.
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rection, forming four pairs. When approaching to the
critical field, dm given by the four pairs is reduced to
1 as shown in Fig. 5(b) at h = 0.57, and then, be-
comes 0, which is the pair annihilation at the critical
field h ' 0.575. In the higher-field region, the remaining
monopoles and anti-monopoles are paired along the field
direction again, as exemplified in Fig. 5(c) at h = 0.60. In
this case, dm is reduced from 3 to 1 as shown in Fig. 5(d)
at h = 1.39, and finally, becomes 0 at the critical field
h ' 1.395 by the pair annihilation. The changes of dm
were plotted in the inset of the bottom panel in Fig. 3(a).

The movement of the monopoles and anti-monopoles
explains the behavior of χsc plotted in the bottom panel
of Fig. 3(a). When approaching the topological transi-
tion at h ' 0.575 by increasing h, χsc decreases [−χsc

increases in Fig. 3(a)]. This is understood by the de-
crease of dm with the flux flows in the same direction of
the magnetic field: The decrease of dm reduces the posi-
tive contribution to χsc, which leads to the net decrease
in χsc. On the other hand, χsc increases (−χsc decreases)
near the other topological transition at h ' 1.395. This

(a)
𝑑! = 1

ℎ = 0.41 ℎ = 0.44

𝐡!!"

(b)

𝑥

𝑦
𝑧

𝑑! = 1

(c)

𝑑! = 1

ℎ = 0.45 ℎ = 0.73

(d)

(e)

𝑑! = 1

ℎ = 0.94 ℎ = 0.95

(f)

FIG. 7. Positions of monopoles and anti-monopoles when
approaching the topological transition at h ' 0.445, 0.745,
and 0.945 for the [110] field in the 3Q case: (a) h = 0.41, (b)
h = 0.44, (c) h = 0.45, (d) h = 0.73, (e) h = 0.94, and (f)
h = 0.95. The notations are common to those in Fig. 5.

is due to the decrease of dm with the flux flows in the
opposite direction to the magnetic field.

Similarly, Nm changes from 8 to 0 for the [110] field
through the phase transition at h ' 1.325. The change of
the positions of monopoles and anti-monopoles is shown
in Fig. 6, where dm changes in a similar manner to the
case of the [001] field at h ' 1.39 in Figs. 5(c) and 5(d);
see also the inset of the bottom panel of Fig. 3(b). The
only difference from the [001] case is in the direction of
collisions. The corresponding reduction of the lengths of
the flux flows is also related to the suppression of χsc in
Fig. 3(b) since the fluxes Ωp have the positive component
in the opposite direction to the field.

B. 3Q case

In the case of the 3Q-HLs, we identified totally five
possible topological transitions in Sec. V B. Three of
them are at h ' 0.445, 0.745, and 0.945 for the [110]

(a)

ℎ = 0.00 ℎ = 0.49

𝐡!!!

(b)

𝑥

𝑦𝑧

(c)

𝑑! = 3

ℎ = 0.50 ℎ = 1.26

(d)

(e)

ℎ = 1.30

𝑑! = 2 2 𝑑! = 2

𝑑! = 2

FIG. 8. Positions of monopoles and anti-monopoles when
approaching the topological transition at h ' 0.495 and 1.305
for the [111] field in the 3Q case: (a) h = 0.00, (b) h = 0.49,
(c) h = 0.50, (d) h = 1.26, and (e) h = 1.30. The notations
are common to those in Fig. 5.
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field, and the rest two are at h ' 0.495 and 1.305 for
the [111] field. Figure 7 shows the real-space pictures
for the [110] field. In a low field, there are totally eight
monopoles and anti-monopoles as shown in Fig. 7(a) for
h = 0.41, but one pair annihilates through the transition
at h ' 0.445 as shown in Figs. 7(b) and 7(c). We note
that the directions of pairs change within the same 3Q
state with spontaneous symmetry breaking with respect
to the [100] and [010] directions. In the next topological
transition at h ' 0.745, Nm changes from 10 to 6, where
two pairs of monopoles and anti-monopoles annihilate as
shown in Figs. 7(d) and 7(e). Through these transitions,
dm does not change from 1, since the distance for the
pairs that survive is already 1 before the transition. Fi-
nally, other two pairs annihilate and Nm is reduced to 2
at h ' 0.945 as shown in Fig. 7(f). See also the insets in
the bottom panel of Fig. 4(b).

Finally, we present the results for the [111] field in
Fig. 8. In this case, there are four pairs of monopoles
and anti-monopoles in the low-field phase, and their dis-
tance gets shorter as demonstrated in Figs. 8(a) and 8(b).
Through the topological transition at h ' 0.495, three of
four annihilate as shown in Fig. 8(c). Finally, the re-
maining pair gets closer and pair annihilate through the
transition at h ' 1.305 as shown in Figs. 8(d) and 8(e).
The rapid decrease of dm explains the rapid suppression
of χsc while approaching the topological phase transition
at h ' 1.305 in Fig. 4(c).

VII. CONCLUDING REMARKS

In conclusion, we have investigated the magnetic HLs
in the effective spin model with long-range interactions
reflecting the itinerant nature of electrons. We found that
both 4Q- and 3Q-HLs are stabilized even at zero mag-
netic field by the synergy between the DM-type interac-
tions from the spin-orbit coupling and the multiple-spin
interactions from the spin-charge coupling. The results
are in stark contrast to the previous studies for the lo-
calized spin models with short-range interactions, where
the HLs are stable only in a field. Furthermore, our HLs
may have much shorter periods compared to the previ-
ous ones; the periods in our HLs are dictated by nesting
properties of the Fermi surface, whereas those in the pre-
vious studies are given by the competition between the
ferromagnetic exchange interaction and the DM interac-
tion. We also clarified the effect of an external magnetic
field on the HLs. We showed that both 4Q and 3Q cases
exhibit a variety of successive phase transitions depend-
ing on the field direction, including the transitions to 2Q
and 1Q states. Interestingly, among them, we found sev-
eral topological phase transitions where the number of
monopoles and anti-monopoles changes by the pair anni-
hilation. We explicitly showed how the pair annihilation
occurs by tracing the real-space positions of monopoles
and anti-monopoles on the discrete lattice.

As mentioned in the introduction, 3Q- and 4Q-HLs

were recently discovered in MnSi1−xGex [6, 7, 14]. They
are stable even in the absence of the magnetic field and
have much shorter periods compared to the conventional
skyrmion lattices, for instance, in MnSi, and evaded the
understanding from the conventional spin models with
short-range two-spin interactions. A scenario was re-
cently proposed based on short-range four-spin and six-
spin interactions including the scalar spin chirality [23].
Our finding suggests another scenario by emphasizing the
important role of itinerant nature of electrons. To test
our scenario, it is necessary to clarify the electronic struc-
ture in the real compounds, e.g., by the angle-resolved
photoemission spectroscopy and the de Haas-van Alphen
effect. First-principles calculations would also be helpful,
while it is not straightforward to precisely predict the rel-
evant wave numbers in the complicated multiorbital sys-
tems with electron correlations, in particular, chemically
doped materials like MnSi1−xGex. It would also be inter-
esting to test our scenario for the short-period skyrmion
lattice recently discovered in EuPtSi [42–44]. We note
that a similar scenario (without the DM-type interaction)
was recently discussed for the swirling spin textures in a
centrosymmetric triangular magnet Gd2PdSi3 [45].

On the other hand, in the magnetic field, our results
suggest that the 4Q and 3Q states exhibit a nonzero topo-
logical Hall effect through the nonzero scalar spin chiral-
ity χsc. Our results also indicate that χsc changes dras-
tically corresponding to the modulation of the magnetic
textures including the topological transitions by pair an-
nihilations of monopoles and anti-monopoles. Experi-
mentally, interesting behaviors were observed in a wide
range of field and temperature, even with the sign change
of the topological Hall resistivity [14]. Assuming our sce-
nario based on the itinerant nature of electrons, it will
be important to take into account the realistic electronic
band structures in the magnetic field for detailed com-
parison between theory and experiment. In particular, it
is worth studying how the modulations of the Fermi sur-
faces and corresponding Qη modify the phase diagrams
in the magnetic field. Moreover, thermal fluctuations
might also play an important role. We leave the finite-
temperature study as a future work, as it requires sophis-
ticated Monte Carlo simulations beyond the simulated
annealing to resolve competing phases.
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Appendix A: Difference among the 4Q states

In this section, we discuss the difference among the 4Q
states found in Sec. V A. In the case of the [001] field in
Fig. 3(a), we found four 4Q states below h ' 2.335, all of
which have the equal amplitudes of the four mQη

. Two
of them are distinguished by the number of monopoles
and anti-monopoles, Nm: the 4Q-HL state with Nm = 16
below h ' 0.575 and the 4Q state withNm = 0 above h '
1.395. The rest two have the same Nm = 8, but we find
that they show different values in higher harmonics in
the spin structure factor S(q) in Eq. (9): By calculating
S(Qη + Qη′) where η = 1, 2, 3, 4 and η 6= η′, we find that
S(Q2 + Q3) and S(Q3 + Q1) have the equal amplitudes
for 0.575 . h . 0.595, but S(Q2 + Q3) 6= S(Q3 + Q1)
for 0.595 . h . 1.395. The differences among the four
4Q states are summarized in Fig. 9(a).

In the case of the [110] field in Fig. 3(b), we also find
four 4Q states below h ' 1.435 that share the same sym-
metry in terms of mQη . In this case again, Nm distin-
guishes two of them: the 4Q-HL state with Nm = 8 for
0.845 . h . 1.325 and the 4Q state with Nm = 0 for
1.325 . h . 1.435. In order to distinguish the rest two
for h . 0.845, we calculate the spin structure factor with

4Q

h
0 0.595 2.335

Nm = 16 Nm = 8 Nm = 0

S(Q2+Q3) = S(Q3+Q1) S(Q2+Q3) ≠ S(Q3+Q1)

4Q

h
1.435

Nm = 16 Nm = 8 Nm = 0

S∥(2Q1+2Q2) ≠	0

1.325

S∥(2Q1+2Q2) =	0

4Q

h
0 0.775 0.845 1.095

Nm = 16 Nm = 8

m𝐐! ≠ m𝐐"

1.3950.575

0 0.795 0.845

(a)   h ∥ [001]

(b)   h ∥ [110]

(c)   h ∥ [111]

FIG. 9. Schematics for the differences among the 4Q phases
in the (a) [001], (b) [110], and (c) [111] field corresponding to
Figs. 3(a), 3(b), and 3(c), respectively.

the spin component parallel to the [110] field defined by

S‖(q) =
1

2
{Sxx(q) + Syy(q)}+ Sxy(q), (A1)

where Sµν(q) is the matrix form of the spin structure
factor defined by

Sµν(q) =
1

N

∑
l,l′

SµrlS
ν
rl′
eiq·(rl−rl′ ). (A2)

We find that the higher harmonics along the field di-
rection, S‖(2Q1 + 2Q2), is nonzero in the 4Q state for
0.795 . h . 0.845, while it vanishes for h . 0.795. The
differences among the four 4Q states are summarized in
Fig. 9(b).

Finally, in the case of the [111] field in Fig. 3(c), we
find three 4Q states. In this case, mQη distinguishes the
intermediate phase for 0.845 . h . 1.095, as mentioned
in Sec. V A. The rest two can be distinguished by Nm.
See Fig. 9(c).

Appendix B: Difference among the 3Q states

In this section, we discuss the difference among the
3Q states found in Sec. V B. In the case of the [001]
field in Fig. 4(a), we find four 3Q states. One of them
for 0.775 . h . 1.035 is distinguished from the others
by Nm: the 3Q state with Nm = 0 above h ' 0.775. In
addition, as mentioned in Sec. V B, mQη

distinguishes the
3Q-HL state for 0.695 . h . 0.775. We find a difference
between the rest two in higher harmonics in the structure
factor of the scalar spin chirality in Eq. (15). Specifically,
we calculate the component perpendicular to the [001]
field defined by

χ⊥sc(q) =
1

2
{χxxsc (q) + χyysc (q)}+ χxysc (q), (B1)

where χµνsc (q) is the matrix form of the structure factor
defined by

χµνsc (q) =
1

N

∑
l,l′

χµsc(rl)χ
ν
sc(rl′)e

iq·(rl−rl′ ). (B2)

We find that χ⊥sc(2Q1) and χ⊥sc(2Q2) are nonzero and
have the equal amplitudes in the 3Q-HL state for 0.275 .
h . 0.695, but vanish below h ' 0.275. The differences
among the four 3Q states are summarized in Fig. 10(a).

Next, in the case of the [110] field in Fig. 4(b), we found
ten 3Q states below h ' 1.245 with a variety of Nm.
The 3Q-HL state with Nm = 10 for 0.725 . h . 0.745
is distinguished from others, but Nm = 8 for the two
states below h ' 0.445, Nm = 6 for the three states for
0.445 . h . 0.725 and 0.745 . h . 0.945, and Nm = 2
for the rest four for 0.945 . h . 1.245. As mentioned in
Sec. V B, the two with Nm = 8 below h ' 0.445 and the
two with Nm = 6 for 0.445 . h . 0.725 are distinguished
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m𝐐!
≠ m𝐐"

m𝐐!
≠ m𝐐"

(a)   h ∥ [001]

3Q

h
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Nm = 8 Nm = 6 Nm = 2

S ∥(Q2+Q3) ≠	S
∥(Q3+Q1)

S⊥(Q1+Q2) ≠ S
⊥(Q2+Q3)

3Q

h
0 0.585 1.135 1.255

Nm = 8 Nm = 2

3Q

h
1.035

Nm = 8 Nm = 0

0.775

𝜒"#$ (2Q1) = 𝜒"#$ (2Q2) = 0

m𝐐!
≠ m𝐐"

𝜒"#$ (2Q1) = 𝜒"#$ (2Q2) ≠ 0

1.2450.745 0.945 0.975 0.995

Nm = 6
Nm = 10

m𝐐!
≠ m𝐐"

S ∥(2Q2+2Q3) ≠	S
∥(2Q3+2Q1) S ∥(2Q2+2Q3) = S ∥(2Q3+2Q1)

S 𝑧𝑧(2Q1+2Q2) = 0 S 𝑧𝑧(2Q1+2Q2) ≠ 0

Nm = 0

1.3051.1050.495

S ⊥(Q1+Q2+Q3) =	0

S ∥(Q2+Q3) = S ∥(Q3+Q1)

S⊥(Q1+Q2) = S⊥(Q2+Q3)

0 0.275 0.695

0.445 0.5250.405

2.335

S ⊥(Q1+Q2+Q3) ≠	0

S ⊥(Q1+Q2+Q3) =	0

S ⊥(Q1+Q2+Q3) ≠	0

(b)   h ∥ [110]

(c)   h ∥ [111]

FIG. 10. Schematics of the 3Q states in the (a) [001], (b)
[110], and (c) [111] field corresponding to Figs. 4(a), 4(b),
and 4(c), respectively.

by mQη
. Similarly, the two with Nm = 2 for 0.945 .

h . 0.975 and 1.125 . h . 1.245 are distinguished from
other two by mQη

. See Fig. 10(b).

In order to distinguish the rest, we calculate higher
harmonics in the spin structure factor similar to the 4Q
case in Appendix A. For the 3Q-HL states with Nm = 6,
S‖(Q2+Q3) and S‖(Q3+Q1) have the equal amplitudes
for 0.745 . h . 0.945, but do not for 0.445 . h . 0.525.
Meanwhile, for the two states with Nm = 2 and mQ1

6=
mQ2

, S‖(2Q2 + 2Q3) = S‖(2Q3 + 2Q1) for 1.125 . h .
1.245 while S‖(2Q2 +2Q3) 6= S‖(2Q3 +2Q1) for 0.945 .
h . 0.975. Furthermore, for the two states with Nm = 2
and mQ1

= mQ2
the component perpendicular to the

[110] field, Szz(2Q1+2Q2), is zero for 0.975 . h . 0.995,
but nonzero for 0.995 . h . 1.125. All the differences
among the ten 3Q states are summarized in Fig. 10(b).

Finally, in the case of the [111] field in Fig. 4(c), we
found seven 3Q states below h ' 2.335, all of which have
the equal amplitudes of the three mQη

. Two of them
are distinguished by Nm: the 3Q-HL state with Nm = 8
below h ' 0.495 and the 3Q state with Nm = 0 above
h ' 1.305. The rest five have the same Nm = 2, but
two of them for 1.105 . h . 1.135 and 1.255 . h .
1.305 show nonzero values in higher harmonics in the
spin structure factor S⊥(Q1 + Q2 + Q3), which is the
component perpendicular to the [111] field given by

S⊥(q) =
2

3
{S(q)− Sxy(q)− Syz(q)− Szx(q)}. (B3)

Furthermore, S⊥(Q1 + Q2) = S⊥(Q2 + Q3) for 1.105 .
h . 1.135, but S⊥(Q1 + Q2) 6= S⊥(Q2 + Q3) for
1.255 . h . 1.305. The rest three 3Q-HLs (for 0.495 .
h . 0.585, 0.585 . h . 1.105, and 1.135 . h . 1.255)
with Nm = 2 cannot be distinguished within the present
analyses although further higher harmonics may tell the
difference. See Fig. 10(c).
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