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We show that the phase of a spin-torque oscillator generically acquires a geometric contribution
upon slow and cyclic variation of the parameters that govern its dynamics. As an example, we
compute the geometric phase that results from a cyclic excursion of the magnitude of the external
field and the current. We consider thermal phase fluctuations and conclude that the geometric phase
should be experimentally observable at room temperature with current setups. We briefly comment
on arrays of spin-torque oscillators and possible applications.

I. INTRODUCTION

Spin-torque oscillators are auto-oscillators, systems in
which a time-independent drive results in self-sustained
oscillations [1-3]. In spin-torque oscillators, periodic
magnetization dynamics results from a steady injection
of angular momentum, by means of a spin current, that
overcomes relaxation. Their simplest implementation is
based on the precession of a uni-axial single-domain mag-
net around its axis of symmetry. The spin-current is then
injected either by using an adjacent fixed ferromagnet to
spin-polarize charge current, or by using the spin-Hall ef-
fect [4] in an adjacent normal-metal layer. In the latter
situation one also refers to spin-Hall oscillators.

Regardless of their precise implementation, spin-torque
oscillators are interesting systems that exhibit a variety
of non-linear physical phenomena, such as phase and fre-
quency locking [5, 6]. Possible applications of spin-torque
oscillators range from the emission and detection of mi-
crowave radiation, to neuromorphic computing [7]. Some
of these applications rely on the control of the phase of
the oscillator. An example of such an application is in
the field of magnonics [8], where the phase of the os-
cillator could be imprinted on the phases of spin waves
that perform certain logic operations by controlled spin-
wave interference. Another example is that of associative
memory applications that may be possible with the phase
of spin-torque oscillators [7].

In this article we show that the phase of a spin-torque
oscillator can be controlled geometrically. More precisely,
we show that a sufficiently slow cyclic change of the pa-
rameters that govern the dynamics of the oscillator re-
sults in a geometric contribution to the phase shift. Here,
geometric means that the phase shift is only determined
by the geometry of the path in the parameter space,
but, for example, not by how fast it is traversed — pro-
vided the parameters are varied sufficiently slowly. As a
concrete example, we consider the geometric phase that
arises from a loop in the parameter space that is spanned

by the magnitude of the external field and the magnitude
of the spin current.

Because spin-torque oscillators are dissipative sys-
tems, the geometric phase that is elucidated here is not
straightforwardly related to well-known examples of ge-
ometric phases, such as the Berry phase in quantum me-
chanics [9], or the Hannay angle in classical mechanics
[10, 11]. The geometric phase we consider is rather an
example of a geometric phase first pointed out by Lands-
berg [12] and by Ning and Haken [13]. (See Ref. [14] for
a review of this phase, and other geometric phases.)

The remainder of this article is organized as follows:
in the next section we go in detail through the specific
example of the geometric phase that arises due to a cyclic
variation of field and current. In Sec. III we discuss the
effect of thermal phase fluctuations and conclude that the
geometric phase should be observable despite these fluc-
tuations. We end with a conclusion and outlook, where
we also discuss possible extensions and applications of
our work. In the appendices we consider a more general
cyclic variation of control parameters, discuss the influ-
ence of ellipticity, and also provide some results for arrays
of spin-torque oscillators.

II. GEOMETRIC PHASE DUE TO CYCLIC
VARIATION OF EXTERNAL FIELD AND
CURRENT

We consider a specific implementation of a spin-torque
nano-oscillator based on a single-domain magnet with
uni-axial symmetry into which spin current is injected
(see Fig. 1). Here, we mostly follow Slavin and Tiberke-
vich [1] in the derivation of the equations of motion and
the discussion of the critical current and the equilibrium
power. We start from the Landau-Lifshitz-Gilbert equa-



FIG. 1: Illustration of the set-up that is considered: a
uni-axial single-domain magnet into which spin current (not
shown) is injected. The external field with magnitude Hy
points in the z-direction. The magnetization dynamics is
parametrized in terms of the azimuthal angle ¢ and the power
p. The power determines the projection of the magnetization
direction onto the z-axis.

tion for the magnetization direction m:

om(t)
ot

= —ypuom(t) X Heg(m(t))
—OZ’}/,LL[)m(t) X [m(t) X Heﬁ'(m(t))]
+Teie(m(t)) (1)

where v > 0 is the modulus of the gyromagnetic ratio,
o is the vacuum permeability, and Heg is the effective
field. The Gilbert damping term is determined by the
constant & < 1. The current-induced torque 7t (m(t))
could include a conventional spin-transfer torque, as well
as a spin-orbit torque.

The effective field consists of a demagnetizing field and
an external field of magnitude Hy in the z-direction, so
that

H.g(m) = (Hy — 4 Mym.)e, , (2)

where M; is the saturation magnetization and e, the unit
vector in the z-direction.
We take the curent-induced torque of the form

Teit :Isg(m'ez)mx (mxez) ’ (3)

which physically corresponds to a spin current Iy with
spin polarization in the z-direction that is injected. The
dimensionless function g(m - e,) is determined by the
details of the set-up.

We parametrize the magnetization direction by the
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FIG. 2: Illustration of the rectangular loop in (wo, Is)-space
that gives rise to the geometric phase. The dotted red line
separates the subcritical (Is < I.) and supercritical (Is > I.)
regions.

power 0 < p(t) < 1 and a precession angle ¢(t) via

2¢/p(1 —p)sin¢

2/p(1—p)coso | - (4)

1—-2p

m =

This results in equations of the form

p(t) ==2[T1(p(t);wo, Is) =T (p(t); wo, Is)] p(t),(5a)

$(t) = w(p(t);wo, 1), (5b)
with
Ty (pywo,Is) = al(wo—wn) — a(we — 3war)p , (6a)

I_(pswo,Is) = I+ (' —n)p] . (6b)

where n(p) = g(1—2p), n =n(0), and o’ = dn(p)/dpl,_o-
The precession frequency is given by

w(p;wo, Is) = wo — wpr + 2wpp - (7)

In deriving the above, we have kept terms up to quadratic
order in p, and defined wg = yugHg and wyy = 4dmypoMs.
We also note that, while the coefficients in Egs. (6) and
(7) depend on the specific implementation, the various
terms that arise are generic and the results derived below
can be easily adopted to other implementations of spin-
torque oscillators, such as vortex oscillators.

From the equations of motion we find that the critical
spin current, above which the power p becomes nonzero,
is determined by I'y(0;wo,Is) = T'-(0;wo,Is), which
yields

I, = % (wo —wnr) (8)



The stationary power, found by solving for p in the equa-
tion dp/0t = 0, is

nls — a(wo — war)
n—n')1s +a(Bwy —wo)

po(wo, Is) = ( 9)

We are now in the position to compute the geometric
phase that arises from a slow variation of the current
and the external field, in such a way that they map out a
closed loop in (wp, Is)-space (see Fig. 2). Here, we adapt

the discussion of Ref. [14] to our specific case. For slowly-
varying current I4(¢) and field wq(t), we have

p(t) = po(t) + (gl; m) apgt(t) ; (10)
where
F(p) = —2[['+(p;wo, Is) = T—(p;wo, Is)lp,  (11)

and po(t) = po(wo(t), Is(t)). Note that for stability of
the auto-oscillations we should have that 0F/dp|, < 0.

Inserting the result for p(¢) in the equation for ¢(t), and
expanding to linear order in Opy/0t, we find that

¢(t) = W(pO(t); WO(t)a Is(t))

o oF| \  apo(t)

ot
For closed loops in parameter space, starting, e.g., at ¢t =
0 and ending at t = T, integration of Eq. (12) gives two

contributions. The first, fOTw(pO(t); wo(t), Is(t))dt is the
dynamic phase; the second contribution is the geometric
phase that we are after. It is given by

T oF |\ apo(t)
¢geo—/0 dt (827170) (5}? p0> . (13)

ot

The above phase shift is dubbed a geometric phase shift
as it does not depend on the specific path (wo(t), Is(t))
that is traversed, i.e., it does not depend on the time-
dependence of wy(t) and I(t), but only on the geometry
of the path. To see this explicitly, we use that Eq. (13)
is the parametrization of a line integral. The geometric
phase can therefore be written as

d)geo = %dA A ) (14)

with the vector potential

—1
OF 8p0
Po) (8}) Po) 6/\Z

where i € {1,2}, and A = (wp, I5)T, so that A\; = wy and
Ao = I,. This vector potential is straightforwardly eval-
uated, and, with the help of Stokes’ theorem, we rewrite

the line integral for the geometric phase in Eq. (14) in
terms of the rotation of the vector potential. This yields

¢geo :/ ddeIsB(wo,Is) 5 (16)
(0]
with
_0A;, 0A,,
Blwo L) = 500~ 1,
_ an’
[77[5 - a(wO - WJ\/[)] [(77 - 77/)[8 + a(ngVf - wO)]Q 7

(17)

and where the integration is over the area enclosed by
the loop in (wy, I5)-space. Note that this result shows
that the geometric phase is only nonzero when 7’ # 0.
This is traced back to the fact that when n’ = 0 we have
that po(wo, Is) depends on wy and I in the combination
nls — awgy. As a result, in the case that ' = 0, a loop in
(w,I,)-space is actually a line in the variable nl, — awg
which does not lead to a geometric phase.

For spin currents that approach the threshold current
from above, i.e., for I, | I., we have that B(wy,Is) di-
verges as B(wog, Is) « 1/(Is — I.). In this article we do
not explore the dependence of the geometric phase on the
various parameters of the system in detail but instead
discuss an example in what follows. We note, however,
that the geometric phase is in general nonzero, and, de-
pending on parameters, can take any value between 0
and 27.

To illustrate the above result, we consider for simplicity
a rectangular loop in parameter space, as illustrated in
Fig. 2. That is, starting from the initial values wy =
Wmin and Iy = I, we first increase the field linearly in
time to wg = wmax. Keeping the field at this value, the
spin current is increased linearly in time from I, = I,
to Is = Inax. Hereafter, the field is decreased linearly
in time back to its initial value wg = wmin, followed by
decreasing the spin current back to Iy = I,. For all
instantaneous values of spin current and field we should
have that I, > I..

The numerical result for the geometric phase is shown
in Fig. 3 as a function of the time T". This time is the total
time over which the equation of motion (5) with Egs. (6)
are solved numerically. The field and spin current are
kept constant for a time T'/6, after which the four steps
in the loop described above are performed for a time T'/6
each. After this, the systems is evolved for constant field
and current for a time 7'/6. To numerically determine the
geometric phase, we have performed the loop both clock-
wise and counter-clockwise, and taken the difference of
the phases after the loop and divided it by two. This
cancels the dynamical phase. This result is then taken
mod 27. The analytic result in Eq. (17) is evaluated and
yields a rather lengthy expression that we omit here. It is
also plotted in Fig. 3. From this figure, one sees that the
numerical result for the phase approaches the analytic
one for large times wp/T" > 1. As the analytic result
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FIG. 3: Geometric phase for a rectangular loop in the pa-
rameter space spanned by external field and spin current as
a function of total time 7. Dots: numerical results, solid
line: analytic results. Parameters taken are wmin/wym = 3/2,
wmax/wM = 2, a = 0.02, Imin/wM = 0.061, ]max/(IJ]\/[ = 0.066,
n=1,and n’ = 0.1.

assumes the adiabatic limit, we conclude that the adia-
batic limit is obtained when wy;T > 1. This is expected
because it physically corresponds to many cycles of pre-
cession while the field and spin current are slowly var-
ied. Contrary to the geometric phase which saturates for
sufficiently large times, the dynamical phase (not plot-
ted) increases linearly with time for large times T, as
expected.

III. THERMAL FLUCTUATIONS

We now investigate the effect of thermal fluctuations
that may randomize the phase and render the geometric
phase unobservable for long times. The starting point is
the equations for power and phase that include thermal
fluctuations via Langevin forces [1, 2]:

p(t) ==2[T+(p(t)) =T (p(t)] p(t)

Lo /pOm (), (18a)
ot) =wip(r)) + 1o (18b)

p(t)’

where we suppressed, in the notation, the dependence of
I'_, 'y, and w on field and current. Here, the Langevin
forces are mutually uncorrelated, have zero mean, and
autocorrelations given by

o (1)) = (ot () = [mé(t vy,
(19)

in which (---) denotes averaging over noise realizations,
and where [ is the inverse thermal energy and Vg is
effective magnetic volume of the oscillator. The above

Langevin equations for the power and phase of the oscil-
lator are derived in the limit p < 1 from the stochastic
Landau-Lifshitz-Gilbert equation [15]. In doing so, the
classical limit is assumed, i.e., fhw < 1. We write [see
Eq. (10)]

oF
dp

dpo(t)

p<t>p0<t>+< ) L e, (20)

where 6p = O (1),). To be able to follow the developments
in Sec. 4 of Ref. [2], we assume that we are sufficiently far
in the supercritical region to take dp small, and consider
only the first order in dpg(t)/0t and op(t). This yields

(1) = @i

We assume an initial state at t = 0 with 6p(0) = 0 and a
well-defined phase. The equation for dp(t) is then solved
by

) p + 2v/ponp (1) - (21)

DPo

t( oF ,
op(t) = ¢ (81,, )
t _rt" [ oF at’"’
< [ a2y e (1,)2" (a9

We replace the integrals in the exponents in the above
by <8F /0p| po) t, and evaluate py at time ¢ everywhere.

This causes an error O (9py(t)/0t) and can be neglected
in the above formal solutions since it gives rise to terms
O (np0po(t)/0t), which we ignored from the outset. This
yields

a

3

Q|

soft) = 2yel )’ / arny(ere (Fha)” | (a3

from which we find
2vpol' 4 (po)
BMVerw(po) (%ﬁ ) )
0

" le<%§po>t—t’ B e(%% po)(t+t/)] 7 (24)

where pg is taken at time ¢. With this, we can evaluate
the variance in the phase after a time T', given by

<(A¢(T))2> _ /OTdt/OTdt’ <g‘; .

+ / dt / dt'pio<n¢<t>n¢<t’>>, (25)

(op(t)op(t')) = —

) (op(t)op(t))

yielding
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where we take pg = po(7T'). In the above we have ignored
the time dependence of pg in carrying out the various
integrations, cf. our earlier approximations. To inves-
tigate the relative importance of phase fluctuations, we
take the same parameters as in Fig. 3, i.e., wo/wy = 3/2,
a =0.02, I,/wpy = 0.061, n = 1, and ' = 0.1. We find
that for these parameters and for wyT > 1 the fluctua-
tions in the phase are dominated by the second term in
the above, which is estimated as

~T

~—_— 2
aBMS‘/;H ( 7)

((as(r))?)

That this term dominates for wyT > 1 is understood as
it is a factor 1/a? > 1 larger than the other term linear
in T', whereas the other terms are either constant with T’
or exponentially suppressed. The adiabatic regime where
the geometric phase manifests was found to be reached

when wpT ~ 100. We demand that 4 /<(A¢(T))2> is at

least one order of magnitude smaller than ¢geo = O (1).
Taking Bhwy; ~ 1074 — 1073, for a typical frequency
of wyy = 1 — 10 GHz and room temperature, one re-
quires that aM Vg /vh is at least 107 — 108 to observe
the geometric phase. The factor M Veg/vh is the effec-
tive number of spins in the oscillator. For typical Gilbert
damping o ~ 0.01, one needs M Vig/vh ~ 10° — 1010,
which should be achievable. We conclude that obser-
vation of the geometric phase should be experimentally
possible at room temperature, despite the thermal fluc-
tuations. To reduce the effect of fluctuations and in-
crease phase-stability, one may also consider arrays of
spin-torque oscillators. In the appendix we show that
such arrays exhibit a similar geometric phase.

IV. CONCLUSIONS, DISCUSSION, AND
OUTLOOK

In conclusion, we have shown that the phase of a spin-
torque oscillator picks up a geometric contribution when
the parameters that govern its dynamics perform a loop
in parameter space. We have focused on a spin-torque
oscillator based on a uni-axial single-domain magnet and
considered the geometric phase due to a cyclic excursion
of the magnitude of field and current. In the appendices
we consider the generic case and give a general expression
for the geometric phase. There, we also show that the

m‘m

- (1—e<%1; ) (3—e< 5|p0>T> "

o )T
oOF
2(%1,)

global phase of an array of coupled spin-torque oscillators
acquires a similar geometric contribution.

As the phase of a spin-torque oscillator can be mea-
sured directly (see e.g. Ref. [16]), our findings could
be tested experimentally in a straightforward manner.
To experimentally extract the geometric phase one could
start from a state with well-defined phase by locking the
phase of the oscillator to an external alternating source,
and then performing a loop in the parameter space of
field and current. By repeating the experiment, but with
a reversed loop, and taking the difference of the phase
between the forward and reversed loop, one would cancel
the dynamical phase and directly obtain the geometric
one times a factor of two. In particular, our estimates
indicate that, even at room temperature, thermal fluc-
tuations, leading e.g. to incomplete cancellation of the
dynamical phase in this procedure, do not render the ge-
ometric phase unobservable.

The geometric phase that we considered here could,
for example, be used to imprint, in a controlled and re-
producible way, a phase difference on two identical spin-
torque oscillators that are initially phase locked. Such a
phase difference could then be transferred to spin waves
in setups where the oscillators act as spin-wave emitters,
and could be useful for magnonic operations that rely on
phase control of the spin waves [8]. Other possible ap-
plications may be found in the context of neuromorphic
computing based on spin-torque oscillators in which the
phase plays an important role [7].

Possible extensions of our work could be done in the di-
rection of spin-torque oscillators based on antiferromag-
nets, or could be geared towards specific experimental
implementations. We hope that this work stimulates ef-
forts in these directions.
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Appendix A: General case

The general equations of motion for the power p(t) and
phase ¢(t) of a spin-torque nano-oscillator are given by

pt) = =20+ (p;A) —=T-(p;A)]lp,  (Ala)
p(t) = w(p;A) . (Alb)

Here, I'y(p; ) is the damping and T'_(p; A) the anti-
damping, resulting, typically, from injection of spin cur-
rent. The frequency is given by w(p; A). The frequency
and both damping and anti-damping depend on the
power p. This dependence stems from non-linearities
in the magnetization dynamics. The damping, anti-
damping, and frequency do not depend on the phase for a
circular spin-torque oscillator, which is what we consider
here. They do, however, depend on a set of parameters
A= (1, -, n)7T, e.g., current and field, that are var-
ied slowly and such that A(¢) makes a closed loop in the
space of parameters. Completing this loop gives rise to
a geometric contribution to the phase. By following the
steps in the derivation of the main text for this general
case, one finds the geometric phase

Pgeo = ?{d)\ “A (A2)
with the vector potential
-1
dw OF dpo
A= — — , (A3)
<8p p0> <8p p0> o\
with ¢ € {1,---, N}. Here,
F(p)==2[1(;A) —T_(mN)]p, (Ad)

and pg = po(A) is determined by solving for p in F(p) =
0.

1. Ellipticity

In the case of a spin-torque oscillator with ellipticity,
resulting, for example, from magnetic anisotropies that
favor a certain direction for tilting of the magnetization
away from the easy axis, the equations of motion become

pt) = =204 (p, ¢ A) —T_(p, &5 A)]p ,
o(t) = w(p,d;A) .

As was shown in Ref. [17], systems described by these
equations can exhibit geometric phases that are different
in origin than the one that arises in the circular case. It
is hard to give a simple analytical expression for these
geometric phases, and we do not consider them further.
We do, however, note that this also implies that the phase
difference between two coupled oscillators, which obeys
an equation similar to that in Eq. (A5), may also exhibit
a geometric phase shift in the regime where the phases
are not locked.

(Aba)
(A5Db)

Appendix B: Arrays of spin-torque oscillators

To improve phase stability and output signal, one often
considers arrays of spin-torque oscillators. Such arrays
exhibit similar geometric phases, as we will discuss now.
We consider M coupled uni-axial spin-torque oscillators.
The generic equations of motion are

ps(t) = Fs(p, @5 A) ,
Ps(t) = ws(p, 3 N) ,

where § = 1,...,M labels the power ps and phase
¢s of each oscillator, p = (p1, -+ ,py)?, and ¢ =
(¢1,--+,0um)T. Like before, the vector X consists of N
system parameters that may be varied adiabatically.

We rewrite these equations of motion in terms of the
global phase ¢ = Zgil ¢s and M — 1 phase differences
A¢, = Apy41 —A¢,, withv =1,..., M —1. This yields
equations of the form

(Bla)
(B1b)

ps(t) = Fs(p, Ag; ), (B2a)
Aéu(t) = va(pa A¢7 A)’ (B2b)
o(t) = w(p, Ag;A) . (B2c)

Crucially, spin-rotation symmetry around the z-direction
ensures that the functions Fj, the frequency differences
Aw, = wy11 — Wy, and the total frequency w = Zgil ws
do not depend on the global phase itself.

We now consider an adiabatic excursion of the parame-
ters A. For notational convenience, we introduce the vec-
tor £ = (p1, -+ ,pm, Ad1,- -+ ,Adprr—1) that has 2M — 1
components, and rewrite the equations of motion to

fu = ]:;L(fa)‘) )
ot) = wlt;N) .
We denote with fo(\) the solutions of the 2M — 1 equa-

tions F,(fo) = 0, where p runs from 1 to 2M — 1. In the
adiabatic limit we have that

a}'>‘1 of;

f:f0+<8f ot

(B3a)
(B3b)

(B4)

where 0F /Of is the matrix with elements 0F,/0f, on
its pu-th row and p/-th column, and the inverse in the
above equation is a matrix inverse. Insertion in the equa-
tion for the global phase yields

O(t) = wlf ) + 22 <5f>1 oty

o \or) @ BY

from which one obtains the geometric phase as in
Eq. (A2), with the vector potential

0w (0FNT 0k
Lof of VI

(B6)

where ¢ € {1,--- ,N}.
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