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We scrutinize the magnetic properties of κ-(BEDT-TTF)2Hg(SCN)2Cl through its first-order
metal-insulator transition at TCO = 30 K by means of 1H nuclear magnetic resonance (NMR). While
in the metal we find Fermi-liquid behavior with temperature-independent (T1T )

−1, the relaxation
rate exhibits a pronounced enhancement when charge order sets in. The NMR spectra remain
unchanged through the transition and no magnetic order stabilizes down to 25 mK. Similar to
the isostructural spin-liquid candidates κ-(BEDT-TTF)2Cu2(CN)3 and κ-(BEDT-TTF)2Ag2(CN)3,
T−1
1 acquires a dominant maximum (here around 5 K). Field-dependent experiments identify the

low-temperature feature as a dynamic inhomogeneity contribution that is typically dominant over
the intrinsic relaxation but gets suppressed with magnetic field.

The rise and fall of antiferromagnetism (AFM) in cor-
related electron systems is intensely debated in the con-
text of quantum spin liquids (QSL) [1–3]. These elu-
sive states of matter are expected to host exotic quasi-
particles, such as neutral spinons or Majorana fermions,
and have been advanced as possible platforms for quan-
tum information applications. Following the original
work of Anderson [4], Mott insulators on frustrated lat-
tices are considered a natural starting point for QSL
realization. In this context, insulating charge-transfer
salts were among the first QSL candidate systems: the
compounds κ-(BEDT-TTF)2Cu2(CN)3 (abbreviated κ-
CuCN), κ-(BEDT-TTF)2Ag2(CN)3 (κ-AgCN) and β′-
EtMe3Sb[Pd(dmit)2]2 (β′-EtMe) are well described by
anisotropic triangular-lattice models [5, 6], and are ob-
served to avoid long-range order to the lowest tempera-
tures measured [7, 8]. Consequently, the nature of the
ground state, as well as the factors influencing the sup-
pression of magnetic order have been of central impor-
tance. With respect to the former, the presence of gap-
less fermionic excitations has been inferred from ther-
modynamic probes including specific heat and spin sus-
ceptibility [9–11], as well as NMR spin-lattice relaxation
[7, 8, 12]. In some cases, thermal transport and electro-
dynamic measurements [13–15] have provided evidence
that these gapless excitations are also mobile [16].

The so-called κ-phase molecular solids provide a ver-
satile playground to study the interplay of spin and
charge for varying degree of electronic correlations and
geometrical frustration. In the prototypical Mott insu-
lators κ-CuCN and κ-(BEDT-TTF)2Cu[N(CN)2]Cl (κ-
CuCl), pairs of BEDT-TTF molecules are strongly cou-
pled (td ≫ t,t′, cf. Fig. 1a,b), establishing a textbook-
type realization of the single-band Hubbard model at 1/2
filling [5], even on quantitative scales [17]. Despite com-
parable exchange interaction J/kB ≈ 200 K, the latter
compound has an AFM ground state [18] while the for-
mer exhibits no magnetic order and is therefore consid-
ered as a promising QSL candidate [7, 19]. Highlighting
the role of frustration [1, 20] in determining these dis-

parate outcomes, despite similar structural and electronic
properties, is the proposal that AFM in κ-CuCl is linked
to the charge degrees of freedom [21]. That is, the detec-
tion of a dielectric anomaly [21] and pronounced phonon
renormalization effects [22] close to the AFM transition
were assigned to intra-dimer charge degrees of freedom.
It was suggested [21] that charge order (CO) may re-
duce frustration giving rise to an ordered ground state.
As well, quenched disorder [23], disorder [24–30], low di-
mensionality [1, 31], and proximity to the Mott transition
[32] have all been cited as potentially key considerations.

A promising route to disentangle the underlying mech-
anisms is to introduce additional symmetry break-
ing. Compounds comprised of the Hg-based anions
(Hg(SCN)2X , X=Cl, Br) have recently come into fo-
cus [33–40] due to the tendency towards electronic CO.
The weaker dimerization (the ratios td/t are closer to
unity [41]) increase the relative importance of inter-site
Coulomb repulsion. In κ-(BEDT-TTF)2Hg(SCN)2Cl (κ-
HgCl) the metal-insulator transition (MIT) at TCO =
30 K is very similar to CO in α-(BEDT-TTF)2I3, also
exhibiting a discontinuous symmetry breaking [34, 35,
37, 42, 43]. While the charge sector of κ-HgCl [33–
35, 40] has been investigated in great detail, no defini-
tive conclusion was achieved on the spin degrees of free-
dom [33, 37]. Particularly in view of the closely related
κ-(BEDT-TTF)2Hg(SCN)2Br (κ-HgBr), where recently
an exotic dipole-liquid state [39] and indications for ferro-
magnetism [38] were reported, the magnetic ground state
and possible spin-charge coupling call for clarification.

Here we investigate the low-energy magnetic proper-
ties of κ-(BEDT-TTF)2Hg(SCN)2Cl via

1H nuclear mag-
netic resonance (NMR). In the metallic phase we ob-
serve Fermi-liquid behavior with constant (T1T )

−1 while
for 25 mK ≤ T < TCO spectroscopic measurements
find no evidence for magnetic order. T−1

1 exhibits a
dominant maximum around 5 K with pronounced mag-
netic field and temperature dependences characteristic
of S=1/2, g=2 impurity states. Notably, the overall be-
havior is decidedly similar to that reported for the well-
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FIG. 1. (a) κ-(BEDT-TTF)2Hg(SCN)2Cl crystals consist of
monovalent anions (blue) separating the conducting BEDT-
TTF cation layers which acquire inequivalent site charges
(dark and light grey) in the charge-ordered state. (b) Dimer-
ized in-plane arrangement with a stripe pattern of charge-rich
(ρ0+ δ; ρ0 = 0.5 e) and -poor (ρ0− δ) molecules [34, 37]. The
magenta lines indicate transfer integrals ti among (BEDT-
TTF)+2 dimers (black dotted lines) and between charge-rich
sites, respectively [37]. (c) In the metallic state (T1T )

−1 is
T -independent, in accord with Fermi-liquid behavior [33–35].
A pronounced jump appears at the first-order MIT at TCO.

known κ-phase QSL candidates, κ-CuCN and κ-AgCN.
As we will argue below, it appears that the dynamic low-
temperature contribution is a common feature in all these
compounds without magnetic order and originates from
inhomogeneities rather than intrinsic spin degrees of free-
dom. We quantitatively link T−1

1 to impurity states de-
tected by ESR [33, 37].

κ-(BEDT-TTF)2Hg(SCN)2Cl single crystals with typ-
ical dimensions of 1 × 0.5× 0.3 mm were grown by elec-
trochemical methods reported elsewhere [37]. NMR ex-
periments were performed with home-built spectrometers
utilizing superconducting magnets. For sample 1, the
field strength was B0 = 2.6447 T, with alignment close
to B0 ‖ c. Field-dependent measurements (sample 2;
B0 out-of-plane) covered the range 1.2–9.3 T. Standard
4He flow cryostats were employed above 1.6 K whereas
a 3He/4He dilution refrigerator allowed us to access the
range down to 25 mK. The spin-lattice relaxation rate
was determined via free-induction decay following satu-
ration, and analyzed using stretched-exponential fits.

The crystal structure of κ-HgCl consists of layers of
positively charged BEDT-TTF molecules separated by
monovalent anions, see Fig. 1(a,b). Within the conduct-
ing planes the organic cations are arranged in weakly
bound pairs (td/t

′ ≈ 3) assembled in an anisotropic trian-
gular lattice (t′/t = 0.79 [37]), suggesting significant geo-
metrical frustration. For T < TCO, the electronic charge
is redistributed between the two sites within a dimer,
likely forming a stripe-like pattern [34, 37] that alters
the magnetic frustration. Fig. 1(c) shows the variation
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FIG. 2. The shape and width of the 1H NMR spectra re-
mains unaffected upon cooling through TCO = 30 K, ruling
out magnetic order down to mK temperatures. The NMR in-
tensity was normalized with respect to the 1/T enhancement;
curves were shifted vertically. The minor difference in line
shape below and above 2 K is due to slightly different sample
alignment in the 3He/4He dilution refrigerator (T < 2 K) and
the 4He flow cryostat (2–100 K) [44].

of (T1T )
−1 with temperature, which is T –independent

in the metallic state (T > TCO). An abrupt jump ap-
pears at the transition signalling a change of the rele-
vant energy scale from EF in the metal (103–104 K) to
J in the insulating state (102 K). The non-monotonic
behavior upon further cooling will be discussed in the
next paragraph. In Fig. 2 we show the 1H NMR spec-
tra for different temperatures, which appear to consist
of four distinct peaks resulting from proton-proton dipo-
lar coupling [44]. No significant modification of the peak
structure is observed upon cooling below TCO – clearly
different to AFM in κ-CuCl [18]. Thus, the NMR spectra
of κ-HgCl show no indications of magnetic order through-
out the CO phase.

The spin-lattice relaxation rate T−1
1 is displayed on

double-logarithmic scales in Fig. 3(a), covering the tem-
perature range 0.025–80 K. For T > TCO, the relax-
ation process proceeds homogeneously, as evident from
the single-exponential recovery (α = 1 in the stretched-
exponential fit). Upon lowering T within the insulating
state, T−1

1 first decreases, but then increases and peaks
at T ≃ 5 K. In this range also stretched-exponential be-
havior sets in (initially α ≈ 0.9, see Fig. 3(a) inset). Well
below the maximum T−1

1 exhibits a smooth, power-law
like (∝ T 2) decrease on cooling further to T ∼ 25 mK,
in accord with the absence of AFM concluded from the
NMR spectra (Fig. 2). Stretched-exponential behavior
becomes more pronounced at the lowest measured tem-
peratures – generally an indicator for a range of char-
acteristic relaxation time scales. In particular, α ≈ 0.6
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results from a T−1
1 distribution spanning approximately

one order of magnitude [45], which we illustrate by the
red-white false-color plot behind the data in Fig. 3(a).
The low-temperature relaxation of κ-HgCl is reminis-

cent of the widely studied QSL candidates κ-CuCN, κ-
AgCN and β′-EtMe. In those cases, power-law varia-
tion with temperature has been attributed to a gapless
continuum of spin excitations [7, 12, 19, 46]. Here, we
consider an alternative scenario: the proton T−1

1 at low
temperatures is caused by dipolar coupling to localized
S = 1/2, g = 2 spin degrees of freedom. The general
idea is that the impurity spins, embedded in an other-
wise nonmagnetic background, are sufficiently polarized
in nonzero magnetic fields at low enough temperature, so
as to progressively freeze out this relaxation channel. We
note that low-temperature effects from disorder-induced
spin defects were recently considered in Ref. [30].
The nuclear relaxation by dipolar coupling to magnetic

impurities implies certain behaviors that can be com-
pared to experiment. For example, T−1

1 of κ-AgCN is
strongly reduced with increasing B0 [12]; similar behav-
ior is seen for κ-HgCl in Fig. 3(c). Here the field depen-
dence is pronounced near the maxima around 5 K, while
the relaxation for T ≃ 10 K remains rather unaffected.
At a semi-quantitative level, this is precisely the tempera-
ture range corresponding to the Zeeman energy of a free
spin. More specifically, the peak and low-temperature
suppression of T−1

1 is modelled for a single proton as

T−1
1 =

2

5
µ2
oγ

2
sγ

2
I~

2(S(S + 1))r−6 τ

1 + ω2τ2
, (1)

where 1/τ is the bandwidth of longitudinal field fluctu-
ations; it is taken to be of the form τ = τ0e

EZ/kBT ,
with EZ = gµBSB0 the Zeeman energy splitting of the
impurity spin levels, using g = 2 and S = 1/2. The ac-
tivated behavior arises from the polarization of the im-
purity spins in the applied magnetic field. The dipolar
coupling depends on the distance r between the impurity
spin and the nuclear site. Naturally, random arrange-
ment of the former is related to a distribution of local
fields which results in a stretched-exponential recovery.
Looking at the Arrhenius plot in Fig. 3(b), the behav-

ior on the low-temperature side of the maximum closely
follows the associated thermal activation with kBT0 ≈
µBB0 down to 0.2 K. The peak value in Fig. 3(c) roughly
follows the expected (T−1

1 )max ∝ 1/B0 dependence, and
τ = ω−1 at the maximum yields τ0 in the ns range, in
agreement with the ESR linewidth ∆H ≈ 3 mT in the
insulating state [37]. Plugging this into Eq. 1, together
with our experimental values of T−1

1 , yields r ≈ 6−7 nm.
A similar result is obtained from the Curie behavior of
the T -dependent ESR intensity [33, 37], giving an impu-
rity concentration of order 10−2 per unit cell [34].
In Fig. 4(a) we compare T−1

1 of κ-HgCl with the
isostructural QSL candidates κ-CuCN [7] and κ-AgCN
[12] on common scales and for comparable B0 as indi-

FIG. 3. (a) Subsequent to the abrupt increase at TCO, the
spin-lattice relaxation rate drops upon cooling, and a broad
maximum forms around 5 K. Well below 1 K T−1

1 shows
a power-law behavior similar to various spin-liquid candi-
dates [7, 12, 19, 46]. Inset: The stretched-exponential re-
covery (α = 0.6 at lowest T ) reveals a continuum of low-
energy decay channels; we visualize the related distribution
of T−1

1 (according to Ref. 45) by the red-white false-color
plot in the main graph. (b) Below the peak T−1

1 exhibits
Arrhenius-like activation (black solid line; also indicated in
(a)), with kBT0 ≈ µBB0. (c) Upon increasing B0 the maxi-
mum is strongly suppressed and shifts to higher T , in excellent
agreement with Eq. 1 – even in the absolute values of T−1

1 .

cated. Although at different temperatures and not nec-
essarily of the same origin, in all these compounds we
identify a dynamic contribution with similar character-
istics as elaborated above for κ-HgCl. Above the low-
temperature maximum, 10 K ≤ T ≤ 30 K, the data are
similar in magnitude and follow an approximately lin-
ear temperature dependence; in the case of κ-CuCN and
κ-AgCN, the behavior is attributed to gapless spinons.
Generally, however, the quantitative similarity across
compounds is not surprising in view of the comparable
exchange energies. Since the dynamic maximum dom-
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FIG. 4. (a) At temperatures above the maximum, the 1H T−1
1 data in the insulating state of κ-HgCl coincide with the

paradigmatic QSL candidates κ-CuCN and κ-AgCN. Here, T−1
1 follows a field-independent approximately linear T dependence

suggesting that this is the intrinsic response with J ≈ 200 K. (b-d) While peaked at different Tmax, the low-temperature
contribution exhibits a similar suppression with higher B0 for all three compounds; 13C data (scaled by γn [47]) match well
with the 1H results acquired at the same B0 [7, 12, 19]. A similar field-dependent contribution is observed in high-frequency
susceptibility data plotted as χT (inset of (b) at 9.37 GHz [37]; inset of (c) at 16.5 GHz [48]).

inates a large range of the low-temperature relaxation,
we cannot conclude whether there is a spin gap or not.
High-field experiments (kBTmax < µBB0 < J , i.e. a few
tens of T) could possibly disclose the intrinsic magnetic
properties of the QSL candidates down to low tempera-
tures.

The overall suppression of the g = 2, S = 1/2 peak
with increasing B0 is similar for κ-HgCl and κ-AgCN,
as summarized in Fig. 4(b,d). The published T−1

1 [12]
on 1H and 13C [47] consistently show pronounced field
dependence around the maximum, while the intrinsic re-
sponse at higher T remains unaffected. A similar feature
is also seen in the magnetic susceptibility: in the insets
of (b,c) we show χT in order to compare to T−1

1 [37, 48].
Similar to κ-HgCl and κ-AgCN, the 1H and 13C data of
κ-CuCN aquired at 2 and 8.5 T [7, 19], respectively, co-
incide above 4 K but deviate around the bump at lower
T [Fig. 4(c)], where appreciable field dependence is also
seen by different probes [48–50]. Due to the lack of con-
sistent T−1

1 (T ) data upon varying B0, we do not exclude
other contributions below 4 K in κ-CuCN.

Even though the NMR characteristics of κ-HgCl re-
semble the response of various QSL candidates in minute
detail, its thermodynamic properties clearly indicate the
absence of itinerant spin and charge excitations. That
is, extrapolating C/T down to T = 0 yields a Som-
merfeld coefficient non-distinguishable from zero [39],
at least much smaller than for κ-CuCN and κ-AgCN
where γ ≈ 10–20 mJK−2mol−1 [9, 12]. Note, the sis-
ter compound κ-HgBr, where fluctuating CO has been
suggested [39], exhibits γ comparable to the QSL candi-
dates. Thus, the reduced entropy in κ-HgCl is consistent
with gapped charge and spin degrees of freedom, for in-
stance like in a valence bond solid. Similar to κ-CuCN
[9], C/T from Ref. 39 reveals a Schottky-like increase to-
wards lower temperatures setting in at a few 100 mK,

coincident with the power law in T−1
1 . It remains to

elucidate to what extent disorder is relevant for the ma-
terial under study – in particular in view of the stretched-
exponential relaxation at low temperatures that suggests
a continuum of low-energy decay channels.

A similar hump-like behavior with pronounced field de-
pendence has been seen in several disordered quantum
systems [51–54]. In Fig. 4 the absolute values and tem-
perature of the maximum in T−1

1 differ from compound
to compound. If the origins were similar, this could be as-
sociated with a varying distribution of time scales τ . Per-
forming a similar dipolar relaxation analysis for κ-CuCN
and κ-AgCN yields slightly lower impurity densities than
in κ-HgCl, but of similar order of magnitude (see Supple-
mental Material [55] and references [7, 12, 34, 37, 56–59]
therein). Finally, we comment briefly on the origin of the
magnetic impurities in κ-HgCl. The clearly discontinu-
ous phase transition at 30 K allows for the possibility of
multiple CO domains and accompanying domain walls,
as recently observed in (TMTTF)2X by Raman spec-
troscopy [60]. A possible scenario is that the impurity
states are located at domain walls. If that were the case,
the absence of CO in κ-CuCN and κ-AgCN would point
to a different origin of the dynamic contribution, likely
linked to the anion layers [26, 27, 61]. Further, recent
Raman experiments on κ-HgCl suggest BEDT-TTF+0.5

below 10 K [40] which could also provide a source of
g = 2, S = 1/2 spins.

To summarize, we map the low-energy spin dynam-
ics in κ-(BEDT-TTF)2Hg(SCN)2Cl through the metal-
insulator transition by comprehensive 1H NMR experi-
ments. The spin-lattice relaxation rate indicates a Fermi-
liquid metal at elevated temperatures, and exhibits a
pronounced discontinuous increase upon cooling through
TCO = 30 K into the charge-ordered phase. From the
unaltered NMR spectra (Fig. 2) and the smooth temper-
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ature dependence of T−1
1 upon T → 0 (Fig. 3), we con-

clude the absence of long-range magnetic order. Notably,
we find that the magnetic response is essentially identi-
cal to isostructural QSL candidates [7, 12, 19], including
the stretched-exponential recovery and a power-law like
tail well below 1 K as well as a pronounced maximum in
T−1
1 (peaked around 5 K in κ-HgCl). This low-T con-

tribution exhibits a strong field dependence, very similar
for κ-HgCl and κ-AgCN, likely originating from dipolar
coupling to impurity spins. Taken together, these results
imply that the low-temperature NMR properties in all
these frustrated materials [7, 12, 19, 46] are dominated
by extrinsic magnetic contributions. Suppressing the dy-
namic relaxation channels with high fields (B0 ≥ 10 T),
in principle, recovers the intrinsic electronic response,
providing a promising route to answer the question about
a spin gap in the triangular systems. Given the lack of a
non-zero fermionic contribution to the low-temperature
specific heat [39], the case for a gapped ground state is
stronger for κ-HgCl than it is for κ-CuCN and κ-AgCN.
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