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Comment on “Thermal vacancies in random alloys in the single-site mean-field 
approximation” 

Dane Morgan1, Yongfeng Zhang2 
University of Wisconsin, Madison, WI 53706 USA 

 
This comment concerns the contribution of configurational mixing entropy to the change in 

the total Gibbs free energy in the process of vacancy formation, and the consequent effect on the 
thermal equilibrium vacancy concentration, in multicomponent alloys. A different derivation is 
shown than that in Ruban’s original work (Physical Review B 93, 134115 (2016)) [1], correcting 
an error that may come from using Gibbs free energy per site. The derivation is further generalized 
to systems beyond binary alloys.  

According to equation (3) in Ruban [1], the vacancy formation free energy per site is defined 
as  

𝐺"#$ = 𝑐"𝐺̅(−𝑇𝑆$,-(    (C1)  

Here 𝐺̅( is the effective vacancy formation free energy without considering the configurational 
entropy, and 𝑆$,-( is the configurational entropy of an alloy with vacancies. For a binary AB alloy 
with vacancies,  

𝑆$,-( = −𝑘/(𝑐" ln 𝑐" + 𝑐4 ln 𝑐4 + 𝑐/ ln 𝑐/)   (C2)  

Where 𝑐4 = 𝑐(1 − 𝑐"), 𝑐/ = (1 − 𝑐)(1 − 𝑐"), 𝑐 =
$7

$78$9
, and 𝑐4 + 𝑐/ + 𝑐" = 1. 𝑐4, 𝑐/ and 𝑐" 

are the concentrations of A, B and vacancy, respectively.  
To derive the equilibrium vacancy concentration at a given temperature T, equation (C1) was 

minimized with respect to 𝑐" in Ruban, yielding an equilibrium vacancy concentration:  

𝑐" = exp =− >̅?8@9ABCDD
@9A

E ≡ exp =− >G?
@9A

E    (C3) 

Where 𝑆#HH = −𝑘/[𝑐 ln 𝑐 + (1 − 𝑐) ln(1 − 𝑐)]. Equation (C3) is exactly the same as equation 
(5) in Ruban. Note that in Ruban, the Boltzmann constant 𝑘/ was contained in the reduced 
temperature T.  

The above formulation predicts an additional configurational entropy contribution, 𝑇𝑆#HH , in 
the vacancy formation free energy. It implies that “the alloy configurational entropy can 
substantially reduce the concentration of vacancies in alloys”. For example, in an equiatomic 
binary AB alloy, the equilibrium vacancy concentration will be reduced by a factor of 2 compared 
to that in a pure metal. The same effect was expected to hold for multicomponent alloys (e.g., high 
entropy alloys) with more pronounced reductions in the equilibrium vacancy concentrations.  

We found that the above derivation is inaccurate due to the fact that it extremizes the Gibbs 
free energy per site. In the Gibbs representation (fixed 𝑁4, 𝑁/, P, T), nature minimizes the total 
Gibbs free energy (𝐺L,L#H) of the system, or equivalently, the Gibbs free energy per atom or mole 
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𝑁 = 𝑁4 + 𝑁/, not the Gibbs free energy per site. 𝑁4 and 𝑁/ are numbers of A and B atoms, 
respectively. While the number of atoms and the number of sites are often identical, making the 
distinction between them unimportant, this distinction matters for the case of vacancy formation 
as the number of sites is not constant under the process of vacancy formation. By the formation of 
one vacancy, the total number of each type of atoms is conserved, while the total number of lattice 
sites increases by one. More generally, a system with N atoms (where 𝑁 = 𝑁4 + 𝑁/ for our binary 
example) and 𝑁" vacancies has number of sites 𝑁MNLOM = 𝑁 +𝑁".  

To correct the derivation, we follow the same approach as in Ruban but work with the total 
Gibbs energy. We also generalize the result to consider the equilibrium concentration of an 
arbitrary species 1 in a system with n total species. The system is open to species 1 and otherwise 
closed with respect to the other species. Therefore, species 1 represents vacancy in the process of 
vacancy formation. We start with a system with 𝑁MNLOM  lattice sites occupied randomly by 𝑁N atoms 
of species i and define   

𝑐N =
PQ

PRQSTR
  (C4) 

Defining 𝑐NUVW = PQ
∑ PYZ
Y[\

, we have 𝑐NUV = (1 − 𝑐V)𝑐NUVW . Note that 𝑁MNLOM = ∑ 𝑁N-
N]V . The per site 

configurational entropy of the system is:    

𝑆$,-( = −𝑘/ ∑ 𝑐N𝑙𝑛(𝑐N)-
N]V   (C5) 

This can be rewritten in the convenient form 

𝑆$,-( = −𝑘/ `𝑐V𝑙𝑛(𝑐V) +a(1 − 𝑐V)𝑐NW𝑙𝑛b(1 − 𝑐V)𝑐NWc
-

N]d

e

= −𝑘/ `𝑐V𝑙𝑛(𝑐V) + (1 − 𝑐V)𝑙𝑛(1 − 𝑐V) + (1 − 𝑐V)a𝑐NW𝑙𝑛(𝑐NW)
-

N]d

e 

(C6) 
Note that this expression is a quite useful general decomposition of the ideal mixing entropy 

per site of a multicomponent system. It can be interpreted as that, the total mixing entropy is a sum 
of the terms one would get for a binary system by mixing species 1 with species “not 1” (treated 
as identical), and the terms one would get by mixing the remaining species on the fraction of lattice 
sites not occupied by species 1. If we assume that except for species 1, all species mix ideally and 
the reference states for all species are the unmixed states from which we are mixing, then the total 
Gibbs free energy is  

𝐺L,L#H = 𝑁V𝜇Vg + 𝑁MNLOM𝑘/𝑇b𝑐V𝑙𝑛(𝑐V) + (1 − 𝑐V)𝑙𝑛(1 − 𝑐V)c + (1 −
𝑐V)𝑁MNLOM𝑘/𝑇∑ 𝑐NW𝑙𝑛(𝑐NW)-

N]d   (C7) 

 

Note that 𝑁MNLOM(1 − 𝑐V) is the total number of atoms in the system that are not type 1, so that 
the last term is actually independent of 𝑁V. For a system open for species 1 and closed for all other 
species, as for the case of vacancy formation in an alloy, 𝑁MNLOM(1 − 𝑐V) is actually a constant. For 
the same reason, 𝑐NUVW = PQ

∑ PYZ
Y[\

 is also a constant, so is its summation (i.e., 𝑆#HH  in equation (C3) 
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above). Therefore, equation (C7) shows that with the assumptions above the multicomponent alloy 
free energy can be written in the form of a free energy for a system consisted of a species of type 
A=1 and a fictitious species of type B = “not type 1”, plus a constant term independent of the 
concentration of species 1. We can solve for equilibrium concentration of species 1 by setting its 
chemical potential in the system equal to an external value 𝜇V∗, which gives the equation 

=i>SjSCD
iPk

E
A,m,PQnk

= 𝜇V∗ (C8) 

Equation (C8) must be applied with all numbers of atoms fixed except that of species 1, and 
therefore with a changing number of lattice sites. The derivate in equation (C8) will yield the exact 
same results as for a pure system of types A and B that have ideal mixing and a reference state for 
B equal to the unmixed state, i.e., the standard formula 

$k
Vo$k

= 𝑒𝑥𝑝 =− sktosk∗

@9A
E (C9) 

 

If species 1 is vacancy then one traditionally sets 𝜇V∗ = 0 and 𝜇Vg = 𝐺̅(, which is the vacancy 
formation free energy. Taking the low concentration limit gives 

𝑐V = 𝑐" = 𝑒𝑥𝑝 =− >̅?
@9A

E (C10) 

Which is the usual expression for vacancies. This result shows that the thermodynamics 
governing vacancies concentration under ideal mixing assumptions is not impacted by the number 
of other species in the system, and it takes the same form as it would for a simple unary system. 
More generally, we see that under ideal mixing assumptions, for any species 1 its mixing 
thermodynamics is the same in a binary system with one species 2 as in a multicomponent system 
with species j=2, …, n.  

Our derivation here concerns only the mixing entropy contribution. We note that 𝐺̅(, the 
formation free energy, WILL be different for a multicomponent than that for a unary system, 
thereby leading to a different vacancy concentration, as has been shown in Ruban’s original work.   
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