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We use neutron scattering to show that ferromagnetic (FM) phase transition in the two-
dimensional (2D) honeycomb lattice CrI3 is a weakly first order transition and controlled by spin-
orbit coupling (SOC) induced magnetic anisotropy, instead of magnetic exchange coupling as in
a conventional ferromagnet. With increasing temperature, the magnitude of magnetic anisotropy,
seen as a spin gap at the Brillouin zone center, decreases in a power law fashion and vanishes at
TC , while the in-plane and c-axis spin-wave stiffnesses associated with magnetic exchange couplings
remain robust at TC . We also compare parameter regimes where spin waves in CrI3 can be described
by a Heisenberg Hamiltonian with Dzyaloshinskii-Moriya interaction or a Heisenberg-Kitaev Hamil-
tonian. These results suggest that the SOC induced magnetic anisotropy plays a dominant role in
stabilizing the long range FM order in single layer 2D van der Waals ferromagnets.

I. INTRODUCTION

Understanding the microscopic origin of two-
dimensional (2D) ferromagnetic (FM) order and
spin dynamics in van der Waals materials is important
for their potential magnet-based applications1. In a
conventional three-dimensional (3D) cubic spin-rotation
invariant (spin isotropic) ferromagnet, the Curie tem-
perature TC associated with the second order FM phase
transition is determined by the short range magnetic
exchange coupling J2. In the low wave-vector (q → 0)
limit, spin-wave energies E follow the well-known
quadratic dispersion relation E = ∆(T ) + D(T )q2,
where D(T ) [D(T → 0) ∝ J ] is the spin-wave stiffness
and ∆(T ) is a vanishingly small dipolar gap2. The
quadratic dispersion form, however, is general for any
ferromagnet and not limited to the Heisenberg model2.
According to the hydrodynamic and mode-mode cou-
pling theories, temperature dependence of the spin-wave
stiffness in a second order FM phase transition must
vanish at TC via D(T ) ∝ (1 − T/TC)

ν−β , where ν
and β are critical exponents of the magnetic phase
transition3,4. For a typical 3D Heisenberg ferromagnet,
we expect (ν − β) = 0.34 comparing with the measured
values for iron (0.36 ± 0.03), cobalt (0.39 ± 0.05), and
nickel (0.39 ± 0.04)4. When the dimensionality of the
magnetic system is reduced from 3D to 2D, Mermin
and Wagner showed the absence of long-range FM or
antiferromagnetic (AF) order at finite temperature
in spin-rotational invariant systems with short-range
magnetic interactions5. Although the long-range FM
order in 2D systems at finite temperature can be brought

about by breaking the spin-rotational invariance6, the
ordering temperature is again expected to be determined
by J , resulting D(T ) → 0 at TC

1,4,6,7. Therefore, the
discovery of robust FM order in van der Waals mono-
layers of CrI3

8 and Cr2Ge2Te6
9 raised an important

question concerning the magnetic interactions that break
the spin-rotational invariance and stabilize the finite
temperature 2D FM order.

In principle, spin rotational invariance of a 3D mag-
netic system can be broken via dipolar interactions10,
single-ion (magnetocrystalline) anisotropy11, and/or
anisotropic magnetic exchange interactions12,13. For lay-
ered honeycomb lattice ferromagnet such as CrI3 [Figs.
1(a,b)]14, another possible mechanism that can break
spin rotational invariance is the off-diagonal term Γ in the
Heisenberg-Kitaev (J-K-Γ) Hamiltonian [Fig. 1(c)]15–23.
For bulk CrI3, which orders ferromagnetically below
TC = 61 K, the FM order is believed to be a sec-
ond order phase transition14. In addition, there is a
strong magnetic anisotropy revealed as a large differ-
ence in the saturation magnetic field for field parallel to
the c-axis direction (HS

c ) and in the ab plane (HS
ab and

HS
ab − HS

c ≈ 3 T)14,24. By comparing the temperature
dependence of the magnetic anisotropy of CrI3 with those
of CrBr3, it was concluded that the magnetic anisotropy
in CrI3 arises from a dominant uniaxial or single-ion
anisotropy24, which comes mostly from the interplay be-
tween spin-orbit coupling (SOC) of the Cr magnetic ion
with the crystal electric field (CEF) levels induced by its
surrounding I atoms arranged in an edge sharing octahe-
dra [Figs. 1(c,d)]. Since dipolar interactions typically are
very small and favor in-plane anisotropy10, its effects on
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spin rotation anisotropy is negligible and can be safely
ignored12,13. On the other hand, single-ion anisotropy
in CrI3 has been estimated to be way below 1 meV be-
cause of the quenched orbital moment of Cr3+ and the
large energy separation (≈500 meV) of the CEF excited
states of the Cr3+ ion [Figs. 1(c,d)]12,13. Finally, spin
rotational invariance of a magnetic system such as CrI3
can be broken because of the magnetic anisotropy arising
from the Cr 3d-I p-Cr 3d superexchange hopping in the
near 90◦ bonding angle networks [Fig. 1(c)]12,13.
If magnetism in 3D CrI3 also breaks the spin rota-

tional invariance and becomes anisotropic in real space, it
should reveal itself as a gap in spin-wave dispersion at the
Γ point in Fig. 1(b) with ∆ > 0, in contrast to the ∆ ≈ 0
seen in typical isotropic ferromagnets25,26. In principle,
one can detect such a gap by FM resonance27, Raman
scattering28, or inelastic neutron scattering (INS)25,26.
Using FM resonance29, a spin gap of ∼0.3 meV was esti-
mated at the Γ point below TC

18. On the other hand, po-
larized micro-Raman spectroscopy experiments on CrI3
found evidence for two sets of zero wave-vector spin waves
at 9.4 meV and 15.5 meV30. Since CrI3 has two mag-
netic ions per unit cell, giving rise to only one acoustic
and one optical spin-wave branches18,30,31, the Raman
spectroscopy results suggest a spin gap of 9.4 meV at the
Γ point30. Finally, INS experiments on single crystals of
CrI3 revealed a ∼4 meV spin gap at the Dirac (K) points
but found no evidence of a spin gap above ∼1 meV at the
Γ point31. While FM resonance18 and INS31 results are
clearly in contrast to those of Raman spectroscopy30, the
actual value of the anisotropy gap is still undetermined.
To conclusively determine the size of the spin gap and
its temperature dependence, and test if spin dynamics in
CrI3 are consistent with a Heisenberg ferromagnet4, INS
experiments are necessary.

II. RESULTS

In this paper, we report INS studies of spin waves
in CrI3. In addition to confirming a spin gap of ∆ =
0.37±0.02 meV at T = 3 K and the Γ point, we trace the
temperature dependence of ∆(T ) and D(T ) across TC .
While spin-wave stiffness within the CrI3 plane DHH(T )
is considerably larger than that of the stiffness along the
c-axis DL(T ), they both do not vanish at TC , contrary
to the expectation of a 3D3,4 or 2D1,6,7 Heisenberg fer-
romagnet with a second order FM phase transition. On
the other hand, the anisotropy gap ∆(T ) has an order-
parameter-like temperature dependence and vanishes at
TC . These results, together with the lack of magnetic
critical scattering around TC , suggest that the FM phase
transition in CrI3 is weakly first order instead of a sec-
ond order phase transition. We thus conclude that the
breaking of the spin-rotation invariance via large SOC is
ultimately responsible for stabilizing the FM order in 3D
and monolayer CrI3, and other monolayer materials32–36.
We carried out some of the measurements using the

10

3

1

0
-6 0

E
 (

m
e

V
)

In
te

n
si

ty
 (

a
rb

. u
n

it
)

T (K)

Cr3+  3d3 e
g

t
2g

(a)

(c)

(b)

(d)

(e)

J1

Jc

Dz

c

a b

[0 0 L] (r. l. u)

J
XX

J
YY

J
ZZ

Cr

Iabove

500meV

Ibelow

[H, 0]

[0, K]

Γ

M

K

(f ) (g)

[H, H] = [-0.1, 0.1] 
[-K, K] = [-0.1, 0.1] 

100

2

3

4

5

6

In
te

g
ra

te
d

 In
te

n
si

ty
 (

a
rb

. u
n

it
.)

10
-2

10
-1

1-(T/Tc)

10
-1

10
0

I. 
I. 

(a
. u

.)

806040200

Tc = 60.55±0.15K

β = 0.249±0.014

2

3

FIG. 1. (a) Crystal structure of CrI3, where the nearest
neighbor magnetic exchange couplings within the Cr-plane
and along the c-axis are J1 and Jc, respectively. The Dz

is the single-ion anisotropy. (b) Reciprocal space within the
[H,K] plane, where Γ, K, M points are specified. The gray
line indicates the Q-direction for constant-energy scans. (c)
Real space picture of CrI3, where the nearest-neighbor I atoms
form an octahedral environment with 3 I above (dark purple)
and 3 I below (light purple) the Cr layer. The Cr-I-Cr path
forms an angle close to 90 degrees12,13. The Kitaev interac-
tions between Cr3+ atoms are marked as Jxx, Jyy, and Jzz

18.
(d) The CEF level of the I octahedra splits the d levels in
the eg and t2g manifolds. (e) Magnetic order parameter at
the (1, 1, 0) position. The inset is a log-log plot of the inte-
grated magnetic peak intensity. Both red lines are power law
fits with the same critical exponent β = 0.249 ± 0.014. (f)
Spin-wave dispersion along the [0, 0, L] direction at T = 3 K
obtained with Ei = 5.2 meV. (g) The Heisenberg model fit of
the c-axis dispersion. The dashed lines in (f,g) indicate const-
Q scans in Figs. 2(c,d). Red bars in (f), Figs. 2(a,c,d,e),
3(e), and 4(a) are instrumental energy resolution23.

LET neutron time-of-flight chopper spectrometer at
Rutherford-Appleton Laboratory, Didcot, UK37. The ex-
periments were carried out with multi-Ei (incident beam
energy) mode (Ei = 25 meV, 5.37 meV [Fig. 1(f)] and
2.27 meV [Fig. 2(a,b)]) with single crystals of CrI3 fixed
at T = 3 K. A Horace scan was done on co-aligned 0.42
g single crystals of CrI3 with the sample in the [H,H,L]
scattering plane38. Using a honeycomb structure with
in-plane Cr-Cr distance of a = b ≈ 3.96 Å and c-axis
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FIG. 2. (a) Images of spin waves near the Γ point. The
red box shows the integration range in (b). (b) An energy
cut of the data at Q = (0, 0,−3). (c) Constant-Q scans for
Q = (0, 0, 2.25). (d) Similar scans at Q = (0, 0, 4.5). (e) Tem-
perature dependence of the spin gap around the Γ point23. (f)
Temperature dependence of the DHH(T ) (green dots), DL(T )
(blue squares), and ∆(T ) (different colored squares), where
the dashed line is a fit to the power law equation. The green
and blue dashed lines are guides to the eye.

layer spacing of c = 6.62 Å in the low temperature rhom-
bohedral structure [Fig. 1(a)]39, the momentum transfer
Q = Ha∗ +Kb∗ + Lc∗ is denoted as Q = (H,K,L) in
reciprocal lattice units (r.l.u.) [Fig. 1(b)]31.

We have also carried out inelastic neutron scattering
experiments on the cold neutron triple-axis spectrome-
ter PANDA at Heinz Maier-Leibnitz Zentrum, Garching,
Germany [Figs. 2(c,d)]40. The experiments were carried
out with a fixed final neutron energy of Ef = 3.78 meV.
Constant-E scans were performed along the [H,H, 3] di-
rection at temperatures of 2 K, 30 K, 50 K, 57 K, 59
K, 61 K, 63 K, 68 K, 73 K, 78 K, 84 K, and 250 K.
Constant-Q scans are performed at Q2.25 = (0, 0, 2.25)
and Q4.5 = (0, 0, 4.5) with sample temperatures of 2 K,
30 K, 50 K, 57 K and 59 K [Figs. 2(c,d)]. The sample
mass is 0.84 g of co-aligned single crystals of CrI3. To
get the anisotropy gap ∆ and DL along c-axis, which
is related to the spin-wave bandwidth Eband along the
[0, 0, L] direction, we used Eband = 2(EQ4.5

− EQ2.25
),

and ∆ = EQ4.5
−Eband to estimate the values of DL and

∆ in Fig. 2(f).

To accurately determine the temperature dependence
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FIG. 3. (a) Low energy (E = 3 ± 0.5 meV) spin waves of
CrI3 in the [H,K] plane at T = 5 K. (b) A cut along the
[H, 0] direction. (c) The same scan as (a) but at T = 1.14TC .
(d) The same cut as (b) at T = 1.14TC . The red boxes in
(a,c) show the integration range in (b,d), respectively, with
L integrated from [−5, 5]. (e) Spin wave dispersion along the
c-axis at T = 5 K. (f) Identical scan at T = 1.03TC . The data
was collected using Ei = 8 meV23.

of the gap ∆(T ) at Γ point, we carried out INS mea-
surements using the Pelican neutron time-of-fight spec-
trometer at ANSTO, Australia [Figs. 2(e,f)]41. These
experiments were performed on 14 g powder samples of
CrI3 at 2 K, 50 K ,55 K and 57 K. Two incident en-
ergies, Ei = 3.7 and 2.3meV, were used to probe the
anisotropy gap ∆(T ) located at Q = (0, 0, 3) (corre-
sponding to qgap = 0.96 Å−1). The anisotropy gap value
∆(T ) is extracted by subtracting the integrated intensity
in the range (qgap−0.05)-(qgap+0.05) Å−1 by an average
of the intensity in the range (qgap − 0.35)-(qgap − 0.25)

Å−1 and (qgap + 0.25)-(qgap + 0.35) Å−123.

Our experiments on neutron time-of-flight chopper
spectrometer SEQUOIA at spallation neutron source,
Oak Ridge National Laboratory (ORNL), Oak Ridge,
Tennessee42, were carried out with Ei = 25 meV [Fig.
3(a-d)] and 8 meV [Fig. 3(e)(f)] at temperatures 5 K,
52 K, 63 K, and 70 K23. Horace scans are done on co-
aligned 0.2 g single crystals of CrI3 with the sample in
the [H, 0, L] scattering plane. The 0.6 meV flat mode in
Figs. 3(e,f) is an instrumental artifact.

The magnetic critical scattering is measured on
the HB-3 thermal neutron triple-axis spectrometer at
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High-Flux Isotope Reactor, ORNL [Figs. 4(a-g)].
The monochromator, analyzer, and filter are pyrolytic
graphite (PG). For triple-axis measurements, final neu-
tron energy of Ef = 14.7 meV was used and a PG filter
was placed after the sample. For two-axis measurements,
a PG filter was placed before the sample to reduce λ/2
and incident neutron energy was set at Ei = 30.5 meV.
A single piece of CrI3 single crystal (13 mg) with mosaic
¡ 1 degree was used in the experiment. The HYSPEC
experiments43 were performed on 6 g powder samples at
3 K [Fig. 5(a)]. A Horace scan is performed to eliminate
the anisotropy inside the powder sample.

In an ionic picture, Cr3+ in CrI3 has an electronic con-
figuration 3s03d3 and is surrounded by 6 I atoms in an
octahedral environment [Fig. 1(c)]. The d levels of Cr3+

split into a higher energy eg doublet and a lower en-
ergy t2g triplet separated by ∼500 meV [Fig. 1(d)]12.
With the first Hund rule, 3 electrons in Cr3+ occupy the
t2g manifold in the S = 3/2 state with quenched orbital

moment 〈~L〉 ≃ 0 [Fig. 1(d)]12,13. Figure 1(e) shows tem-
perature dependence of the (1, 1, 0) Bragg peak intensity,
confirming the FM transition at TC = 60.5± 0.2 K. The
solid line in the figure is a fit to the magnetic order pa-
rameter by I = I0(1−T/TC)

2β4. Within the temperature
range probed, we find β = 0.25±0.01 [Inset in Fig. 1(e)].
This value is in-between the critical exponents of 2D and
3D Ising ferromagnets4,44, thus suggesting finite interpla-
nar (c-axis) magnetic exchange coupling Jc in CrI3. This
is consistent with the spin-wave dispersion along the c-
axis at T ≈ 3 K [Fig. 1(f)]. Figure 1(g) shows a fit to the
spin-wave dispersion using a Heisenberg Hamiltonian31.

Figure 2(a) shows spin waves near the Γ point, reveal-
ing an anisotropy gap of ∆ = 0.37±0.02 meV at T = 3 K.
An energy cut at the spin-wave minimum indicates step-
like intensity gain around 0.37 meV [Fig. 2(b)]. While
the magnitude of ∆ is smaller by a factor of two compared
with estimation from previous measurements31, it is con-
sistent with estimation from the FM resonance18,29 and
larger than in its isostructual compound CrBr3 (∆ < 0.1
meV)45 and CrSiTe3 (∆ ≈ 0.075 meV)46, suggesting con-
siderably stronger SOC in CrI3.

To determine the temperature dependence of the mag-
netic exchange couplings within the CrI3 plane and along
the c-axis, we measured spin-wave dispersions around the
Γ point along the intraplanar [H,H, 3]23 and interpla-
nar [0, 0, L] directions. Figures 2(c,d) are the constant-Q
scans to probe the temperature dependence of interpla-
nar modes for temperatures up to T = 59 K (= 0.97TC).
Since the full interplanar spin-wave bandwidth could
be observed [Fig. 1(f)], we performed variable-energy
scans at Q = (0, 0, 2.25) [Fig. 2(c)] and (0, 0, 4.5)
[Fig. 2(d)]. The zone boundary spin-wave energy at
T = 0.97TC is reduced by ∼50% [Fig. 2(d)], suggest-
ing significant interplanar exchanges approaching the FM
transition. Assuming that the interplanar dispersion fol-
lows the simple sinusoidal dependence on L [Fig. 1(f)],
we can estimate the spin wave stiffness along the c-axis
DL(T ) ≡ aL(T )(c/6)

2 in units of meVÅ2 by fitting the
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tracting the nuclear Bragg peak above TC from the same
scan at 10 K. The dashed line is the instrument resolution
limited nuclear Bragg peak above TC (80 K to 84 K). The
data was collected on HB-3 with collimation of 40′-40′-40′-
120′ and final neutron energy of Ef = 14.7 meV. The blue
line is a fit to Gaussian on a flat background, giving spin-
spin correlation length of 220± 4 Å. (b) Temperature depen-
dence of the magnetic scattering around the (1, 1, 0) position
across TC , where high temperature nuclear Bragg peak is sub-
tracted. (c) Temperature dependence of the full-width-half-
maximum (FWHM) of the (1, 1, 0) peak across TC . Above
TC , the FWHM shows instrumental resolution limited nuclear
Bragg peak width. (d) Temperature dependence of the inelas-
tic scattering at E = 1.4 meV and (1, 1, 0). (e) Schematics of
the two-axis mode scan with neutron final wave vector kf ||c.
The incident neutron energy Ei is fixed at 30.5 meV. The
scattering intensity shown in (f) and (g) is integrated over all
possible kf . (f) Temperature dependence of the scattering at
in-plane wave vector (1, 1, 0). (g) [H,H, 0] scans across the
in-plane wave vector (1, 1, 0) around TC using two-axis mode.
The intensity obtained in (f) and (g) is an integration over all
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data with E = aL(T )
[

sin
(

π
3L

)]2
+ ∆(T ). Figure 2(e)

shows temperature dependence of spin gap around the Γ
point (|Q| = 1 ± 0.05 Å−1) approaching TC

23. Figure
2(f) summarizes temperature dependence of the in-plane
[DHH(T )]23 and c-axis [DL(T )] spin wave stiffnesses, re-
vealing that the intraplanar and interplaner exchange
couplings almost fully active up to TC in spite of the
vanishing magnetization at TC in Fig. 1(e). In con-
trast, ∆(T ) obtained from the c-axis dispersion and di-
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FIG. 5. (a) INS data of the CrI3 powder at T = 5 K us-
ing Ei = 25 meV. (b,c,d) Powder-averaged spin-wave spec-
tra calculated using the Heisenberg-DM31, J-K-Γ Hamilto-
nian using parameters of Ref.18, and new parameters (J1 =
−0.17 ± 0.05 meV, J2 = −0.21 ± 0.04 meV, K = −5.6 ± 0.2
meV), respectively. The dashed lines mark the limits of the
data in (a). (e) The black, green, red, and blue points/lines
are the experimental data, Heisenberg-DM, J-K-Γ Hamilto-
nian calculations with parameters of18 and the new parame-
ters mentioned above, respectively. The scan directions are
marked as solid boxes in (a-d).

rect measurements vanishes at TC [see right axis in Fig.
2(f)]23. The dashed line shows a fit to the data using
∆(T ) ∝ (1− T/TC)

ν−β , giving ν − β = 0.35± 0.14.

At temperatures above TC , spin excitations of CrI3 be-
come diffuse but still have signatures of the intraplanar
modes. Figures 3(a) and 3(c) are images of the constant-
energy slices (E = 3.0± 0.5 meV) at T = 5 K and 70 K,
respectively23. We see clear spin-wave-like rings in the
[H,K] plane at both temperatures although the excita-
tions are noticeably diffusive at T = 70 K (= 1.14TC).
Q-dependent cuts through data in Figs. 3(b) and 3(d)
bear this out, showing some softening of the in-plane
spin-wave energy on warming but is non-vanishing at TC .
Figures 3(e) and 3(f) show similar data along the c-axis,
where we see considerable yet incomplete (∼50 %) soft-
ening of the mode above TC . Therefore, FM order in CrI3
is not determined by the in-plane or c-axis magnetic ex-
change interactions as in a conventional 3D Heisenberg
ferromagnet4. It is also different from the expectation of

an ideal 2D Heisenberg ferromagnet1,6,7.

To understand why D(T ) does not vanish at TC in
CrI3 as required by the mode-mode coupling theory
in a Heisenberg ferromagnet with second order phase
transition4, we consider the nature of the FM phase tran-
sition. In a second order FM phase transition, spin-spin
correlation length and magnetic critical scattering should
diverge at TC

4. Figure 4(a) compares the magnetic Bragg
peak across the (1, 1, 0) reflection at 10 K with the in-
strumental resolution obtained by measuring the same
nuclear Bragg peak above TC . The magnetic Bragg peak
width is clearly broader than the nuclear Bragg peak
width, indicating that the spin-spin correlation length
is not resolution-limited. Temperature dependence of
the magnetic scattering around the (1, 1, 0) reflection in
triple-axis mode reveals no peak above TC [Fig. 4(b)],
suggesting the lack of critical scattering around TC . Fig-
ure 4(c) shows temperature dependence of the (1, 1, 0)
peak width. At temperatures above TC , the (1, 1, 0) peak
width measures nuclear lattice correlation, which is the
instrumental resolution-limited. On cooling below TC ,
we see a clear broadening of the width that saturates be-
low about 53 K, indicating that the in-plane spin-spin
correlations in CrI3 are short-ranged even at 10 K and
never reached the instrumental resolution (nuclear Bragg
peak width) [Fig. 4(c)]. Temperature dependence of the
inelastic scattering at E = 1.4 meV shows no anomaly at
TC , again suggesting no critical magnetic scattering.

While these results suggest that the FM phase transi-
tion in CrI3 may be weakly first order instead of second
order14, a more stringent test is to measure the instan-
taneous spin correlations in CrI3 across TC

47. In these
two-axis neutron scattering measurements, the final neu-
tron wave vector is aligned along the c-axis direction
throughout the scan and all final neutron energies are
integrated [Fig. 4(e)]. For a classical second order phase
transition, we expect to observe critical spin fluctuations
as a peak in the instantaneous spin correlations at the
(1, 1, 0) position, and the peak intensity should diverge
on approaching TC from high temperature. However, the
temperature dependence of the scattering at the (1, 1, 0)
position reveals no anomaly across TC [Fig. 4(f)]. The
wave vector dependence of the scattering at various tem-
perature across TC also shows no obvious peak at the
(1, 1, 0) position. If we assume that the FM phase transi-
tion in CrI3 is indeed weakly first order instead of second
order, we can understand the c-axis lattice distortion as-
sociated the FM phase transition14 and the peak in FM
transition induced heat capacity anomaly48. The first
order nature of the FM transition in CrI3 provides a nat-
ural understanding for nonvanishing values of D(T ) at
TC , suggesting that FM order is not controlled by the
magnetic exchange interaction in contrast to a Heisen-
berg Hamiltonian4.

Another possible mechanism that can provide
spin anisotropy gap in honeycomb ferromagnets is
the symmetric off-diagonal Γ term in the J-K-Γ
Hamiltonian18,22,23. Whereas it also originates from the
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SOC, it is unlikely to be strong unless the diagonal K
term is predominant. Figure 5(a) shows powder-averaged
spin waves of CrI3 at T = 5 K. To simulate the powder-
averaged spin waves, we use linear spin wave theory with
the SpinW software as discussed in49. For the calculated
powder spectra shown in Figs. 5(b-d), the code chooses
random orientation 1000 times to get an averaged inten-
sity distribution.
The Heisenberg model Hamiltonian with DM interac-

tion is

H =
∑

i<j

[JijSi · Sj +Aij · Si × Sj ] +
∑

j

Dz(S
z
j )

2 (1)

as in ref.31, where Jij is magnetic exchange coupling of
the spin Si and Sj , Aij is the DM interaction between
sites i and j, and Dz is the easy-axis anisotropy along the
z (c) axis. Figure 5(b) shows our simulated spin waves
with the intralayer term J1 = −2.13 meV, J2 = −0.09
meV, J3 = 0.10 meV, interlayer term Jc = −0.59 meV
and anisotropy term Dz = −0.20 meV. For the choice of
the DM term Aij , we used 0.194 meV in the calculation
in Fig. 5(b). The DM term in ref.31 (Dz = −0.31 meV)
is overestimated due to the poor sample mosaic.
The Heisenberg-Kitaev (J-K-Γ) model Hamiltonian is

H =
∑

<ij>∈λµ(ν)

[JijSi · Sj +KSν
i S

ν
j + Γ(Sλ

i S
µ
j + Sν

i S
λ
j )],

(2)
where (λ, µ, ν) = any permutation of (x, y, z). For the
simulation reproducing that of18, we choose J1 = −0.212
meV for the Heisenberg term, K = −5.19 meV for the
Kitaev term, and Γ = −0.0675 meV for the symmetric
off-diagonal anisotropy. We keep the interlayer exchange
term Jc the same as in the Heisenberg-DM model in Figs.
5(c,d,e).
As shown in Figs. 5(c,e), the model reproducing ref.18

is clearly not consistent with the powder neutron scat-
tering data because the model parameters give incorrect
energy of the gap. The simplest way to solve the prob-
lem is to introduce next neighbor magnetic exchange J2
into the J-K-Γ Hamiltonian. To make optimal simula-
tion using the J-K-Γ model, we fit the INS data in31 with
the J-K-Γ model, and the fitting result gives J1 = −0.17
meV, J2 = −0.21 meV, K = −5.6 meV, and Γ = −0.075
meV. Using these parameters, we get the simulation re-
sults in Fig. 5(d). These results suggest that the J-
K-Γ model can have parameters regimes, similar to the
Heisenberg-DM model in ref.31, that can describe the ob-
served spin-wave spectra in CrI3. The parameters in the
new fit are similar to that in ref.18, except we must now
introduce J2 in order to shift the Dirac gap from 5-8
meV to 10-13 meV. Figure 5(e) compares experimental
data with Heisenberg-DM, J-K-Γ Hamiltonian with dif-
ferent fitting parameters along the boxed directions in
5(a-d), confirming that spin waves in CrI3 can be de-
scribed by the J-K-Γ Hamiltonian but with parameters
different from those in18.

III. DISCUSSION

The direct relation between the magnetic anisotropy
and FM phase transition is revealed in the similar tem-
perature dependence of the spin gap ∆(T ) in Fig. 2(f)
and magnetic order parameter in Fig. 1(e). The
c-axis component of the ordered moment, Sz, is in-
cluded in the anisotropic interaction term of the nearly-
isotropic Heisenberg Hamiltonian H = −Σi>jJijSi ·Sj −
Σ<ik>AikS

z
i S

z
k , where Si is the spin on site i. The Aik

in the second term accounts for the single-ion anisotropy
or anisotropic exchange constant, with c being the easy
axis, when the summation is over i = k or i > k, re-
spectively. If the anisotropic exchanges are limited to
the nearest-neighbor bonds, the linear spin-wave energies
calculated using Ai>k (≡ A) are equal to those using the
single-ion anisotropy Ai=k (= 3A). Therefore, the result-
ing spin-wave spectra exhibiting anisotropy gap will also
be indistinguishable. Regardless whether the spin gap is
induced by single-ion or magnetic exchange anisotropy,
the microscopic origin is the strong SOC induced by Cr-I
interaction in CrI3. Since the CrI6 octahedra has little
structural distortions below TC

14, anisotropic Heisenberg
exchange due to the SOC via Cr 3d-I p-Cr 3d superex-
change path interaction is likely responsible for the FM
order in CrI3

12,13.
Another possible mechanism that can provide

spin anisotropy gap in honeycomb ferromagnets is
the symmetric off-diagonal Γ term in the J-K-Γ
Hamiltonian18,22,23. Whereas it also originates from the
SOC, it is unlikely to be strong unless the diagonal K
term is predominant. Although the J-K-Γ Hamiltonian
with dominant Kitaev exchanges (K/J = 25)18 fails to
describe the spin-wave spectra, a reasonable fit to the
full spectrum may be obtained when the next neighbor
magnetic exchange J2 is allowed to be similar to J1

23.

IV. CONCLUSIONS

In conclusion, we used INS to show that the stiffness of
the intraplanar and interplanar spin waves of CrI3 has a
finite value at TC . While these results are contrary to the
expectation of a 3D Heisenberg Hamiltonian with second
order FM phase transition, they are consistent with our
careful critical magnetic scattering measurements sug-
gesting that the FM phase transition in CrI3 is a weakly
first order transition. Since the anisotropy gap is fully
closed at TC following similar temperature dependence
as the order parameter, we conclude that the anisotropic
SOC plays a decisive role in the FM phase transition in
3D CrI3, and is responsible for stabilizing the FM order in
monolayer CrI3. We are not aware a ferromagnet where
the Curie temperature is controlled by SOC instead of
the magnetic exchange coupling. Since spin waves in a
ferromagnet are Goldstone modes, they are more unsta-
ble than spin waves in an antiferromagnet if there is no
magnetic anisotropy. For example, it is well-known that
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spin-wave-like excitations can appear above TN in anti-
ferromagnets, and temperature dependence of anisotropy
gap follows the magnetic ordering parameter50,51. By ju-
dicially adjusting the strength of SOC in 2D materials,
one can control TC of the system32–36. While monolayer
CrI3 orders ferromagnetically at TC ≈ 45 K8, monolayer
CrBr3 can only order TC ≈ 34 K due to the reduced
SOC52, and long-range FM order will probably not sur-
vive in monolayer CrCl3.
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