

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Giant anomalous Nernst effect in the Co_{2}MnAl_{1-x}Si_{x} Heusler alloy induced by Fermi level tuning and atomic ordering Y. Sakuraba, K. Hyodo, A. Sakuma, and S. Mitani Phys. Rev. B **101**, 134407 — Published 6 April 2020

DOI: 10.1103/PhysRevB.101.134407

Fermi level tuning and atomic ordering induced giant anomalous Nernst effect in Co₂MnAl_{1-x}Si_x Heusler alloy

3

4 Y. Sakuraba^{1,2}, K. Hyodo³, A. Sakuma³ and S. Mitani¹

 $\mathbf{5}$

¹Research Center for Magnetic and Spintronic Materials, National Institute for Materials

7 Science, Sengen 1-2-1, Tsukuba, Ibaraki, 305-0047 Japan

8 ² PRESTO, Japan Science and technology Agency, Saitama 332-0012, Japan

³ Department of Applied Physics, Tohoku University, Aoba-ku, Sendai, 980-8579,

10 Japan

11

12 Abstract

13Co₂MnAl has been predicted to have Weyl points near Fermi level which is expected 14to give rise to exotic transverse transport properties such as large anomalous Hall(AHE) 15and Nernst effects(ANE) due to large Berry curvature. In this study, the effect of Fermi 16 level position and atomic ordering on AHE and ANE in Co₂MnAl_{1-x}Si_x were studied 17systematically. The Co₂MnAl film keeps B2-disordred structure regardless of annealing 18 temperature, which results in much smaller anomalous Hall conductivity σ_{xy} and 19transverse Peltier coefficient α_{xy} than those calculated for L2₁-ordered Co₂MnAl. Our 20newly performed calculation of σ_{xy} with taking B2 disordering into account well 21reproduces experimental result, thus it was concluded that Berry curvature originating 22from Weyl points is largely reduced by B2 disordering. It was also revealed Al 23substitution with Si shifts the position of Fermi level and improves the $L2_1$ -atomic 24ordering largely, leading to strong enhancement of α_{xy} , which also agreed with our 25theoretical calculation. The highest thermopower of ANE of $5.7\mu V/K$, which is 26comparable to the recent reports for Co₂MnGa, was observed for Co₂MnAl_{0.63}Si_{0.37} 27because of dominant contribution of α_{xy} . This study clearly shows the importance of 28both Fermi level tuning and high atomic ordering for obtaining the effect of topological 29feature in Co-based Heusler alloys on transverse transport properties.

30

31

Anomalous Nernst effect (ANE), which is a thermoelectric phenomenon unique to magnetic materials, has attracted attention because of several unique advantages for thermoelectric applications.¹⁻³ Here, the electric field of ANE (\vec{E}_{ANE}) can be expressed by the following equation,

$$\vec{E}_{ANE} = Q_S \left(\mu_0 \vec{M} \times \nabla T \right) , \qquad (1)$$

where $Q_{\rm S}$ and $\mu_0 \vec{M}$ represent the anomalous Nernst coefficient and magnetization, 38respectively. As equation (1) indicates, ANE generates an electric field in the direction 39of the outer product of the magnetization $\mu_0 \vec{M}$ and temperature gradient ∇T . This 40 three dimensionality of ANE enables us to increase the serial voltage by using 41 thermopiles consisting of simple laterally connected magnetic wires, because \vec{E}_{ANE} 42appears along the surface of a heat source. This is a significant advantage for enlarging 4344the size of the TEG module and utilizing large-area of non-flat heat sources. In addition 45to such attractive feature for practical applications, recent finding of large ANE originating from the materials having topological features such as Mn₃Sn⁴ stimulated 46 47studies on ANE for gaining a fundamental understanding of the phenomenon and enhancing its thermopower.³⁻¹⁷ It has been recently reported that, ferromagnetic 48Heusler alloy Co₂MnGa showed the largest thermopower of ANE of about 6 μ V/K^{7,8}, 49 50which is one order of magnitude larger than that the conventional ferromagnets in Fe, Co and Ni.¹⁸ Such large thermopower was explained as an exotic property of a magnetic 51Weyl semimetal in Co₂MnGa. Namely, large transverse thermoelectric effect 5253intrinsically appears in Co_2MnGa due to its large Berry curvature near Fermi level (E_F)

54because of the formation of Weyl points on the nodal lines of electronic bands by the spin-orbit interaction^{6,8,9}. Such a topological feature of magnetic material has attracted 5556worldwide interest for not only fundamental physics but also its great potential of 57practical applications. One curious issue yet to be clarified in Heusler alloy-based Weyl 58semi-metals is how the atomic ordering and the position of $E_{\rm F}$ against the Weyl points 59affect the sign and magnitude of ANE. Since previous studies for ANE in Heusler 60 alloy-based Weyl semi-metals have focused on the bulk single crystal or epitaxial thin film having high $L2_1$ atomic ordering and the stoichiometric composition^{7,8,17}, it is still 61 62 unclear how much ANE is sensitive to the atomic ordering and chemical composition 63 both theoretically and experimentally.

64 In the present study, we paid attention to Co₂MnAl which is another interesting material predicted to show large intrinsic AHE^{19,20} due to the existence of Weyl points 65near $E_{\rm F}$ ²¹. Previous experiment claimed the observation of large AHE in the Co₂MnAl 66 film having a random disordering of Mn and Al, so called, B2 disorder(Fig. 1(a),(b)).²² 67 However, they showed only anomalous Hall resistivity ρ_{xy} as a evidence of large AHE 68 and did not compare anomalous Hall conductivity σ_{xy} with the theoretical value 69 although σ_{xy} is the intrinsic physical parameter that is theoretically accessible^{23,24}. 7071Therefore, strictly speaking, the theoretically predicted large AHE has never been 72confirmed in Co₂MnAl. It is well known that it is not easy to form $L2_1$ -ordering in Co₂MnAl especially in thin film^{22,25}. Co₂MnAl often has B2-ordering in which Mn and 7374Al atoms are randomly disordered because of too small driving force to form $L2_1$ as indicated by very low $L2_1$ to B2 order-disorder transition temperature $T_t^{L2_1/B2}$ of 75

950K²⁶, which is much lower than $T_t^{L2_1/B2}$ in Co₂MnGa, 1200K. It is expected that the 76atomic ordering in Co₂MnAl can be largely improved by the replacement of Al with Si 7778because L2₁-Co₂MnSi is the thermally stable intermetallic ordered compound that keeps $L2_1$ ordered structure up to its melting temperature ~ 1400K, namely, $T_t^{L2_1/B2}$ was 7980 estimated to be 1580K ²⁷,that is higher than its melting point. In addition, previous 81 study revealed that the position of $E_{\rm F}$ in Co₂MnAl can be tuned toward higher energy by substituting Si with Al.^{28,29} Therefore, Co₂MnAl_{1-x}Si_x is a suitable material to investigate 82 83 how the position of Weyl points against $E_{\rm F}$ and atomic ordering influences AHE and 84 ANE.

85

86

87 (001)-oriented epitaxial Co₂MnAl_{1-x}Si_x (CMAS) thin films having different Si:Al 88 ratios were grown on a MgO (001) substrate using a co-sputtering technique with 89 Co₂MnSi and Co₂MnAl sputtering targets. All films were deposited at ambient substrate 90 temperature and then in-situ annealed at 600°C. The composition of the films was 91measured by a combination of inductively coupled plasma mass spectrometry (ICP-MS) 92 and x-ray fluorescence analysis (XRF). In this study we made twelve CMAS thin films 93 having a different Si:Al composition ratio x. The compositions of two CMAS films 94having nominal x = 0 and 0.25 were measured by ICP-MS and determined to be nearly 95stoichiometry Co_{1.93}Mn_{0.98}Al_{1.08} and Co_{1.88}Mn_{0.95}Al_{0.90}Si_{0.27} in at.%, respectively. 96 Although we found a slight off-stoichiometry of Co and Mn compositions, we focus on 97 the effect of Si:Al ratio x on various properties in this study. Thus, the x for all CMAS

98	films is evaluated by XRF to be 0.00, 0.11, 0.14, 0.15, 0.22, 0.23, 0.29, 0.32, 0.37, 0.48,
99	and 1.00. For simplification, we express each CMAS films in "Co ₂ MnAl _{1-x} Si _x " using x
100	measured by XRF. The annealing temperature T_{ann} dependence was studied for the films
101	with $x = 0$ and 0.37 from 500 to 700°C to investigate the atomic ordering effect on ANE.
102	The thickness of the films was fixed at 30 nm. The crystal structure and atomic ordering
103	were investigated by x-ray diffraction with a Cu K_{α} source. Longitudinal and transverse
104	electric and thermoelectric transport properties including ANE were investigated with a
105	physical property measurement system (PPMS) for films patterned by photolithography
106	and Ar ion milling. The electric resistivity ρ_{xx} was measured using a dc four-probe
107	method by flowing a constant dc current of 1 mA. ANE (AHE) was measured by
108	flowing a heat (electric) current in the film plane direction and applying a magnetic
109	field in the perpendicular direction in PPMS at 300K. As for ANE, the temperature
110	gradient ∇T in PPMS was carefully evaluated through the following procedure : First
111	∇T outside of PPMS was measured using an infrared camera (InfReC R450, Nippon
112	Avionics) for the sample with the black body coating to correct the emissivity of the
113	samples. At the same time, the Seebeck voltage V_{SE} in the film was measured outside,
114	then the linear relationship between $V_{\rm SE}$ and ∇T was obtained. After that, ANE
115	voltage V_{ANE} was measured together with V_{SE} in PPMS, then ∇T in PPMS can be
116	estimated through the $V_{\rm SE}$. The same technique has been utilized in our previous study. ³⁰
117	To improve the quantitative reliability of observed ∇T in this study, we measured the
118	given ∇T by the patterned on-chip thermometer, that was employed in ref.17, for one
119	of our samples and gave a calibration to ∇T measured by the method using IR camera

(see the supplemental Material for detail³⁰). For a strict evaluation of Seebeck 120coefficient S_{SE}, we used the Seebeck Coefficient/Electric Resistance Measurement 121122System (ZEM-3, ADVANCE RIKO, Inc.). We also performed a first principles 123calculation to evaluate σ_{xy} . The first-principles technique was the tight 124binding-linearized muffin-tin orbital method under the local spin-density approximation³¹. To consider the AHE effect, the spin-orbital-coupling term under the 125Pauli approximation was added to the non-relativistic Hamiltonian. σ_{xy} was calculated 126from the Kubo-Bastin formula consisting of Fermi-surface and -sea terms³². Since 127previous theoretical studies have calculated σ_{xy} in only ideal L2₁-ordered cases^{19,20}, in 128this study the electron scattering effect originating from B2 disorder on σ_{xy} was taken 129into account in the coherent-potential-approximation³¹ with our own developed scheme 130 of the calculation³³. About 5×10^7 *k*-points were used for the Fermi-surface term and 131from 1×10^6 to 5×10^7 depending on the energy variable in the integration for 132the Fermi-sea term in the full Brillouin zone ³². 133

134

Out-of-plane XRD patterns for the CMAS films annealed at 600°C are shown in Figure 1(c). We clearly detected only (002) and (004) peaks from all CMAS films, indicating (001)-oriented growth in the whole range of x. A clear (002) super lattice peak indicates the existence of atomic ordering between Co and (Mn,Al/Si) sites so-called *B*2 structure (Fig.1(b)). The out-of-plane lattice constant *a*, as evaluated from the (004) peak position, is plotted against x in the inset of Fig. 1(c). The *a* for Co₂MnAl and Co₂MnSi films are 5.74 and 5.63 Å, respectively, which is similar with the reported

values in literature, 5.755 and 5.654 Å.²⁷ The *a* almost linearly decreases with 142143increasing Si composition ratio, following Vegard's law, indicating a formation of 144single phase CMAS in whole range of x. We also measured the (111) super lattice peak arising $L2_1$ -ordered structure by tilting the film plane to 54.7° from the normal direction. 145146 No (111) peak appears from x = 0 to 0.15, but tiny detectable peak is observed from x =1470.22 to 0.48 as shown in Figure1(d). The (111) peak intensity appears to be larger with 148increasing Si composition ratio and the strongest peak was observed in Co₂MnSi, which can be explained by enlargement of $T_t^{L21/B2}$ by the substitution of Si with Al in 149150 Co_2MnAl as mentioned earlier. For evaluating the degree of B2 and L2₁-ordering, S_{B2} 151and SL21, we performed the XRD pattern simulation for L21-ordered Co2MnAl and 152Co₂MnSi using Visualization for Electronic and Structural Analysis (VESTA) and then 153calculated S_{B2} and S_{L21} using the following equations.

154
$$S_{B2}^2 = \frac{I_{002}^{obs}/I_{004}^{obs}}{I_{002}^{sim}/I_{004}^{sim}}$$
(2)

155
$$S_{L21}^2 = \frac{I_{111}^{obs}/I_{004}^{obs}}{I_{111}^{sim}/I_{004}^{sim}} \qquad (3)$$

156

Here I_{hkl}^{sim} is the simulated (*hkl*) peak intensity after giving a correction by considering the multiplicity factor, absorption factor and Lorentz-polarization factor. I_{hkl}^{obs} is the integrated peak intensity for experimentally observed (*hkl*) peak. The *x* dependence of $I_{002}^{obs}/I_{004}^{obs}$, $I_{111}^{obs}/I_{004}^{obs}$, S_{B2} and S_{L21} are summarized in Fig.1(e) and (f). We confirmed that degree of S_{B2} is nearly 1 in the whole range of *x*, indicating nearly perfect B2-ordering exists in these CMAS films. In contrast, S_{L21} is much smaller than 1; S_{L21} = 163 0 from x = 0 to 0.15, 0.32-0.37 from x = 0.22 to 0.48, and 0.57 for x = 1. This 164 imperfection of L_{2_1} -ordering affects the AHE and ANE as discussed later.

165Recent study clearly found that the sign of AMR in Co-based Heusler is sensitive to 166the position of $E_{\rm F}$ inside/outside the energy gap in minority spin channel(half-metalic gap), namely, the sign of AMR is negative(positive) when E_F is inside(outside) of 167 half-metallic gap.^{29,34,35} Therefore we measured AMR for our CMAS films to see the 168 169 change of $E_{\rm F}$ position indirectly and found the clear sign change from positive to negative from CMA to CMS at around x = 0.4 (see Supplemental Material³⁵). This 170171result supports the $E_{\rm F}$ shifting toward higher energy by replacing Si with Al as we 172expected.

173

174Figure 2(a) shows the perpendicular magnetic field dependence of the anomalous Hall resistivity ρ_{yx} for the CMAS thin films measured at 300 K. The Co₂MnAl film 175had the largest ρ_{yx} of about +18 $\mu\Omega$ ·cm which is very close value with the previous 176study²². ρ_{yx} almost monotonically decreases upon replacing Al with Si, as shown in 177Figure 2(b), and the Co₂MnSi film had the smallest ρ_{yx} , 0.7 $\mu\Omega$ ·cm. This result well 178agrees with the previous study of Hall effect in Co₂MnSi_{1-x}Al_x polycrystalline bulk 179samples reported by Prestigiacomo et al.³⁶ The longitudinal conductivity ρ_{xx} shown in 180 181 Fig.2(b) is nearly constant of about 240-260 $\mu\Omega$ cm in the region of x = 0 to 0.32, and 182then reduces down to 83 $\mu\Omega$ cm from 0.37 to 1.00, which must be more or less related 183 with the improvement of $L2_1$ -ordering with Si. The anomalous Hall angle θ_{AHE} and anomalous Hall conductivity σ_{xy} are evaluated using the equations $\theta_{AHE} = -\rho_{yx}/\rho_{xx}$ 184

185	and $\sigma_{xy} = \rho_{yx}/(\rho_{xx}^2 + \rho_{yx}^2)$, respectively, and plotted in Figs.2(d) and (e). θ_{AHE}
186	clearly monotonically decreases with increasing Si; Co ₂ MnAl showed the largest
187	magnitude of anomalous Hall angle, $ \theta_{AHE} $ of 7.3%, whereas $ \theta_{AHE} $ decreases with x to
188	0.8% in Co ₂ MnSi. It should be noted here that the σ_{xy} obtained for Co ₂ MnAl and
189	Co ₂ MnSi are 295(362) and 96(101) S/cm at 300K(10K), respectively, which are lower
190	than the calculated intrinsic contribution of AHE, σ_{xy}^{int} , 1265 and 193 S/cm for
191	L2 ₁ -ordered Co ₂ MnAl and Co ₂ MnSi ²⁰ . Since the theoretical intrinsic mechanism
192	contribution for AHE does not take any electron scattering effect into consideration,
193	experimentally observed σ_{xy} in thin films is reduced even at low temperature by
194	unavoidable scatterings at the surface/interface such as the film surface, film/substrate
195	interface, and grain boundaries. As the σ_{xy} in Fe epitaxial film reduces with decreasing
196	its thickness ³⁷ , the existence of electron scattering can be one reason for $\sigma_{xy} < \sigma_{xy}^{int}$.
197	However, the deviation between σ_{xy} and σ_{xy}^{int} for Co ₂ MnAl seems too large (see
198	Figure 2(e)) to be explained by such an additional scattering. To understand this
199	mechanism, we calculated density of state (DOS) and σ_{xy}^{int} for no only $L2_1$ and but also
200	B2 Co ₂ MnAl . As shown in Fig.3(c), calculated σ_{xy}^{int} in L2 ₁ -Co ₂ MnAl exhibits large
201	variation from 300 to 1600S/cm within even small \pm 0.3eV range around $E_{\rm F}$ and takes
202	large value of 931S/cm at $E_{\rm F}$. On the other hand, disordered B2-Co ₂ MnAl was predicted
203	to show much smaller σ_{xy}^{int} , 258S/cm, at $E_{\rm F}$ with small slope against energy. As shown
204	in Fig.2(e), this σ_{xy}^{int} for B2-Co ₂ MnAl is close to the experimental σ_{xy} . Although it
205	has not been elucidated by our calculation that how Berry curvature in the momentum
206	space changes from $L2_1$ to $B2$ disordering structures, it is expected the $B2$ disorder

207 smears the whole band dispersion including the bands forming the Weyl points, which 208must reduce the Berry curvature near Fermi level. This smearing effect of band 209 dispersion can be seen from the blurred total DOS of B2 structure compared to the sharp 210DOS of $L2_1$ as shown in Figs.3(a) and 3(c). Thus, it is concluded that observed small σ_{xy} in B2-Co₂MnAl film is attributed to this intrinsic reduction of σ_{xy}^{int} from L2₁ to B2. 211To see Si substitution effect, we also calculated DOS and σ_{xy}^{int} for $L2_1$ and B2212213Co₂MnAl_{0.63}Si_{0.37} as shown in Figs.3(b) and (d), respectively. If one compares the DOS 214in $L2_1$ -ordered Co₂MnAl and Co₂MnAl_{0.67}Si_{0.33} shown in Figs.3(a) and (b), it is clearly 215confirmed that the $E_{\rm F}$ shifts by about +0.2 eV with keeping the shape of DOS near $E_{\rm F}$. Because of this shift of $E_{\rm F}$, the peak of σ_{xy}^{int} we can see near $E_{\rm F}$ in L2₁-Co₂MnAl 216217appears at around -0.22 eV in Co2MnAl0.63Si0.37 . Consequently, we can see small 218difference of σ_{xy}^{int} between L2₁ and B2, 370 and 268 S/cm, in Co₂MnAl_{0.63}Si_{0.37}, which 219can be an explanation for observed small σ_{xy} in the Co₂MnAl_{0.63}Si_{0.37} film and other 220 CMAS films of x = 0.22-0.51 regardless of their partial L2₁-ordering.

221

The *x* dependence of thermopower of ANE and Seebeck effect (S_{ANE} and S_{SE} , respectively) are summarized in Figure 4(a) and (b). Interestingly, the Co₂MnAl film that showed the largest AHE exhibits a small S_{ANE} of +0.9 µV/K, and S_{ANE} gradually grows as more Al is substituted with Si. The largest S_{ANE} of +3.6 µV/K was observed for Co₂MnAl_{0.63}Si_{0.37}. Above x = 0.37 the S_{ANE} reduces with following *x*, finally drops down to + 0.7 µV/K for Co₂MnSi. On the other hand, the sign of S_{SE} is negative in the whole range of *x*. With increasing *x*, the magnitude of S_{SE} gradually increases with *x* from -7.7 μ V/K in Co₂MnAl to -21.1 μ V/K in Co₂MnAl_{0.49}Si_{0.51}, then decreases to -11.7 μ V/K in Co₂MnSi. Therefore, we found that the *x* for the highest AHE, Seebeck effect and ANE are different in prepared CMAS films. Here we analyze the ANE in CMAS using a following linear response equation of *S*_{ANE},

233
$$S_{ANE} = \rho_{xx}\alpha_{xy} + \rho_{xy}\alpha_{xx}$$
(4)

234Here α_{xx} and α_{xy} are the longtudinal and transverse Peltier coefficient, respectively. 235Eq.(4) tells us that there are two different phenomenal sources in ANE. For simplifying 236the following explanation, we denote the first and second terms as $S_I = \rho_{xx} \alpha_{xy}$ and $S_{II} = \rho_{xy} \alpha_{xx}$, respectively. Since $S_{SE} = \rho_{xx} \alpha_{xx}$, S_{II} can be converted to $S_{SE} \cdot \theta_{AHE}$, 237238therefore, S_{II} is regarded as the contribution of AHE on ANE induced by a 239Seebeck-driven longitudinal current. On the other hand, S_I originates from the direct 240conversion from the temperature gradient to transverse current via a_{xy} as expressed in $\alpha_{xy} \nabla T = i_{xy}$. Figure 4(c) plots S_{II} estimated from observed S_{SE} and θ_{AHE} against x. 241242Although we observed a large difference of x dependence between the magnitudes of 243AHE and ANE in the CMAS films, the trend of x dependence of S_{II} is similar to that 244of S_{ANE} . An important point here is that the magnitude of S_{II} is smaller than the observed S_{ANE} in whole range of x. Thus the remaining part of S_{ANE} would arise from 245246 S_I by following the eq.(4). Evaluated S_I is plotted in Figure 4(c). It can be seen that 247the contribution of S_I is larger than S_{II} except for Co₂MnAl. Particularly, the largest S_{ANE} of +3.6 μ V/K at x = 0.37 arises from the constructive but dominant contribution of 248249 S_I (+2.7 µV/K) against S_{II} (+0.9 µV/K). α_{xy} evaluated from $\alpha_{xy} = S_I / \rho_{xx}$ is plotted 250in Fig.4(d). It is clearly appeared that α_{xy} becomes larger by replacing more Al with Si,

indicating that α_{xy} is sensitive to the position of Fermi level and atomic ordering. The α_{xy} for Co₂MnAl and Co₂MnAl_{0.63}Si_{0.37} films are 0.11 and 1.07A/mK, respectively. α_{xy} originating from intrinsic contribution of AHE, α_{xy}^{int} , can be theoretically evaluated from the energy dependence of σ_{xy}^{int} using the following Mott's relation based on classic Boltzmann equation.³⁸

256

257
$$\alpha_{xy}^{int} = \frac{1}{-eT} \int_{-\infty}^{\infty} \sigma_{xy}^{int} \left(\varepsilon\right) \left(\varepsilon - E_F\right) \left(-\frac{df}{d\varepsilon}\right) d\varepsilon \tag{5}$$

258

To obtain α_{xy}^{int} at 300K, we calculated α_{xy}^{int} by setting $\pm 260 meV (= 0.02Ry)$ as the 259integration range of this calculation which is enough large for the term of $\frac{df}{d\varepsilon}(\varepsilon,T)$ to 260have a finite value at 300K. As shown in Fig. 4(d), calculated α_{xy}^{int} for L2₁ and 261262B2-Co₂MnAl(Co₂MnAl_{0.63}Si_{0.37}) are 0.92(3.08) and 0.47(0.57), respectively. Simply speaking, α_{xy}^{int} is sensitive to the shape and slope of σ_{xy}^{int} at around $E_{\rm F}$, namely, 263even(odd) function-like behavior leads to small(large) α_{xy}^{int} . As we can see in Fig.3(c), 264265 $L2_1$ -Co₂MnAl shows nearly even function like behavior around E_F within the integration 266range, whereas, L_{2} - Co₂MnAl_{0.63}Si_{0.37} shows odd function like behavior with a large negative slope, which is a reason for much larger α_{xy}^{int} in L2₁-Co₂MnAl_{0.63}Si_{0.37}. In B2 267disordered case, because σ_{xy}^{int} shows very small change in both Co₂MnAl and 268 $Co_2MnAl_{0.63}Si_{0.37}$, α_{xy}^{int} was estimated to be very small. As can be seen in Fig.4(d), 269experimental α_{xy} for Co₂MnAl_{0.63}Si_{0.37} is close to the calculated value for *B*2-case but 270271reasonably located in between $L2_1$ and B2. Therefore, we concluded that the 272enlargement of α_{xy} in our CMAS thin films is attributed to not only Fermi level 273shifting but also the improvement of $L2_1$ -atomic ordering by Si substitution for Al. 274To see the effect of atomic ordering more clearly, we investigated the annealing 275temperature T_{ann} dependence of atomic ordering, AHE and ANE in the Co₂MnAl and 276 $Co_2MnAl_{0.63}Si_{0.37}$ films. Figure 5(a) shows the T_{ann} dependence of the degree of $L2_1$ 277ordering S_{L21} evaluated by equation (3). Co₂MnAl film does not show (111) peak even 278after annealing at 700°C, indicating that Co_2MnA1 keeps B2 disordered structure 279regardless of T_{ann} . Therefore, σ_{xy} in Co₂MnAl film is around 300S/cm and shows no 280remarkable variation against T_{ann} (Fig.5(b)). In contrast, tiny (111) that appears at T_{ann} = 281600°C in Co₂MnAl_{0.63}Si_{0.37} was strongly enlarged by increasing T_{ann} , up to 650°C. S_{L21} 282increases from 0.32 at 600°C to 0.66 at 650°C. Oppositely, (111) peak does not appears 283at 500 °C. Observed σ_{xy} in Co₂MnAl_{0.63}Si_{0.37} gradually increases with T_{ann} (Fig.5(b)) 284from 136 S/cm at 500°C to 275 S/cm at 700°C, whose tendency is in qualitative agreement with the calculated σ_{xy}^{int} shown in Fig.3(d). A drastic increase of S_{SE} and 285286 S_{ANE} were also observed in the Co₂MnAl_{0.63}Si_{0.37} annealed at above 650°C(Fig.5(c)-(e)) in contrast to no remarkable change of them in the Co_2MnAl against T_{ann} , indicating that 287288the enlargement of both S_{SE} and S_{ANE} arises from the improvement of $L2_1$ -ordering. The highest $S_{ANE}^{7,8}$ of 5.7 μ V/K, which is comparable to the previous reports in Co₂MnGa^{7,8}, 289290was observed for the Co₂MnAl_{0.63}Si_{0.37} film annealed at 650°C. At the same time, as can 291be seen in Fig.5(f), α_{xy} reaches 1.68A/mK at 650°C which is located in between 292theoretical α_{xy}^{int} for L2₁ and B2 as expected from the evaluated imperfect S_{L21}. Such 293large α_{xy} gives rise to dominant S_I contribution of 4.0 μ V/K for the total ANE of 5.7μ V/K. Therefore, it is suggested that giant ANE in CMAS film achieved in this study is due to both the Fermi level shifting and improvement of $L2_1$ -atomic ordering in Co₂MnAl which has been predicted as a Weyl semi-metal. We should note that because our CMAS films do not have ideal $L2_1$ -ordering, higher ANE might be possible by improving the degree of $L2_1$ -ordering.

299

300

301 In conclusion, in this work, we studied anomalous Hall and Nernst effect in the 302 Co₂MnAl_{1-x}Si_x from both experiment and first-principle calculation to see the effect of 303 Fermi level position and the degree of atomic ordering on AHE and ANE. It was clearly 304 confirmed that Fermi level shifts toward higher energy and L2₁-ordering improves with 305increasing Si composition ratio x. Observed σ_{xy} in the Co₂MnAl film having no 306 L2₁-ordering is much smaller than the calculated intrinsic σ_{xy} for L2₁-orderd structure 307 but close to our calculation for B2-disordered structure, suggesting that theoretically 308 predicted large AHE due to the existence of Weyl points in Co₂MnAl is weaken by 309 unavoidable B2 disordering in reality. Although Al substitution with Si does not 310 strongly affect σ_{xy} , the transverse Peltier coefficient α_{xy} was clearly enlarged with 311 increasing Si, and the highest α_{xy} was obtained in Co₂MnAl_{0.63}Si_{0.37}. As predicted by 312our calculation, α_{xy} was enlarged by improving L2₁-ordering in Co₂MnAl_{0.63}Si_{0.37}, and 313 finally giant thermopower of ANE of 5.7µV/K was achieved in Co₂MnAl_{0.63}Si_{0.37} film 314 having the mixture of L_{2} - and B_{2} -phase. Our result indicates that, both Fermi level 315tuning and high atomic ordering is critically important to realize exotic transverse

316	transports in Co-based Heusler Weyl semi-metals. This knowledge will be beneficial for
317	a future material development to realize practical thermoelectric applications using
318	ANE.
319	
320	
321	
322	
323	
324	
325	
326	
327	
328	
329	
330	
331	
332	
333	
334	
335	
336	
337	

339

- 341 ¹ Y. Sakuraba, K. Hasegawa, M. Mizuguchi, T. Kubota, S. Mizukami, T. Miyazaki, and
- 342 K. Takanashi, Appl. Phys. Express **6**, 033003 (2013).
- 343 ² Y. Sakuraba, Scr. Mater. **111**, 29 (2016).
- 344 ³ Z. Weinan and Y. Sakuraba, Appl. Phys. Express (2020).
- ⁴ M. Ikhlas, T. Tomita, T. Koretsune, M.-T. Suzuki, D. Nishio-Hamane, R. Arita, Y.
- 346 Otani, and S. Nakatsuji, Nat. Phys. 13, 1085 (2017).
- ⁵ K. Hasegawa, M. Mizuguchi, Y. Sakuraba, T. Kamada, T. Kojima, T. Kubota, S.
- 348 Mizukami, T. Miyazaki, and K. Takanashi, Appl. Phys. Lett. 106, 252405 (2015).
- ⁶G. Chang, S.-Y. Xu, X. Zhou, S.-M. Huang, B. Singh, B. Wang, I. Belopolski, J. Yin,
- 350 S. Zhang, A. Bansil, H. Lin, and M. Zahid Hasan, Phys. Rev. Lett. 119, 156401 (2017).
- ⁷ A. Sakai, Y.P. Mizuta, A. Agung Nugroho, R. Sihombing, T. Koretsune, M.-T. Suzuki,
- 352 N. Takemori, R. Ishii, D. Nishio-Hamane, R. Arita, P. Goswami, and S. Nakatsuji, Nat.
- 353 Phys. 14, 1119 (2018).
- ⁸ S.N. Guin, K. Manna, J. Noky, S.J. Watzman, C. Fu, N. Kumar, W. Schnelle, C.
- 355 Shekhar, Y. Sun, J. Gooth, and C. Felser, NPG Asia Mater. 11, (2019).
- 356 ⁹ I. Belopolski, K. Manna, D.S. Sanchez, G. Chang, B. Ernst, J. Yin, S.S. Zhang, T.
- 357 Cochran, N. Shumiya, H. Zheng, B. Singh, G. Bian, D. Multer, M. Litskevich, X. Zhou,
- 358 S.M. Huang, B. Wang, T.R. Chang, S.Y. Xu, A. Bansil, C. Felser, H. Lin, and M. Zahid
- 359 Hasan, Science (80-.). 365, 1278 (2019).
- 360 ¹⁰ K.I. Uchida, T. Kikkawa, T. Seki, T. Oyake, J. Shiomi, Z. Qiu, K. Takanashi, and E.
- 361 Saitoh, Phys. Rev. B **92**, 094414 (2015).
- 362 ¹¹ Y.P. Mizuta and F. Ishii, Sci. Rep. 6, 28076 (2016).
- 363 ¹² D.J. Kim, K.D. Lee, S. Surabhi, S.G. Yoon, J.R. Jeong, and B.G. Park, Adv. Funct.
- 364 Mater. 26, 5507 (2016).
- 365 ¹³ H. Narita, M. Ikhlas, M. Kimata, A.A. Nugroho, S. Nakatsuji, and Y. Otani, Appl.
- 366 Phys. Lett. 111, 202404 (2017).
- 367 ¹⁴ S. Tu, J. Hu, G. Yu, H. Yu, C. Liu, F. Heimbach, X. Wang, J. Zhang, Y. Zhang, A.
- 368 Hamzić, K.L. Wang, W. Zhao, and J.-P. Ansermet, Cit. Appl. Phys. Lett 111, 222401

- 369 (2017).
- 370 ¹⁵ T.C. Chuang, P.L. Su, P.H. Wu, and S.Y. Huang, Phys. Rev. B **96**, 174406 (2017).
- 371 ¹⁶ Z. Yang, E.A. Codecido, J. Marquez, Y. Zheng, J.P. Heremans, and R.C. Myers, AIP
- 372 Adv. 7, 095017 (2017).
- 373 ¹⁷ S. Isogami, K. Takanashi, and M. Mizuguchi, Appl. Phys. Express **10**, 073005
- 374 (2017).
- 375 ¹⁸ T. Miyasato, N. Abe, T. Fujii, A. Asamitsu, S. Onoda, Y. Onose, N. Nagaosa, and Y.
- 376 Tokura, Phys. Rev. Lett. 99, 086602 (2007).
- ¹⁹ J. Kübler and C. Felser, Phys. Rev. B Condens. Matter Mater. Phys. **85**, 012405
- 378 (2012).
- ²⁰ J.C. Tung and G.Y. Guo, New J. Phys. **15**, 033014 (2013).
- 380 ²¹ J. Kübler and C. Felser, EPL **114**, 47005 (2016).
- 381 ²² E. Vilanova Vidal, G. Stryganyuk, H. Schneider, C. Felser, and G. Jakob, Appl. Phys.
- 382 Lett. **99**, 132509 (2011).
- ²³ Y. Yao, L. Kleinman, a H. MacDonald, J. Sinova, T. Jungwirth, D. Wang, E. Wang,
 and Q. Niu, Phys. Rev. Lett. 92, 037204 (2004).
- ²⁴ N. Nagaosa, J. Sinova, S. Onoda, A.H. MacDonald, and N.P. Ong, Rev. Mod. Phys.
 82, 1539 (2010).
- 387 ²⁵ Y. Sakuraba, J. Nakata, M. Oogane, H. Kubota, Y. Ando, A. Sakuma, and T.
- 388 Miyazaki, Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. 44, 6535389 (2005).
- ²⁶ T. Nakatani, S. Li, Y. Sakuraba, T. Furubayashi, and K. Hono, IEEE Trans. Magn. 2,
 54 (2017).
- ²⁷ R.Y. Umetsu, K. Kobayashi, A. Fujita, R. Kainuma, and K. Ishida, Scr. Mater. 58,
 723 (2008).
- ²⁸ Y. Sakuraba, K. Takanashi, Y. Kota, T. Kubota, M. Oogane, A. Sakuma, and Y.
- 395 Ando, Phys. Rev. B **81**, 144422 (2010).
- 396 ²⁹ Y. Sakuraba, S. Kokado, Y. Hirayama, T. Furubayashi, H. Sukegawa, S. Li, Y.K.
- 397 Takahashi, and K. Hono, Appl. Phys. Lett. **104**, 172407 (2014).
- ³⁰ See Supplemental Material at (URL) for the detail of the evaluation method of ∇T
- 399 using the on-chip thermometer.
- 400 ³¹ I. Turek, *Electronic Structure of Disordered Alloys, Surfaces and Interfaces, 1997th*
- 401 Ed. (Springer, Berlin, 1996). (1996).

- 402 ³² I. Turek, J. Kudrnovsk, and V. Drchal, Phys. Rev. B **89**, 064405 (2014).
- 403 ³³ F.J. Yang, Y. Sakuraba, S. Kokado, Y. Kota, A. Sakuma, and K. Takanashi, Phys.
- 404 Rev. B **86**, 020409(R) (2012).
- 405 ³⁴ S. Kokado, M. Tsunoda, K. Harigaya, and A. Sakuma, J. Phys. Soc. Japan 81, 24705
- 406 (2012).
- 407 ³⁵ See Supplemental Material at (URL) for the detail of the CMAS composition
- 408 dependence of AMR ratio.
- 409 ³⁶ J.C. Prestigiacomo, D.P. Young, P.W. Adams, and S. Stadler, Cit. J. Appl. Phys. 115,
- 410 242408 (2014).
- 411 ³⁷ S. Sangiao, L. Morellon, G. Simon, J.M. De Teresa, J.A. Pardo, J. Arbiol, and M.R.
- 412 Ibarra, Phys. Rev. B Condens. Matter Mater. Phys. 79, 2 (2009).
- 413 ³⁸ N.F. Mott and H. Jones, in *Clarendon Press. Oxford* (1936), pp. 308–314.
- 414
- 415

416 Acknowledgements

Authors thank K. Masuda, K. Sumida, A. Kimura, W. Zhou, K. Takanashi, S. 417 418 Maekawa, K. Hono, and K. Uchida for valuable discussions and N. Kojima, H. Ikeda, B. 419 Masaoka for a technical support. This work was supported by a JSPS KAKENHI 420 Grant-in-Aid for Young Scientists (A) (No. JP2670945), PRESTO from the Japan 421Science and Technology Agency (No. JPMJPR17R5) and NEDO. 422423 424 425426 427 428 429 430 431

- 101
- 432
- 433

435	Figure 1 (a),(b) The schematic views of $L2_1$ - and $B2$ structure of CMAS. (c)
436	Out-of-plane XRD patterns for $Co_2MnAl_{1-x}Si_x$ thin films annealed at 600°C. The peaks
437	denoted by * originate from MgO (001) substrate. The inset shows Si composition x
438	dependence of lattice constant a evaluated from position of (004) peak position.
439	(d)XRD patterns measured by tilting the film normal plane by 54.7° to see (111)
440	superlattice peak. (e),(f) The x dependence of $I_{002}^{obs}/I_{004}^{obs}$, $I_{111}^{obs}/I_{004}^{obs}$, S_{B2} and S_{L21}
441	evaluated by equation (2) and (3), respectively.
442	
443	Figure 2 (a) Perpendicular magnetic field <i>H</i> dependence of anomalous Hall resistivity
444	ρ_{xy} for Co ₂ MnAl _{1-x} Si _x thin films measured at 300 K. Si composition dependence of ρ_{xx}
445	(b), ρ_{yx} (c), anomalous Hall angle $ \theta_{AHE} $ (c) and σ_{xy} (c). The data measured at 10 and
446	300K are shown in (b)-(e). Theoretical σ_{xy}^{int} for L2 ₁ -and B2- Co ₂ MnAl and
447	$Co_2MnAl_{0.67}Si_{0.33}$ are also plotted in (e).
448	
449	Figure 3 First principles calculation of the spin-resolved DOS for Co ₂ MnAl(a) and
450	$Co_2MnAl_{0.67}Si_{0.33}(b)$. For both compositions we calculated the DOS in $L2_1$ and $B2$
451	disordered structure. (b) Calculated energy dependence of σ_{xy} for B2 and $L2_1$ -ordered
452	$Co_2MnAl(c)$ and $Co_2MnAl_{0.63}Si_{0.37}(d)$.
453	
454	
455	Figure 4 Si composition <i>x</i> dependence of S_{ANE} (a), S_{SE} (b), S_I and S_I (c) and α_{xy} (d).
456	The inset of (b) shows the external magnetic field dependence of V_{ANE} normalized by
457	the sample width w and given temperature gradient ∇T in CMAS films. Theoretically
458	calculated α_{xy}^{int} using eq.(3) are also plotted in (d)
459	
460	
461	Figure 5 (a) T_{ann} dependence of S_{L21} in Co ₂ MnAl and Co ₂ MnAl _{0.63} Si _{0.37} films. Inset
462	shows XRD patterns in Co_2MnAl and $Co_2MnAl_{0.63}Si_{0.37}$ thin films in the 2 θ range of
463	(111) peak. T_{ann} dependence of σ_{xy} , S_{SE} , S_{ANE} and α_{xy} in Co ₂ MnAl and
464	$Co_2MnAl_{0.63}Si_{0.37}$ are shown in (b),(c), (e) and (f), respectively. The arrows in (f) is the
465	theoretical α_{xy}^{int} for $L2_1$ and $B2 \operatorname{Co}_2 \operatorname{MnAl}_{0.63} \operatorname{Si}_{0.37}$. (d)External magnetic field

- 466 dependence of V_{ANE} normalized by the sample width w and given temperature gradient
- ∇T in Co₂MnAl_{0.63}Si_{0.37} annealed at different temperature.

Si composition

Tann