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Two-dimensional stacking fault defects embedded in a bulk crystal can provide a homogeneous
trapping potential for carriers and excitons. Here we utilize state-of-the-art structural imaging cou-
pled with density functional and effective-mass theory to build a microscopic model of the stacking-
fault exciton. The diamagnetic shift and exciton dipole moment at different magnetic fields are
calculated and compared with the experimental photoluminescence of excitons bound to a single
stacking fault in GaAs. The model is used to further provide insight into the properties of excitons
bound to the double-well potential formed by stacking fault pairs. This microscopic exciton model
can be used as an input into models which include exciton-exciton interactions to determine the
excitonic phases accessible in this system.

I. INTRODUCTION

The stacking fault (SF), a misordering of lattice planes
in a crystal lattice, is a prevalent two-dimensional (2D)
crystal defect which can affect the mechanical, optical,
and electrical properties of a material [1–4]. While typ-
ically the macroscopic properties of a material are stud-
ied as a function of defect density [5], the recent isolation
of large-scale (∼10 µm) stacking faults in GaAs enabled
the study of excitons bound to a single stacking fault [6].
The high-homogeneity of the excitonic emission, combined
with the measured giant static dipole moment, indicate the
atomically-thin stacking-fault potential may be a promising
platform for the realization of novel excitonic phases [7, 8].
Due to the built-in static dipole moment, the excitons bound
to the SFs in GaAs demonstrate the magneto-Stark effect:
In the reference frame of an exciton moving across the mag-
netic field, an effective electric field appears which results
in the Stark shift of the exciton energy. The magneto-Stark
effect results in a non-reciprocal variation of the exciton en-
ergy in a magnetic field: For positive and negative directions
of the magnetic field and fixed direction of exciton propaga-
tion the energy shift has opposite signs [6]. As shown in ear-
lier studies of excitons in bulk materials, this effect provides
a direct proof of exciton motion in the crystal [9, 10]. It
is also of importance in nonlinear optics in semiconductors,
providing a mechanism of, e.g., second harmonic generation
on otherwise forbidden excitonic states [11].

To gain a further insight into the magneto-optics of exci-
tons, their lifetime and exciton-exciton interactions, knowl-
edge of the confinement potential and wave function of the
stacking-fault exciton is required. Advancements in struc-
tural imaging and density functional theory calculations,
combined with our ability to optically isolate and charac-
terize excitons on a single fault, provide an unprecedented
opportunity to quantitiatively understand the stacking-fault
exciton. As a result, in this paper we develop a micro-
scopic model of the stacking-fault potential and SF exciton

wave function in GaAs. Within this model the exciton hole
is localized at the SF plane and the electron is bound via
Coulombic attraction to the hole. An electric field due to the
spontaneous polarization across a single SF plane is mod-
elled by a step-function which results in the large electron-
hole separation of about 10 nm. Variational method calcu-
lations based on this potential are found to be in reasonable
agreement with experiment with respect to the observed
diamagnetic shift and static dipole moment in single stack-
ing faults. The model further provides an explanation for
the two-fold larger dipole moment observed in double-well
potentials formed by stacking fault pairs, suggesting that
these double-well structures could provide further tunabil-
ity in the excitonic properties.

The paper is organized as follows. In Sec. II we present
the structural images of the SFs via electron microscopy.
Further, we present the microscopic model of the SF poten-
tial in Sec. III. Section IV provides a detailed comparison
between the calculated excitonic properties of SFs with the
experiment in terms of key parameters such as diamagnetic
shifts and magneto-Stark effect demonstrating the validity
of the model. The paper is summarized with a brief conclu-
sion in Sec. V.

II. STRUCTURAL IMAGING OF SINGLE AND
DOUBLE STACKING FAULTS

Cross-sectional scanning transmission electron mi-
croscopy (STEM) analysis of two different stacking-fault de-
fects, the pyramid and trapezoid, was performed to deter-
mine the structure of the defects. The experimental image
is compared to the result of multislice image simulations
based on ab initio calculations (Appendix A); these results
show an excellent agreement. The stacking faults are em-
bedded in the GaAs epitaxial layer which is grown on a
(100)-terminated GaAs substrate. The location of the faults
are identified by oval defects at the surface [12]. The geome-
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FIG. 1: (a) The geometry of the cross section of the STEM images. The black rectangles show the cross section plane and
the dashed lines show where the stacking faults are. (b-c) Cross-sectional STEM images of stacking faults in the pyramid
and trapezoid samples. (b) is overlaid with multislice image simulations based on ab initio models, showing an excellent
match between experiment and theory. These images are the result of non-rigid alignment and template matching, as

described in Appendix A.

try of the cross-section with respect to the structure is shown
in the insets of Fig. 1(a). As shown in Fig. 1(b), in the pyra-
mid structure we observe an isolated stacking fault plane
parallel to the (111) plane. Based on these observations,
it is confirmed that excitons are bound to a single, highly
homogeneous stacking-fault in the pyramid structure. In
contrast, the trapezoid structure shown in Fig. 1(c) exhibits
closely spaced intrinsic-extrinsic stacking-fault pairs. In this
particular trapezoid, the planes are separated by ∼ 5.5 nm
in the [111]-type direction, but this distance can vary from
one structure to another. Thus for trapezoid structures, ex-
citons are bound to a pair potential, in which the stacking-
fault separation is expected to impact the bound-exciton
properties.

III. MICROSCOPIC MODEL

A. Single stacking fault at zero magnetic field

We first consider excitons bound to a single stacking fault
at zero magnetic field. The stacking fault is positioned
at z = 0, with z ‖ [111], and occupies the xy-plane with
x ‖ [112̄], y ‖ [1̄10]. We consider excitons described by
the wave function ΨX = ψ(re, rh)uc(re)uv(rh), where uc
and uv are the Bloch functions of the conduction band (Γ6

representation of the Td point group) and the heavy-hole
valence subband (Γ8,±3/2 representation of the Td point
group), respectively, and ψ(re, rh) is the two-particle enve-
lope function. Note, that the admixture of the light-hole
component to the hole state in the exciton is negligible [6].

To obtain the exciton spectrum in the absence of a mag-
netic field, we solve the Schrödinger equation

Hψ = εψ, (1)

for the exciton envelope function ψ(re, rh) and energy ε

with the following Hamiltonian

H =
p2e

2me
+
p2hx + p2hy

2mh,‖
+

p2hz
2mh,⊥

+

+ Eg + VSF(ze, zh)− e2

κ|re − rh|
. (2)

Here pe,h = −i~∇e,h are the electron and hole momentum
operators, me, mh,‖ and mh,⊥ are the components of the
electron and hole effective-mass tensors, Eg is the energy
gap of the bulk material, VSF is the stacking-fault poten-
tial experienced by the electron and hole, e is the electron
charge and κ is the static dielectric constant of the back-
ground medium. The electron effective mass is isotropic,
whereas the heavy-hole effective-mass tensor has different
components for the motion in the stacking fault plane (mh,‖)
and in the z-direction (mh,⊥) [13–15].

We suggest that the presence of a single stacking fault
modifies the electron and hole bands, yielding a potential in
the following form

VSF(ze, zh) = V0Θ(−ze)− V0Θ(−zh)− u0δ(zh) , (3)

where Θ(z) and δ(z) are the Heaviside and Dirac delta func-
tions, respectively. V0 and u0 are positive parameters. This
potential is sketched in Fig. 2(a). The model potential
binds the hole in z-direction due to the δ-function term,
but does not bind the electron. The electron in the exciton
is then attracted to the hole due to the Coulomb interac-
tion. The parameter V0 describes the band offset related
to the presence of the built-in spontaneous electric polar-
ization, and consequently the electric field, in the stacking
fault layer [16–18]. Thus, V0 is equal to the electrostatic po-
tential change across the SF. The delta-function term that
confines the hole models the type-II band alignment, which
is believed to appear between the GaAs zinc-blende and
wurtzite phases [19–21]. The value of u0 can be estimated as
a product of the valence band offset between the zinc-blende
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single SF double SF(a) (b)

FIG. 2: Sketch of the conduction and valence band poten-
tials for single (a) and double (b) stacking fault structures
(in the electron representation). The blue and red dashed
lines schematically depict the z-distribution of electron and
hole density in the exciton, respectively. εh denotes the hole
binding energy and εB denotes the exciton binding energy.
The insets illustrate the pyramid and trapezoid structure
embedded in the crystal, z is in the direction perpendicular

to the stacking fault plane.

and wurtzite phases of GaAs ∆Ev and the effective SF width
dSF. Using ∆Ev = 117 meV [20] and dSF ∼ 10 Å we obtain
u0 ∼ ∆EvdSF ∼ 1 eVÅ. The same delta-term for the con-
duction band is neglected since it does not bind an electron
and, hence, only slightly modifies electron wave function.
We also note, that there is an energetically close, second
conduction band in the wurtzite phase of GaAs [20], how-
ever this band is far in energy in a structure with a thin
wurtzite layer surrounded by the zinc-blende crystal [22],
and therefore is neglected in the following. The suggested
potential agrees well with density functional theory (DFT)
calculations of the stacking fault electrostatic potential and
single-particle wave functions which predicts V0 ≈ 10 meV
and a hole confinement length of ∼ 4 nm (see Appendix B
for details).

The confinement energy of a hole bound to potential (3)
is

εh = ε0

(
1− V0

4ε0

)2

, (4)

where ε0 = mh,⊥u20/(2~2). The potential binds the hole if
V0 < 4ε0, which is true for our system, where V0 ≈ 10 meV
and εh ≈ 10 meV (corresponding to ε0 ≈ 15 meV), as will
be shown below. The localization length of the heavy hole in
the z-direction is ah ∼ [2~2/(mh,⊥εh)]1/2. To simplify the
calculation, in the following we assume that ah = 0, so that
the hole is tightly bound to the stacking fault and zh = 0.
The validity of this assumption is supported by the ∼4 nm
DFT hole confinement length, which is much less than the
∼ 20 nm exciton diameter. By contrast, the electron re-
mains bound only due to the Coulomb interaction with the
hole. Note, that the model potential of ZnSe SFs suggested
recently in [23] does not bind a hole. It may be related to

large electric field inside the ZnSe SFs as compared to GaAs
SFs (∼ 5 times larger), which prevents the binding of a hole
(as described by Eq. (4) at V0 > 4ε0).

In the absence of an external magnetic field, the exci-
ton envelope can be written as ψ(re, rh) = ϕ(r)exp (iKR),
where r = re−rh is the coordinate of relative motion (note,
that z = ze), and R and K are the coordinate and the wave
vector of the exciton center-of-mass in the stacking fault
plane. The effective Hamiltonian that acts on the exciton
envelope function ϕ(r) is

H0 =
p2x + p2y

2µ
+

p2z
2me

+ V0Θ(−z)− e2

κ|r|
, (5)

with µ−1 = m−1e +m−1h,‖. The exciton center of mass disper-

sion is discussed further in Sec. III B.
To solve the Schrödinger equation with the Hamilto-

nian (5) we use the variational approach. We choose ϕ(r)
in the form

ϕ(r) = N exp

(
−
√
ρ2

a2
+
z2

c2

)
f
(z
c

)
, (6)

where ρ = (x, y), N is the normalization constant,

f(ξ) = (1 + αξ)Θ(ξ) + eαξΘ(−ξ) , (7)

and a, c and α are variational parameters. The parameters
a and c are the effective in-plane and z-sizes of the exciton,
the function f(ξ) describes the asymmetric confinement of
the electron. Correspondingly, the dimensionless parameter
α > 0 determines the asymmetry of the exciton wave func-
tion in the z-direction, which is caused by the asymmetry
of the electron distribution. The wave function (7) well de-
scribes the behavior of the electron z-distribution with the
change of V0 in Eq. (3): At α = 0, which corresponds to
V0 = 0, we have a symmetric distribution, f(ξ) = 1, and at
α � 1, which corresponds to large values of V0, the wave
function f(ξ) vanishes at ξ ≤ 0, and the electron does not
penetrate the barrier.
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FIG. 3: Exciton binding energy (a) and electron-hole sep-
aration (b) as functions of the stacking fault band offset.
Solid and dashed lines depict the results for the hydrogen-

like and Gaussian trial exciton wave functions.
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Figure 3 shows the results of our variational calculations
for the Hamiltonian (5) and the trial function (6). We plot
the exciton binding energy εB = −〈ϕ|H0|ϕ〉 and the aver-
age distance between the electron and hole in the z-direction
deh = 〈ϕ|z|ϕ〉, as functions of the band offset V0. In the cal-
culations we use me = 0.07 m0, κ = 12, and three different
values for mh,‖: 0.1 m0, 0.2 m0 and +∞. The infinite case
corresponds to an electron bound on a donor that is located
at the stacking fault plane.

Additionally, the dashed lines in Fig. 3(a) present the
results using a simplified Gaussian-like trial wave function

ϕ̃(r) = N exp

(
− ρ2

2a2
− z2

2c2

)
f
(z
c

)
, (8)

with f given by Eq. (7). The binding energy of the
Coulomb potential calculated using the Gaussian-like func-
tion is EB = (8/3π)Ry, where Ry = mee

4/2κ2~2, which is
≈ 15% smaller than the exact value. These two values are
positioned on the red lines in Fig. 3(a) at V0 = 0. By com-
paring solid and dashed lines in Fig. 3a we conclude that the
trial wave function (8) results in a 15−20 % smaller exciton
binding energy than the more accurate hydrogen-like wave
function (6) also for V0 6= 0. However, the results for the
electron-hole separation using the Gaussian-like trial func-
tion agree well with the ones obtained for the hydrogen-like
trial function. This agreement motivates using a Gaussian-
like trial wave function to calculate the electron-hole sep-
aration in the more complicated case where the magnetic
field B 6= 0.

B. Single stacking fault at non-zero magnetic field

An external magnetic fieldB applied in the stacking fault
plane brings the electron and hole closer and shrinks the
exciton wave function. This results in the diamagnetic shift,
which is quadratic in B, and also in the decrease of deh,
yielding the suppression of the magneto-Stark effect. In
a wide range of magnetic fields applied in the experiment,
these effects cannot be treated perturbatively. Thus, we now
consider an exciton bound at the single stacking fault in the
presence of an external magnetic field B ‖ y. The exciton
Hamiltonian is obtained from Eq. (2) using the substitution
pe → pe − (e/c)A(re) and ph → ph + (e/c)A(rh), where
A is the vector potential chosen to be the symmetric form
A(r) = B(z/2, 0,−x/2).

Since we assume the strong hole confinement in the z-
direction, we can neglect the influence of the in-plane mag-
netic field on the heavy-hole motion along the stacking fault
normal. Hence, the exciton diamagnetic shift including the
field-induced variation of the average electron-hole separa-
tion is determined by the electron component. In the pres-
ence of a magnetic fieldB ‖ y, the momentum of the exciton
center of mass should be written as

Px = −i~
∂

∂xe
− i~

∂

∂xh
− 1

2
meωcz , Py = pey + phy , (9)

where ωc = |e|B/(mec) [24], see also Refs. [25–27] in which
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FIG. 4: Calculated exciton diamagnetic shift (a) and
magneto-Stark shift (b) for different values of the hole in-
plane mass mhh,‖. The dotted line in panel (a) is the
diamagnetic shift of a free electron (~ωc/2). Here, V0 =

10 meV.

quasi-two dimensional excitons in an in-plane magnetic field
were studied. The exciton envelope wave function then
reads

ψ(r,R) = exp

[
i

(
Px +

1

2
meωcz

)
X

~
+ iPy

Y

~

]
ϕ(r) . (10)

Here Px and Py are the eigenvalues of the center of mass
momentum operator in Eq. (9).

Using the wave function (10) and the general Hamilto-
nian (2), we obtain the effective Hamiltonian that describes
the internal motion of the exciton (at Px = Py = 0):

HB =
[px + (me − µ/2)ωcz]

2

2me
+

(pz − µωcx/2)2

2me
+

+
(px − µωcz/2)2

2mh,‖
+
p2y
2µ

+ V0Θ(−z)− e2

κ|r|
. (11)

To obtain the ground state of the exciton in a magnetic field,
we use the following trial wave function

ϕB(r) = N exp

(
− x2

2a2
− y2

2b2
− z2

2c2

)
f
(z
c

)
(12)

with four variational parameters a, b, c and α, and f given
by Eq. (7). At B = 0, we have a = b and this wave function
coincides with (8). Although this wave function does not al-
low one to evaluate accurately the exciton binding energy at
B = 0, it provides reasonable accuracy for the electron-hole
separation and allows to substantially simplify numerical
calculations as discussed above. The diamagnetic shift of
the exciton energy is then determined by

ED = 〈ϕB |HB |ϕB〉 − E0 , (13)

where E0 = 〈ϕB |HB |ϕB〉 at B = 0.

In order to evaluate the magneto-Stark effect, we calculate



5

the center of mass dispersion of the exciton making use of
the following relations for the exciton velocity v(P ) and the
exciton kinetic energy E(P ) [24]:

v =
dE(P )

dP
, P = Mv(P )− e

c
[B × r]. (14)

where M = me +mh,‖ is the mass for exciton translational
motion in the SF plane. Solving Eq. (14), we obtain

E(P ) =
(Px − eBdeh/c)2

2M
+
P 2
y

2M
. (15)

Here the electron-hole separation deh generally depends on
the magnetic field. Equation (15) allows us to evaluate the
magneto-Stark shift of the exciton energy as

ES = −ePxBdeh
Mc

= β′KxB, (16)

where the parameter β′ = −e~deh/(Mc) describes the
slope of the magneto-Stark shift and Kx = Px/~ is the x-
component of the exciton wave vector that is defined by the
experiment geometry, see Eq. (19) in Sec. IV. At low mag-
netic fields β′ does not depend on the magnetic field and is
determined by the electron-hole separation deh at B = 0,
which is calculated in Sec. III A and shown in Fig. 3b.

Figure 4 illustrates the dependence of the diamagnetic
shift (13) and magneto-Stark shift (16) on the magnetic
field. The magnetic field lying at the SF plane shrinks the
exciton wave function in the xz-plane and, thus, reduces
the electron-hole separation deh. Therefore, magneto-Stark
shift grows sublinearly with increasing B, tends to satura-
tion at large fields and then decreases at even larger fields,
when the reduction of deh is faster than ∝ 1/B. The dia-
magnetic shift dependence changes from quadratic to linear
in B with increasing magnetic field. At large B the exci-
ton diamagnetic shift is equal to the one of a free electron
modified by logarithmic corrections due to effective one-
dimensional Coulomb attraction to the hole [28].

Here we provide a brief comparison of the theoretical
and experimental magneto-Stark slope β′Kx at low mag-
netic fields to illustrate that the model is reasonable. A
comparison to the full experimental field dependence of
the diamagnetic and magneto-Stark shifts will be given in
Sec. IV. The experimental value of the parameter β′expKx ≈
350 µeV/T measured in the pyramid stacking fault [6]
corresponds to β′thKx for a reasonable set of values, i.e.,
mh,‖ = 0.1 m0, V0 = 7 meV using the experimental value

of |Kx| ≈ 1.6 × 105 cm−1. The choice of parameters is not
unique. For example, the same value of the magneto-Stark
slope can be achieved at mh,‖ = 0.14 m0 and V0 = 10 meV.
This ambiguity is related to the fact that the exciton mass
and the electron-hole distance enter only as a combination
deh/M , thus, simultaneous increase of the exciton mass and
electron-hole separation (by increasing the band offset V0,
see Fig. 3(b)) results in the same value of β′ in Eq. (16).
We leave mh,‖ as a free parameter of our model, since the
calculation of mh,‖ requires the knowledge of the full va-
lence band spectrum for z-motion, and is out of scope of

the present paper (see Supplementary material of Ref. [6]
for details).

The value of the electric field inside the SF that corre-
sponds to V0 = 10 meV and the width of SF 10 Å (see
Appendix B for details) is F ≈ 0.1 MV/cm, which is in line
with the experiments on polytypic GaAs nanowires, where
F lies in the range of 0.18 to 0.27 MV/cm [18]. On the
other hand, this electric field is about 5 times smaller than
in ZnSe SFs [23] and about 25 times smaller than in GaN
SFs [16].

C. Double stacking fault

Besides the pyramid configuration, when SF planes are
isolated, SFs can appear in a form of closely lying parallel
planes, Fig. 1(b). In this trapezoid configuration an exciton
is bound to a double SF potential sketched in Fig. 2(b). We
model this potential as a sum of two single SF potentials
with the same band offset:

V2SF(ze, zh) = VSF(ze, zh) + VSF(ze − L, zh − L) , (17)

where L is a separation between SF planes, and VSF is a
single SF potential given by Eq. (3). The assumption that
both SFs in a pair have the same direction of the built-
in electric field follows from the experimentally observed
approximately twice increase of the exciton electric dipole
moment as compared to the single SF case (see Sec. IV B
for details) and the DFT calculations (see Appendix B).

We assume that the separation between the SFs is of the
order of the hole confinement length in z-direction ah, which
is around a few nanometers, but is much smaller than the
electron-hole separation deh, which is of the order of tens
of nanometers. In that case an electron “sees” the double
SF structure as a single SF with a twice increased built-in
electric field (band offset equal to 2V0), and hence, as it
follows from Fig. 3, the deh parameter for a double SF also
increases approximately two fold. On the other hand, the
hole energy depends significantly on the SF separation. If
L � ah, the hole resides at the SF at zh = 0 and does not
“feel” another SF. With the decrease of L, when L ∼ ah,
the hole confinement energy increases and its wave function
is distributed over both SFs. In the limit L = 0 the hole
energy is found from Eq (4) with u0 → 2u0 and V0 → 2V0,
respectively. The dependence of hole confinement energy εh
on L is shown in Fig. 5.

The scheme of exciton optical recombination is sketched
in Fig. 2. The transition energies of an exciton bound to a
single and double SFs are

~ω1 = Eg − V0 − εh1 − εB1 ,

~ω2 = Eg − 2V0 − εh2 − εB2 , (18)

where εh1(2) is the confinement energy of a hole bound to a
single (double) SF potential, and εB1(2) is the corresponding
exciton binding energy. Neglecting the difference between
SF and bulk exciton binding energies, the shifts of SF-bound
exciton PL lines with respect to the bulk one are ~ω3D

X −
~ω1 ≈ V0 + εh1 and ~ω3D

X − ~ω2 ≈ 2V0 + εh2.
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IV. COMPARISON TO EXPERIMENT

A. Magneto-photoluminescence

Photoluminescence (PL) spectra taken at different mag-
netic fields are studied to verify the microscopic model. The
MBE-grown GaAs sample [6] is mounted in a continuous he-
lium flow cryostat at 1.5 K with a variable magnetic field
from 0 to 7 T. PL from both pyramid and trapezoid 10 µm-
scale stacking fault structures is clearly resolved using an
optical confocal setup with a resolution of ∼1 µm. The ex-
perimental geometry and typical PL spectra at B = 0 and

B = ±7 T are shown in Fig. 6. The crystal [001] direc-
tion is perpendicular to the magnetic field B ‖ [1̄10] and
parallel to the optical axis. The collected stacking fault PL
corresponds to excitons with in-plane momentum

Kx =
ωn

c
sin θSF (19)

where θSF = 54.7◦ is the angle between the stacking fault
normal and the emitted photon momentum, ω is the photon
frequency, n is the refractive index and c is the speed of light.
The collected PL from excitons with a wave vector −Kx is
much weaker than the PL from +Kx excitons, because −Kx

excitons emit photons propagating towards the substrate
and only backscattered light can be collected.

The magneto-PL spectra have similar properties for both
the pyramid and trapezoid structures. At B = 0 T, a sin-
gle PL peak is observed due to the recombination of ex-
citons bound to the stacking fault plane. At B = ±7 T,
the main peak is split into a doublet due to the electron
Zeeman splitting. At B = −7 T, in addition to the main
doublet, a weaker doublet is observed at lower energy. This
doublet has the same energy as the peak at B = 7 T, and
thus, is attributed to excitons with −Kx momentum. The
origin of the peaks near ~ω = 1.4925 eV observed in the
trapezoid structure at B = ±7 T is unknown. The dia-
magnetic and magneto-Stark shifts are clearly observed in
the magneto-PL spectra, as illustrated in Fig. 6. Figure 7
shows these experimental shifts as a function of magnetic
field. The B-field dependence of diamagnetic and magneto-
Stark shifts is in agreement with the microscopic model pre-
sented in Sec. III B, i.e. at low field the diamagnetic shift is
∝ B2 and the magneto-Stark shift is ∝ B, whereas at high
field diamagnetic shift tends to a linear B-dependence and
the magneto-Stark shift exhibits a sublinear B-dependence.
The origin of the change at high field is the decrease of the
electron-hole separation deh induced by the magnetic field.

By fixing mh,‖ = 0.14 m0 and using V0 = 10 meV to fit
the slope of the magneto-Stark shift at low magnetic fields,
we obtain a qualitative agreement between the experimental
and theoretical data for the pyramid structure at both low
and high B-fields, as shown by the dashed lines in Fig. 7. As
suggested by the double SF model presented in Sec. III C,
an electron in the trapezoid SF experiences the two-fold in-
crease of the electric field as compared to the pyramid SF.
By taking mh,‖ = 0.14 m0 and V0 = 20 meV, we obtain
a reasonable agreement between the experimental and the-
oretical data for the trapezoid structure, see Fig. 7. The
larger value of the magneto-Stark shift in the experiment as
compared to the theory might be caused by several reasons.
One of the reasons is that the trapezoid structure consists
of extrinsic and intrinsic SFs, see Fig. 1c, which may have
different values of V0. Thus, the actual increase of effective
electric field in the double SF as compared to the single one
might be larger than two. Another reason might be a slight
increase of deh with increased SF separation, which is not
taken into account in the theory.
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trapezoid SF, respectively.

B. Variance of PL in trapezoid structures

The PL properties from different trapezoid structures ex-
hibit a large variance relative to the pyramid structures.
This is attributed to the variable separation between the
two parallel stacking fault planes. Figure 8(a) shows the
distribution of 0 T PL energies for 133 different trapezoid
structures and 5 different pyramid structures (correspond-
ing to 20 single stacking fault planes). For the pyramid
structures, the stacking-fault excitons only emit at PL en-
ergy ESF = 1.4928 and 1.4959 eV. For the trapezoid struc-
tures, ESF varies from 1.487 to 1.491 eV. Between 1.4875
and 1.4891 eV, 4 discrete energies are observed: 1.4875,
1.4882, 1.4887 and 1.4891 eV. At higher energies, the dis-
tribution is continuous.

To further understand this effect, the trapezoid PL in-
tensity and electron-hole separation are investigated, as
shown in Fig. 8(b-c). The electron-hole separation is de-
rived from the magneto-Stark shift, see Eq. (16). Through-
out this discussion we assume M = 0.17m0, which corre-
sponds to mh,‖ = 0.1 m0 and the electron effective mass
me = 0.07 m0. The electron-hole separation for the trape-
zoid is approximately double that of the pyramid and it
slightly increases with ESF. The PL intensity for trapezoids
emitting at one of the 4 discrete energies does not change
with ESF. In contrast, for trapezoids with ESF > 1.4891 eV,
the intensity increases with increasing ESF. We further note
that for these high energy trapezoids, the PL spectra con-
tain two distinct stacking-fault exciton peaks, as shown in
Fig. 8(d). The main peak corresponds to an exciton with
electron-hole separation of 22.5 nm and the weak peak corre-
sponds to an electron-hole separation of 12.4 nm. Possibly,
this can be attributed to two different electron locations, as
shown in Fig. 8(f). The quantitative analysis of the inter-
play between the main and the weak peaks is beyond the
scope of this work. For trapezoids with PL energy at one of
the 4 discrete values between 1.4875 to 1.4891 eV, the 2nd
peak is not observed. We attribute this to a higher tunnel-
ing rate from the metastable (weak peak) configuration to
the stable configuration (main peak) or a delocalization of

the hole wavefunction over both faults (Sec. III C when the
two stacking faults are close.)

It follows from the microscopic model shown in Sec. III C,
that the doubling of deh of the double SF compared to the
single SF is due to the existence of the double step poten-
tials and the small separation between two SFs. Such a
shape of potential leads to approximately two-fold increase
of the electric field experienced by an electron. On the other
hand, the experimentally observed spread of emission energy
is mainly caused by the variation of the hole confinement
energy with the distance between two SFs. Comparison
between the theoretical dependence, shown in Fig. 5, and
the experimental distribution of the exciton emission en-
ergy suggests that the SF separation is around 4−6 nanome-
ters. This conclusion is also confirmed by the STEM data
on trapezoid SFs shown in Fig. 1(c), where the distance of
≈ 5.5 nm between the SFs is measured.

As shown in Fig. 5, with the increase of the SF separation
the hole confinement energy decreases, and thus, the exci-
ton emission energy, see Eq. (18), increases. The spread of
the hole wave function also increases with larger SF separa-
tion, leading to larger electron-hole wave function overlap,
and thus, the increase of the PL intensity. These conclu-
sions qualitatively agree with the continuously distributed
data (ESF > 1.4891 nm) shown in Fig. 8(a-c). A slight
increase of deh with the PL energy, observed in Fig. 8 (c),
may be attributed to increased SF separation. The origin
is still not clear for the 4 discretely distributed PL energies,
i.e. ESF =1.4875, 1.4882, 1.4887 and 1.4891 eV. A plausible
theory is that only certain SF separations are energetically
allowed for forming stable double SF structures if the SF
separation is small. This theory could be confirmed by fur-
ther a correlated optical-structural imaging study of several
trapezoid structures.

V. CONCLUSION

In conclusion, we have developed a microscopic model
of the stacking-fault potential and exciton wavefunction
in GaAs. Specifically, the SF potential provides a delta-
function like confinement for the hole and a step-like po-
tential for the electron. Variational method calculations
for the exciton diamagnetic and magneto-Stark shifts show
good agreement between theory and experiment for the sin-
gle stacking-fault potential. This comparison together with
DFT calculations of electronic spectrum allowed us to esti-
mate the band offset at the SF plane as ∼ 10 meV , which
corresponds to the built-in electric field F ∼ 0.1 MV/cm.
The model also qualitatively describes the two-fold increase
in the exciton dipole moment observed in the double stack-
ing fault structure, suggesting an average inter-fault dis-
tance of 4−6 nm. This value is also confirmed by the
STEM measurements of the trapezoid SFs. The proper-
ties of stacking-fault excitons not only have implications for
improving GaAs technologies such as solar cells and LEDs
[5, 29–31], but also provide insight into understanding po-
tential exciton-exciton interactions and whether new exci-
tonic phases are accessible in this system or similar systems
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[32, 33].
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Appendix A: Structural imaging

Cross-sectional STEM samples were prepared using a FEI
Helios NanoLab DualBeam Focused Ion Beam (FIB) micro-
scope and a standard lift out procedure along the GaAs [110]
zone-axis, with initial cuts made at 30 kV and final polish-
ing at 2 kV. High-angle annular dark field (HAADF) images
were collected on a probe-corrected JEOL GrandARM-300F
microscope operating at 300 kV, with a convergence semian-
gle of 29.7 mrad, and a collection angle of 72–495 mrad. To
minimize scan artifacts and improve signal-to-noise, drift-
corrected images were prepared using the SmartAlign plu-
gin [34] for this, a series of ten frames at 1024 × 1024 pix-
els with a 2 µs px−1 dwell time and 90◦ rotation between
frames was used. The frames were up-sampled 2× prior to
non-rigid alignment, followed by template matching paral-
lel to the fault direction. Full multislice image simulations
were conducted with the PRISM code [35] for several can-
didate structures from ab initio calculations. Simulations
were performed using a 1 × 4 tiling for crystal thicknesses
of 50, 100, and 150 u.c., corresponding to 20, 40, and 60
nm, respectively. Imaging parameters were matched to the
experiment and a 0.05 Å px−1 sampling, 2 Å slice thickness,
and 10 frozen phonon passes were used for the final simu-
lations. From these simulations, the 60 nm simulation was
compared to the experiment.

We have performed a series of multislice image simula-
tions based upon our ab initio calculations for both the ex-
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trinsic and intrinsic stacking fault structures. Simulations
were conducted across range of reasonable sample thick-
nesses, using the same experimental imaging conditions, as
shown in Fig. 10. We find a good agreement between the
real and simulated structures, supporting the validity of our
calculations. We observe only subtle changes in image con-
trast with increasing thickness and find that the 150 u.c.
model is most consistent with our prior knowledge of the
sample and the measured data.

Appendix B: DFT calculations of the stacking fault
electronic structure

In order to estimate the value of the band offset V0 and
analyze single-electron states in the presence of the stack-
ing fault, we performed the DFT calculations using the
WIEN2k package with mBJ exchange-correlation poten-
tial [36, 37]. We performed calculations for two types of
stacking faults, an intrinsic and an extrinsic one, that have
different order of layers in the vicinity of the stacking fault,
see the insets of Figs. 9a, b. To estimate the electrostatic
potential in the stacking fault structure we applied the pro-
cedure described in Refs. [23, 38, 39], which involves tracking
the position of the core 1s level at Ga and As atoms in the
structure. The presented calculations were performed for
relaxed structures, however we found that the value of V0
is only slightly different in relaxed and non-relaxed struc-
tures. The calculations predict that the energy gap of the
bulk zinc-blende phase is about 200 meV larger than that
of the bulk wurtzite phase. This result differs from the re-
sults of most DFT calculations known from literature, which
predict a larger energy gap of the bulk wurtzite phase, e.g.,
≈ 32 meV difference obtained in Ref. [20]. This discrep-
ancy is probably due to the simplified version of the DFT
procedure we use. To obtain more accurate values of fun-

damental gaps one should use more sophisticated methods
(such as GW corrections or LDA-1/2). However, for the
ground state calculations, which we perform here, our sim-
plified approach seems to be reasonable.

The extracted electrostatic potential is shown in Figs. 9a,
b. In agreement with previous results on the ZnSe stacking
faults [23], we observe an overall jump of electrostatic po-
tential when crossing the stacking fault region. The linear
behavior of the potential, i.e. non-zero electric field, outside
the stacking fault region is an artifact of periodic boundary
conditions used in numeric calculation. We checked that
this field decreases with an increase of the elementary cell
length. The oscillations of the potential, and correspond-
ingly, of the electric field in the vicinity of the stacking fault
are not eliminated by the increase of the calculation ac-
curacy and the cell length. These oscillations reflect the
atomic-scale oscillations of the charge density in the stack-
ing fault region. The electrostatic potential change across
the SF, which corresponds to the V0 parameter in Eq. (3),
is V0 ≈ 10 meV and has the same sign for both intrinsic and
extrinsic stacking faults. The corresponding electric field in-
side the SFs is ≈ 0.1 MV/cm, which is about 5 times smaller
than in ZnSe SFs [23] and about 25 times smaller than in
GaN SFs [16].

Figures 9(c-e) show the behavior of the electron density
across the stacking fault. It is seen that the lowest state
in the conduction band is delocalized, whereas the high-
est state in the valence band is localized with the localiza-
tion length ah ≈ 40 Å (full width of density at 1/e2). We
checked that ah does not depend on the supercell size, see
Figs. 9d,e. Hence, the stacking fault tightly binds a heavy
hole and does not localize an electron, in agreement with the
suggested model potential (3). Using mh,⊥ ≈ 0.95m0 [15],
the hole confinement energy εh = 2~2/(mh,⊥a2h) ≈ 10 meV.
The energy shift between the bulk exciton and stacking-
fault exciton is εh + V0 ≈ 20 meV, which agrees well with
the experimental value ≈ 19 to 22 meV.
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FIG. 10: Series of multislice image simulations performed for the extrinsic (top) and intrinsic (bottom) stacking fault
structures for 50, 100, and 150 u.c. thick crystals using the PRISM code.
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