

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Phonon scattering limited mobility in the representative cubic perovskite semiconductors SrGeO_{3}, BaSnO_{3}, and SrTiO_{3}

Christian A. Niedermeier, Yu Kumagai, Keisuke Ide, Takayoshi Katase, Fumiyasu Oba,

Hideo Hosono, and Toshio Kamiya

Phys. Rev. B **101**, 125206 — Published 24 March 2020 DOI: 10.1103/PhysRevB.101.125206

Phonon scattering limited mobility in the representative cubic perovskite semiconductors SrGeO₃, BaSnO₃ and SrTiO₃

Christian A. Niedermeier,^{1,*} Yu Kumagai,¹ Keisuke Ide,¹ Takayoshi Katase,¹ Fumiyasu Oba,^{1,2,} Hideo Hosono,^{1,2} and Toshio Kamiya^{1,2} **Corresponding author: c-niedermeier@mces.titech.ac.jp*

¹Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama 226-8503, Japan

²Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama 226-8503, Japan

Keywords: cubic perovskite SrGeO₃, single crystal growth, optical phonon scattering, electron mobility

Abstract: Cubic perovskite oxides are emerging high mobility transparent conducting oxides (TCOs), but Ge-based TCOs had not been known until the discovery of metastable cubic SrGeO₃. $0.5 \times 0.4 \times 0.2 \text{ mm}^3$ large single crystals of the cubic SrGeO₃ perovskite were successfully synthesized employing the high-pressure flux method. The phonon spectrum is determined from the IR optical reflectance and Raman scattering analysis to evaluate the electron transport governed by optical phonon scattering. A calculated room-temperature mobility in the order of $3.9 \times 10^2 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$ is obtained, identifying cubic SrGeO₃ as one of the most promising TCOs. Employing classical phonon theory and a combined experimental-theoretical approach, a comprehensive analysis of the intrinsic electron mobility in the cubic perovskite semiconductors SrGeO₃, BaSnO₃ and SrTiO₃ is provided based on the magnitude of polarization and eigenfrequency of optically active phonons.

I. INTRODUCTION

TCOs are emerging materials combining high electrical conductivity and optical transparency in the visible spectral region, and present important applications in optoelectronic devices. Since the discovery of the high-mobility two-dimensional electron gas in oxide heterostructures,¹ perovskites became particularly attractive for advanced semiconductor technology as they facilitate a new design of future electronic devices due to the unique physics occurring at the interfaces of hetero-junctions.² The recent reports of the remarkably high electron mobility at cryogenic temperatures in La:SrTiO₃ epitaxial films (>50000 cm²V⁻¹s⁻¹)^{3,4} and at room temperature (RT) in La:BaSnO₃ single crystals (320 cm²V⁻¹s⁻¹)^{5,6} sparked significant interest in understanding the fundamentals of the intrinsic electron transport in perovskites and their application in heterostructures.^{7–9}

The discovery of the first Ge-based TCO, cubic perovskite $SrGeO_3$,¹⁰ invites for the exploration of a new promising, emerging material for application in electronics. The large conduction band (CB) dispersions in the main group element cubic perovskites $SrGeO_3$ and $BaSnO_3$ originate from the regular octahedral coordination of the Ge^{4+} (Sn^{4+}) cation to O^{2-} anions with the point symmetry O_h .^{11,12} This coordination symmetry prohibits the hybridization of Ge 4s (Sn 5s) and O 2p orbitals at the Γ point in the Brillouin zone. Thus, the resulting non-bonding state at the Γ point and the anti-bonding states at the boundaries of the Brillouin zone have energy levels separated by several eV. The large CB curvatures yield small effective masses of $SrGeO_3$ (0.22 m_e) and $BaSnO_3$ (0.19 m_e),^{13,14} where m_e denotes the electron rest mass.

The relatively large static dielectric permittivity of perovskites is a benefical material property which screens the electron-charge interaction and promotes the electron transport. It results from the strongly ionic character of the chemical bonds and the ion displacement from the equilibrium lattice sites. These thermally activated lattice vibrations, known as phonons, may account for a large ionic polarization even when the material is composed of only main group elements. The static dielectric constants of SrGeO₃ (18 ± 1) and BaSnO₃ (20,¹⁵ 20 ± 2,^{16,17} 14.8 ± 0.5¹⁸) are about 2-3 times larger than those of the well-established TCOs like ZnO ($\varepsilon_s^{\parallel c}$ = 7.4, $\varepsilon_s^{\perp c}$ = 8.5),¹⁹ ln₂O₃ (ε_s = 8.5)²⁰ and SnO₂ ($\varepsilon_s^{\parallel c}$ = 14, $\varepsilon_s^{\perp c}$ = 9.0).²¹ Although recent Berry phase calculations have revealed that electron transfer has a large contribution to such large

dielectric polarizations, their origins have not yet been discussed in relation to phononic polarizations experimentally. Due to the large polarization, the RT electron mobility in substitutionally doped perovskite oxides is governed by electron-phonon interactions rather than ionized impurity scattering,^{22,23} and the dielectric screening of ionized impurities supports a high electron mobility even at enhanced carrier concentrations.^{14,24} In contrast to the majority of TCOs with a $(n-1)d^{10}ns^0$ electronic configuration (*n* is the principal quantum number), transition metal-based semiconductors such as SrTiO₃ and TiO₂ have rather localized unoccupied wave functions originating from the Ti 3d orbitals and a large effective mass. However, these semiconductors may nevertheless exhibit good electrical transport properties. In this case, the large dielectric screening (SrTiO₃, $\varepsilon_{\rm S} = 310$;²⁵ and TiO₂, $\varepsilon_{\rm S}^{\parallel c} = 173$, $\varepsilon_{\rm S}^{\perp c} = 89$)²⁶ is seen as a key property for promoting the electrical conductivity.²⁷

This work employs a combined experimental-theoretical approach to provide a fundamental understanding of how the ionic polarization, decoded into the contribution of separate phonon modes, impacts the intrinsic electron transport in cubic perovskites. SrTiO₃ and BaSnO₃ have been well characterized, and recently, also large-size single BaSnO₃ crystals could be grown from the melt²⁸ and hydrothermal methods.²⁹ In contrast, up to present, the cubic perovskite SrGeO₃ (Fig. 1a) has remained widely unexplored due to the difficulty in the synthesis, requiring high-pressure conditions.³⁰ So far, only a $0.1 \times 0.08 \times 0.08$ mm³ small single crystal was obtained employing the high-pressure sintering of a polycrystalline sample.³¹ We report the first successful single crystal growth of cubic SrGeO₃ employing the high-pressure flux method. The phonon spectrum of cubic SrGeO₃ was determined, which allows for a quantitative analysis of the intrinsic mobility, in comparison with SrTiO₃ and BaSnO₃. We conclude that the particular combination of properties, a large polarization of the hardest longitudinal optical (LO) phonon mode *and* a small effective mass, would be effective for the design of new electronic materials with an exceptionally high RT electron mobility.

II. MATERIALS AND METHODS

A. Experimental

Cubic SrGeO₃ single crystals were grown using a belt-type high-pressure apparatus.³² The precursor powder, monoclinic SrGeO₃ (spacegroup C2/c), was prepared by calcination of stoichiometric quantities of SrCO₃ and GeO₂ at 1100 °C for 12 h on Pt foil. The monoclinic SrGeO₃ powder (100 mg) was mixed in the 1:7 molar ratio with a SrCl₂/NaCl flux of the molar composition 3:2. The eutectic point in the SrCl₂-NaCl system lies at 544 °C and 53 mol% SrCl₂.³³ SrCl₂ and NaCl were dehydrated at 350 °C prior to the mixing. The powder mixture was filled into a Au capsule, pressed and inserted into a NaCl/ZrO2 cell of the weight ratio 9:1 with a carbon heater. A 5 GPa pressure was applied and the specimen was annealed at 1100 °C for 4 hours, then slowly cooled down to 800 °C within 18 h, at which point the heating was turned off and the specimen was water-cooled to room temperature. After washing out the flux with deionized water, yellowish transparent cubic SrGeO₃ ($Pm\overline{3}m$) single crystals of up to 0.5 \times 0.4 \times 0.2 mm³ size and naturally grown 100 facets were obtained (Fig. 1b). Colorless, orthorhombic β -SrGe₂O₅ (*Pnma*) single crystals were obtained as side product.³⁴ We also prepared dense, cubic SrGeO₃ and La_{0.02}Sr_{0.98}GeO₃ polycrystalline pellets of 5 mm diameter by sintering the precursor powder in a BN capsule at 1100 °C for 2 h at 5 GPa pressure. The pellets were cleaved and the surface was mirror-polished for optical reflectance measurements.

The 100 out-of-plane high-resolution X-ray diffraction (HR-XRD) pattern of cubic SrGeO₃ single crystals and the rocking curve of the 200 peak were recorded using a Rigaku SmartLab diffractometer equipped with a monochromatic Cu K_{a1} X-ray source (1.5406 Å) and utilizing parallel beam optics. Reflection ellipsometry spectra (Jobin Yvon UVISEL) were recorded using IR spectroscopy (Hitachi U-4100) from 1.5–5.0 eV and using vacuum Fourier-transform IR spectroscopy (Bruker Vertex 70v) from 100–8000 cm⁻¹ wavenumber. Al and Au mirrors were used as 100% reflectance standard, respectively. For measuring the non-polarized Raman spectrum of cubic SrGeO₃ single crystals, we used a Horiba LabRAM HR system in the backscattering configuration using the 457 nm wavelength of a Nd:YVO₄ laser (Cobolt Twist 50) and a liquid N₂-cooled CCD detector.

4

B. Computational

We performed the theoretical calculations using hybrid density functional theory (DFT) and the projector augmented wave method³⁵ as implemented in the Vienna Ab initio Simulation Package (VASP).^{36,37} As the cubic perovskite has no degree of freedom for internal atomic coordinates, only the lattice parameter *a* was relaxed by using the PBEO hybrid functional.³⁸ A plane wave cutoff of 500 eV and a Γ -centered 6 x 6 x 6 *k*-mesh were used. The relaxed ground state cubic SrGeO₃ structure has the calculated lattice parameter of 3.80 Å, which is in excellent agreement to the experimental value at room temperature, 3.7978 Å.³¹ The electronic band structure was calculated employing maximally localized Wannier functions using the code Wannier90.³⁹ We employed the PBEO functional because it gave a reasonable band gap for related oxides, GeO₂ (tetragonal, *P4₂/mnm*, $E_g^{calc} = 4.55$ eV, $E_g^{exp} = 4.68$ eV)⁴⁰ and BaSnO₃ ($E_g^{calc} = 3.17$ eV, $E_g^{exp} = 2.95$ eV).²⁴

We used the phonopy code⁴¹ and adopted the experimental lattice parameters at room temperature since they largely affect the phonon frequencies. For the exchange-correlation functional, we adopted the generalized gradient approximation with a very high accuracy of total energy criteria for self-consistent convergence, 10^{-8} eV. 2 x 2 x 2 40-atom supercells were used along with a plane wave cutoff of 400 eV and a Γ -centered 4 x 4 x 4 *k*-mesh.

III. CRYSTAL QUALITY, ELECTRONIC STRUCTURE AND OPTICAL

CHARACTERIZATION OF CUBIC SrGeO₃

The 100 out-of-plane HR-XRD pattern of the SrGeO₃ single crystal confirms the cubic structure and a 3.7980 Å lattice parameter is obtained using Bragg's law (Fig. 1c). The narrow, 0.023° wide full-width at half maximum (FWHM) of the rocking curve of the 200 peak indicates a low mosaicity of the single crystal (Fig. S1). The PBEO-calculated band structure of the cubic perovskite SrGeO₃ shows a 2.7 eV indirect band gap of the CB minimum at the Γ point and the valence band (VB) maximum at the *R* point of the first Brillouin zone (Fig. 1d). The effective mass of 0.22 m_e is determined from the CB curvature at the Γ point⁴²

$$m_e^* = \hbar^2 \left(\frac{d^2 E}{dk^2}\right)^{-1} \tag{1}$$

where \hbar is the reduced Planck constant and k is the reciprocal space vector. Using a cleaved and mirror-polished cubic SrGeO₃ polycrystalline pellet, we obtained the reflection ellipsometry spectrum (Fig. 1e) to evaluate the absorption coefficient α . Note that the absorption below the optical band gap is a measurement artefact due to the residual surface roughness which causes diffuse scattering or trace sub-gap absorption from in-band gap defects. The linear fits to the $\alpha^{1/2}$ and α^2 -photon energy plots in the vicinity of the absorption edge allow for determination of 2.7 and 3.4 eV optical indirect and direct band gaps, respectively, in agreement with the specular reflectance edge and the calculated values (Fig. 1f).

IV. PHONON SPECTRA OF CUBIC PEROVSKITES

A. IR dispersion function of cubic SrGeO₃

To investigate the intrinsic electron mobility in cubic SrGeO₃, we first determine the phonon spectrum. Materials crystallizing in the cubic perovskite structure (one SrGeO₃ chemical unit) have a total of 15 phonon modes;⁴³ 3 acoustic modes, 4 pairs of doubly degenerate transverse optical (TO) modes and 4 longitudinal optical (LO) phonon modes. Only 3 of the 4 pairs of optical modes are IR active, having a net ionic dipole moment which contributes to the macroscopic static polarization. Thus, we construct the optical dispersion model using a Lorentz oscillator⁴⁴ for each of the three IR active TO phonon modes,

$$\varepsilon(\omega) = \varepsilon_{\infty} + \sum_{\mu} \frac{\varepsilon_{t_{\mu}} \omega_{t_{\mu}}^2}{\omega_{t_{\mu}}^2 - \omega^2 - i\gamma_{\mu}\omega}$$
(2)

where ε_{∞} is the high-frequency dielectric constant, $\omega_{t_{\mu}}$ is the TO phonon eigenfrequency and γ_{μ} is the damping frequency, both given as angular frequencies. The contribution of the individual phonon modes to the static polarization is given by the TO phonon oscillator strength $\varepsilon_{t_{\mu}}$. Following the classical theory of polarization waves in crystals,⁴⁵ the TO phonon oscillator strength is given by

$$\varepsilon_{t_{\mu}} = \frac{(\sum_{i} e_{i}^{*} x_{t_{\mu}i})^{2}}{\omega_{t_{\mu}}^{2} \varepsilon_{0} V \sum_{i} M_{i} x_{t_{\mu}i}^{2}}$$
(3)

where ε_0 is the vacuum permitivity and V is the unit cell volume. The ionic polarization results from the displacement $x_{t_{\mu}i}$ of ions with the Born effective charge e_i^* and the atomic mass M_i . This classical theory holds for the harmonic vibration regime, in which ion displacements are sufficiently small, such that the induced polarization can be described as a linear function of $x_{t_{\mu}i}$. In fact, the displacement of a certain ion would also induce a polarization on other ions as well, giving a rather complicated description of the total polarization.

For the determination of the dispersion parameters in Eq. (2), we fit the specular IR reflectance spectrum of a mirror-polished cubic SrGeO₃ polycrystalline pellet (Fig. 2a). In addition, we measured the Raman spectrum for a cubic SrGeO₃ single crystal. The first-order Raman peaks provide the LO phonon frequencies, which are given by the maxima of the loss function $-\text{Im}(\varepsilon^{-1})$.⁴⁶ According to theory, cubic perovskites shall not show any first-order Raman active modes,⁴³ but we observe the LO₂ and LO₃ phonons at 493 cm⁻¹ and 742 cm⁻¹ wavenumber, respectively, as well as their overtones at 995 cm⁻¹ and 1484 cm⁻¹ (Fig. 2b). The shoulder peak at 695 cm⁻¹ may relate to the LO₁ + LO₂ overtone. The LO₁ mode can not be identified due to its negligibly small polarization. The Raman spectrum of cubic BaSnO₃ is strikingly similar to that of cubic SrGeO₃, and a large scattering intensity of the LO₂ and LO₃ phonons is observed. The large Raman response of LO modes has been attributed to resonant multi-phonon scattering known to occur in materials of large lattice polarizability.¹⁶

The IR reflectance spectrum was fitted by first constraining the LO₂ and LO₃ frequencies to 493 cm⁻¹ and 792 cm⁻¹, respectively, and determining the high-frequency dielectric constant $\varepsilon_{\infty} = 4.2 \pm 0.2$ from the position of the reflectance edge near a frequency of 760 cm⁻¹. Then, all dispersion parameters were allowed to vary for the final fitting to obtain a reliable dispersion model which can very well reproduce both, the IR reflectance spectrum and the frequencies of the first-order LO₂ and LO₃ Raman peaks. We do not attempt to fit the Raman scattering intensity, which is a complicated function of wavenumber that cannot be simply described by considering only the loss function $-\text{Im}(\varepsilon^{-1})$.⁴⁷ The fitting was performed using the RefFIT

program⁴⁸ and the obtained dispersion parameters are given in Table 1. The cubic SrGeO₃ static dielectric constant $\varepsilon_s = 18 \pm 1$ is obtained from the sum of the high-frequency dielectric constant and all three TO phonon oscillator strengths $\varepsilon_{t_{\mu}}$. The largest contribution to the total static polarization originates from the TO₂ mode ($\varepsilon_{t_2} = 11.2$).

The result of our dispersion model contradicts the finding of the apparently very high static dielectric constant ($\varepsilon_s = 114$) and largely polar TO₁ mode ($\varepsilon_{t_1} = 100.5$) in cubic SrGeO₃ reported by Grzechnik.^{49–51} Our experimental results are further supported by the agreement with the theoretical calculation of the cubic SrGeO₃ static dielectric constant $\varepsilon_s^{calc} = 21$ using density functional pertubation theory.⁵² Moreover, it is reasonable that the cubic SrGeO₃ dispersion parameters are comparable to those reported for BaSnO₃ ($\varepsilon_s = 20$,¹⁵ 20 ± 2,^{16,17} 14.8 ± 0.5¹⁸), due to the similarities in the chemical bonding and electronic structure. We also calculated the high-frequency dielectric constant $\varepsilon_{\infty}^{calc} = 4.9$ of cubic SrGeO₃, which is slightly larger as compared to the experimental value.

Table 1: TO phonon frequency $\omega_{t_{\mu}}$, damping frequency γ_{μ} and oscillator strength $\varepsilon_{t_{\mu}}$ describing the SrGeO₃, BaSnO₃ and SrTiO₃ IR dielectric functions using three Lorentz oscillators (Eq. 1). The high-frequency dielectric constants are $\varepsilon_{\infty}^{SrGeO3} = 4.2 \pm 0.2$, $\varepsilon_{\infty}^{BaSnO3} = 4.3^{16}$ and $\varepsilon_{\infty}^{SrTiO3} = 5.2$.²⁵ Values in brackets denote calculation results using the PBE functional. The theoretical TO phonon oscillator strength $\varepsilon_{t_{\mu}}$ is obtained from the phonon calculation results of the ion displacement vectors and Born effective charges (Eq. (3)).

Material	Eigenfrequency	Energy	Damping frequency	Oscillator strength
	$\omega_{\mathrm{t}_{\mu}}$	$\hbar\omega_{\mathrm{t}_{\mu}}$	γ_{μ}	${\cal E}_{t_{\mu}}$
	(cm ⁻¹)	(meV)	(cm ⁻¹)	-
SrGeO ₃	189 (180)	23	4.0	1.8 (3.1)
	291 (270)	36	7.6	11.2 (9.8)
	634 (671)	79	39	0.83 (1.4)
$BaSnO_3^{a)}$	135 (136)	17	10	3.8 ± 2 (3.8)
	246 (231)	30	18	10.8 (13.8)
	629 (641)	78	26	0.76 (1.0)
SrTiO ₃ ^{b)}	88 (81)	11	26	299 (288)
	178 (173)	22	6.1	3.6 (21)
	546 (561)	68	27	1.9 (2.9)

^{a)}References^{16,17}; ^{b)}Reference²⁵

B. LO phonon oscillator strength

The LO phonon oscillator strength $\varepsilon_{l_{\nu}}$ is calculated from the dispersion model parameters, after expansion of the longitudinal mode displacements $x_{l_{\nu}}$ in terms of those of the transverse modes $x_{t_{\mu}}$,⁵³ according to

$$\varepsilon_{l_{\nu}} = \varepsilon_{\infty}^{2} \left(\omega_{l_{\nu}}^{2} \sum_{\mu} \frac{\varepsilon_{t_{\mu}} \omega_{t_{\mu}}^{2}}{(\omega_{l_{\nu}}^{2} - \omega_{t_{\mu}}^{2})^{2}} \right)^{-1}$$
(4)

with the results given in Table 2. The matrix elements of Eq. (4) describe the coupling strength between TO and LO modes (Table 3).

Table 2: LO phonon frequency $\omega_{l_{\nu}}$, LO phonon oscillator strength $\varepsilon_{l_{\nu}}$ for SrGeO₃, BaSnO₃ and SrTiO₃. Values in brackets denote calculation results using the PBE functional. The theoretical LO phonon oscillator strength $\varepsilon_{l_{\mu}}$ is obtained from the phonon calculation results of the ion displacement vectors and Born effective charges (Eq. (3)). The polaron coupling constant α_{ν} and RT relaxation time τ_{ν}^{RT} is calculated according to Eqs. (5) and (6), respectively.

Material	Eigenfrequency	Energy	nergy Oscillator strength Coupling constant		RT relax. time
	$\omega_{\mathbf{l}_{v}}$	$\hbar\omega_{ m l_{ u}}$	$\mathcal{E}_{l_{v}}$	$\alpha_{\nu} \left(\frac{m_{\rm e}}{m_{\rm e}^*}\right)^{1/2}$	$ au_{ m v}^{ m RT}$
	(cm ⁻¹)	(meV)	-	-	(10 ⁻¹⁴ s)
SrGeO ₃	196 (191)	24	0.047 ± 0.01 (0.09)	0.062	72
	493 (426)	61	1.4 ± 0.2 (1.9)	1.2	7.5
	748 (791)	93	1.8 ± 0.2 (1.4)	1.2	17
BaSnO₃	146 ^{a)} (148)	18	0.11 ± 0.07 (0.15)	0.17	25
	425 ^{a)} (370)	53	1.9 ± 0.1 (2.1)	1.6	4.4
	720 ^{a)} (726)	89	1.4 ± 0.1 (1.3)	0.92	24
$SrTiO_3$	174 (154)	22 ^{b)}	0.02 (0.08)	0.017 ^{b)}	89
	461 (438)	57 ^{b)}	0.94 (1.7)	0.54 ^{b)}	4.8
	816 (807)	101 ^{b)}	4.2 (1.6)	1.8 ^{b)}	2.8

^{a)}Reference¹⁶; ^{b)}cf. reference⁵⁴.

Material		$\omega_{l_{\mu}}^{2}$	$\omega_{l_{\mu}}^2 \sum_{\mu} rac{arepsilon_{t_{\mu}} \omega_{t_{\mu}}^2}{\left(\omega_{l_{v}}^2 - \omega_{t_{v}}^2 ight)^2}$		
	V	μ = 1	μ = 2	μ = 3	
SrGeO ₃	1	364	17.1	0.1	381
	2	0.4	9.2	3.2	12.8
	3	0.1	2.4	7.5	10.0
BaSnO₃	1	154	9.1	0.1	163
	2	0.5	8.1	1.3	9.9
	3	0.1	1.6	11.7	13.4
SrTiO₃	1	1367	1372	0.2	1510
	2	11.6	0.7	16.4	28.7
	3	3.5	0.2	2.8	6.5

Table 3: The matrix elements of Eq. (4) describe the strength of coupling between TO and LO phonon modes, from which the LO phonon oscillator strength ε_{l_v} is obtained.

C. Phonon spectra of the cubic perovskites SrGeO₃, BaSnO₃ and SrTiO₃

In Fig. 3 we provide the IR dispersion functions of cubic SrGeO₃ in comparison with BaSnO₃ and SrTiO₃, which were determined by optical analyses of single crystals.^{16,17,25} The maxima of the imaginary part ε_2 of the dielectric function provide the TO phonon frequencies $\omega_{t_{\mu}}$. The maxima of the loss function $-\text{Im}(\varepsilon^{-1})$ provide the LO phonon frequencies $\omega_{l_{\nu}}$, which correspond to the zeros of the real part ε_1 . The peak heigths of the TO and LO phonons indicate the magnitude of polarization, but it must be considered that the peak broading due to damping ($\gamma_{\mu} > 0$) is taken into account. The phonon spectra of SrGeO₃ and BaSnO₃ are very similar, and both materials show large polarizations for the TO₂, LO₂ and LO₃ modes (Fig. 3b). However, the SrGeO₃ eigenfrequencies of these modes are noticeably shifted to higher frequencies. The SrTiO₃ phonon spectrum is distinctly different and shows a remarkably large polarization of the TO₁ and LO₃ modes.

To understand the differences in the phonon spectra between cubic SrGeO₃ and BaSnO₃, and SrTiO₃ on the other hand, we calculated the phonon band structures and displacement vectors of all eigenmodes (Fig. 4). The SrGeO₃ and SrTiO₃ phonon band structures show imaginary frequencies at the Brillouin zone boundaries, because at ambient pressure and absolute zero temperature, the thermodynamically stable crystal structures are not cubic ($Pm\bar{3}m$), but monoclinic (C2/c) and tetragonal (I4/mcm),⁵⁵ respectively. The 3 IR active TO eigenmodes in SrGeO₃ and BaSnO₃ are very similar, and one schematic is given to illustrate these modes in both materials. There are different displacement vectors for the following ions: A²⁺ and B⁴⁺ cations, and O₁₁²⁻ and 2×O₁²⁻ anions with displacements vectors parallel and perpendicular to the axis of the B–O bond, respectively.

Despite having the same cubic perovskite crystal structure, the SrTiO₃ eigenvectors are distinctly different from those of SrGeO₃ and BaSnO₃. For example, the displacements of the TO₁ mode depend on the electronic structure and whether the B⁴⁺ cation valence orbitals are comprised of Ge 4s (Sn 5s) or Ti 3d orbitals. In SrGeO₃ (BaSnO₃), the Ge⁴⁺ (Sn⁴⁺) cation is displaced along the Ge⁴⁺ $-O_{||}^{2-}$ (Sn⁴⁺ $-O_{||}^{2-}$) bond axis and as part of the GeO₆ (SnO₆) octahedron in the same direction as the $O_{||}^{2-}$ and O_{\perp}^{2-} anions (Fig. 4b). This is in contrast to the TO₁ mode in SrTiO₃, for which the Ti⁴⁺ cations and the $O_{||}^{2-}$ anions of the TiO₆ octahedron are displaced in opposite directions (Fig. 4c). The variation of the Ti⁴⁺ $-O_{||}^{2-}$ bond length compresses the bonding O 2p orbital and increases its d character.⁵⁶ The dynamic charge transfer from $O_{||}^{2-}$ to Ti⁴⁺ ions results in anomalously large Born effective charges $e_{O_{||}}^*$ and e_{Ti}^* (Table 4). Consequently, the TO₁ mode polarization in SrTiO₃ is excessively large, which gives rise to a pronounced TO-LO splitting and a strikingly large LO₃ polarization.

Material	$e_{ m A}^{*}$	$e^*_{ m B}$	$e^*_{\mathrm{O}_{ }}$	$e^*_{0_\perp}$
SrGeO ₃	2.6	4.5	-3.7	-1.7
BaSnO₃	2.7	4.4	-3.3	-1.9
$SrTiO_3$	2.5	7.7	-6.1	-2.1

Table 4: Calculated Born effective charge e^* (in units of the electron charge e) of ions in SrGeO₃, and BaSnO₃ and SrTiO₃ from density functional pertubation theory.

We do not consider the triply degenerate, IR inactive eigenmode any further, which is characterized by the displacement of two O_{\perp}^{2-} ions in opposite directions without a net ionic dipole moment (Fig. S3). The calculation data of eigenmodes at various points in the phonon band structures is provided as supplementary material for interactive visualization of ion displacements using the website of Miranda.⁵⁷ Our results for the BaSnO₃ and SrTiO₃ eigenmodes agree with a recent phonon calculation,⁵⁸ and the analyses of experimental dispersion data obtained from single crystals,^{25,59} respectively.

V. LO PHONON SCATTERING

A. Determination of the scattering limited electron mobility

In all cubic perovskites of this study, the LO₁ phonon polarization is negligibly weak. Thus, the electron-phonon interaction is governed by the large polarization of the LO₂ and LO₃ phonons. We describe the electron-phonon interaction quantitatively by polaron coupling constants α_{ν} according to^{53,60}

$$\alpha_{\nu} = \frac{1}{8\pi\varepsilon_0} \frac{e^2}{r_p \hbar \omega_{l_{\nu}}} \left(\frac{1}{\varepsilon_{\infty}} - \frac{1}{\varepsilon_s} \right) \frac{\varepsilon_{l_{\nu}}}{\sum_{\nu} \varepsilon_{l_{\nu}}}$$
(5)

where *e* is the electron charge and $r_p = (\hbar/2m_e^*\omega_{l_v})^{1/2}$ is the polaron radius. The polaron binding energy $\alpha_v \hbar \omega_{l_v}$ as derived by Fröhlich⁶⁰ is shown to be valid for weak coupling interactions ($\alpha_v < 10$). Fröhlich's model was extended to describe the coupling constants of materials having more than one optical phonon mode, by weighting them according to their phonon oscillator strength, as given by the term $\varepsilon_{l_v} / \sum_v \varepsilon_{l_v}$.⁵³ The electron-phonon coupling is

weak when I) the effective mass m_e^* is small, II) the high-frequency dielectric constant ε_{∞} is large to promote screening of the polarization, and III) the oscillator strength $\varepsilon_{l_{\nu}}$ of the LO phonon mode is weak. The polaron coupling constants α_{ν} for all LO phonon modes are summarized in Table 2.

The LO phonon energy $\hbar \omega_{l_{\nu}}$ and the coupling parameter α_{ν} determine the relaxation time τ_{ν} of momentum loss by carrier scattering due to electron-LO phonon interactions. It is calculated for each of the LO phonon modes according to⁶¹

$$\tau_{\nu} = \frac{1}{2\alpha_{\nu}\omega_{l_{\nu}}} \left(\frac{m_{e}^{*}}{m_{p}}\right)^{2} f(\alpha_{\nu}) \left[\exp\left(\frac{\hbar\omega_{l_{\nu}}}{k_{B}T}\right) - 1\right]$$
(6)

where $k_{\rm B}$ is the Boltzmann constant, T is the absolute temperature and $f(\alpha_{\nu})$ is a dimensionless function, slowly increasing from 1.0 to 1.2 for $0 < \alpha_{\nu} < 3$. The polaron mass $m_{\rm p} = (1 + \alpha_{\nu}/6)m_{\rm e}^{*44}$ describes the larger effective mass of an electron which creates a local polarization due to the Coulombic interaction with the ions of the crystal. Eq. (6) for the relaxation time is valid for temperatures smaller than the Debye temperature ($T \ll \hbar\omega_{l_{\nu}}/k_{\rm B}$). This condition is satisfied at RT for all considered phonon modes with the exception of the soft LO₁ modes, which in any case can be neglected due to their negligibly small polarization.

The relaxation time τ_{ν} is largely dependent on the LO phonon energy $\hbar\omega_{l_{\nu}}$ and the oscillator strength ε_{lv} as shown in Fig. 5. In general, a hard LO phonon mode exhibits a large coupling parameter, but the thermal occupation at RT, as given by the term $\exp(-\hbar\omega_{l_{\nu}}/k_{\rm B}T)$, is small as compared to soft modes. The smallest relaxation time τ_{ν} among all LO phonon modes in each material is crucial for the effective relaxation time $\tau_{\rm LO}$, following Mathiessen's rule⁵³

$$\tau_{\rm LO} = \left(\sum_{\nu} \frac{1}{\tau_{\nu}}\right)^{-1} \tag{7}$$

The electron mobility μ_{LO} is determined from the ratio of effective scattering relaxation time τ_{LO} and effective mass m_e^* , according to⁴⁴

$$\mu_{\rm LO} = \frac{e \, \tau_{\rm LO}}{m_{\rm e}^*} \tag{8}$$

We calculate the intrinsic RT mobilities for cubic SrGeO₃, BaSnO₃, and SrTiO₃ of 3.9×10^2 , 3.0×10^2 and 2×10 cm²V⁻¹s⁻¹, respectively (Table 5).

Table 5: Lattice parameter a, optical and static dielectric constants ε_{∞} and ε_{s} , and effective mass m_{e}^{*} of cubic SrGeO₃, BaSnO₃ and SrTiO₃. The effective RT relaxation time τ_{LO}^{RT} and RT electron mobility μ_{LO}^{RT} is calculated according to Eq. (7) and (8), respectively.

Material	Lattice	Dielectric constants		Effective mass	Effective RT	RT electron
	parameter				relaxation time	mobility
	а	${\cal E}_{\infty}$	$\varepsilon_{\rm s}$	$m_{ m e}^{*}$	$ au_{ m LO}^{ m RT}$	$\mu_{ m LO}^{ m RT}$
	(Å)	-	-	(<i>m</i> _e)	(10 ⁻¹⁴ s)	(cm ² V ⁻¹ s ⁻¹)
SrGeO ₃	3.798 ^{a)}	4.2 ± 0.2	18 ± 1	0.22	4.9 ± 0.4	$3.9\pm0.5{\times}10^2$
BaSnO ₃	4.117 ^{b)}	4.3 ^{d)}	20 ± 2^{d}	$0.19 ~\pm~ 0.02^{f)}$	3.2 ± 0.3	$3.0\pm0.6{\times}10^2$
SrTiO ₃	3.905 ^{c)}	5.2 ^{e)}	310 ^{e)}	1.8 ^{g)}	1.7	2×10

^{a)}Reference³¹; ^{b)}Reference⁶²; ^{c)}Reference⁶³; ^{d)}References^{16,17}; ^{e)}Reference²⁵; ^{f)}Reference¹⁴; ^{g)}Reference⁶⁴

The uncertainties in the determination of the high-frequency dielectric constant ε_{∞} , the electron effective mass m_e^* and the LO phonon oscillator strength $\varepsilon_{l_{\nu}}$ are the critical parameters for the error in determining the electron mobility. The combined evaluation of the IR reflectance and Raman scattering of cubic SrGeO₃ presented in this study allows for a very reliable determination of both, phonon energies and oscillator strengths. Therefore, the resulting error of the mobility calculation from these parameters is comparably small. Despite the experimental uncertainty, the present method for calculating the electron mobility is powerful from the viewpoint of providing a very intuitive understanding of how individual phonon modes contribute to the effective relaxation time. In addition, it allows to circumvent the large computational effort of DFT calculations. Furthermore, theoretical papers on DFT calculations of the phonon scattering-limited mobility often adopt experimental values such as the effective mass, dielectric constants and phonon energies as input parameters, without consideration of the experimental error. Thus, the rather generous tolerance limits of the present calculation results shall not be surprising.

B. Differences between the phonon spectra and implications for the scattering relaxation time

1. SrGeO₃ and BaSnO₃

In both materials, SrGeO₃ and BaSnO₃, the LO₂ phonon mode is the most crucial one for the scattering (Fig. 5). This mode is described by a vibration of the Ge⁴⁺ (Sn⁴⁺) cation against the two O_{\perp}^{2-} anions in the equatorial positions of the GeO₆ (SnO₆) octahedron, while the displacement vectors of Sr²⁺ (Ba²⁺) and O_{\parallel}^{2-} are comparably small (cf. Fig. 4b). Considering only the displacement of Ge⁴⁺ (Sn⁴⁺) and O_{\perp}^{2-} ion sublattices, and regarding other ions are fixed on their equilibrium lattice sites, the phonon eigenfrequency is proportional to the square root of the reduced mass of the Ge⁴⁺ (Sn⁴⁺) and $2 \times O_{\perp}^{2-}$ ions⁴⁴

$$\omega_{t_{\mu}}^{2} = 2k_{\mu} \left(\frac{1}{M_{\alpha}} + \frac{1}{M_{\beta}} \right) \tag{9}$$

as follows from the analogy to the case of a diatomic crystal. Here, M_{α} and M_{β} denote the mass of the ions in the two ion sublattices and k_{μ} is the force constant. Thus, it is concluded that the TO₂ and LO₂ eigenfrequencies in SrGeO₃ (291 and 493 cm⁻¹) are increased with respect to the corresponding modes in BaSnO₃ (246 and 425 cm⁻¹) due to the smaller atomic mass of Ge (72.6 u) as compared to Sn (118.7 u). The TO₃ eigenfrequencies in SrGeO₃ (634 cm⁻¹) and BaSnO₃ (629 cm⁻¹) are nearly identical, since they are mainly described by a vibration of only $O_{||}^{2-}$ and O_{\perp}^{2-} anions. As is seen from the expansion coefficient matrix to obtain the LO phonon oscillator strengths (Eq. (4) and Table 3), the increased TO₂ and LO₂ eigenfrequencies in SrGeO₃ result in a stronger coupling between the LO₂-TO₃ modes and a weaker coupling between TO₃-LO₃ modes as compared to the corresponding ones in BaSnO₃. Thus, the relative LO₂ oscillator strength $\varepsilon_{l_2}/\sum_{\nu} \varepsilon_{l_{\nu}}$ in SrGeO₃ (1.2/3.2) is comparably smaller than of BaSnO3 (1.9/3.4), resulting in a somewhat longer scattering relaxation time τ_{ν} (Table 5).

2. SrTiO₃

Among the SrTiO₃ LO phonons, the hard LO₃ mode exhibits the largest polarization and it is the most crucial one for the intrinsic mobility (Fig. 5c). However, the hard LO₃ mode is the least thermally occupied mode at RT among all three LO modes (cf. Eq. (6)). Considering the large SrTiO₃ effective mass of 1.8 m_e , the resulting 17 ps scattering relaxation time is nevertheless remarkably long, and only by a factor of 2-3 shorter than that obtained for $SrGeO_3$ and $BaSnO_3$ (cf. Table 5).

C. Implications for the design of high RT mobility semiconductors

The results of our analysis provide an important guideline for the design of high RT mobility semiconductors. The most promising candidate materials shall combine both properties, a small effective mass *and* a comparably large polarization for the hardest LO mode. A large static dielectric constant is indicative of a strongly polar TO phonon mode which in turn yields an increased polarization of hard LO modes. Transition metal oxides commonly exhibit a large static dielectric constant due to the dynamic charge transfer between ions and increased Born effective charges, but the compromise is a large effective mass, since d-orbitals are generally more localized than s-orbitals. Thus, it would be very exciting to explore transition metal-based compound semiconductors which, in analogy to SrGeO₃ and BaSnO₃, show a non-bonding character of the cation-derived CB, and consequently, a reduced effective mass. The recently synthesized tetragonal ZrOS semiconductor with a dispersive CB derived from a Zr 3d non-bonding state and small 0.36 m_e effective mass proves that such materials design is feasible,⁶⁵ providing very interesting new candidates for future investigation.

D. Comparison of the calculated mobility with experimental results

The calculation result for BaSnO₃ is in very good agreement with experimental values determined by Hall effect measurements of La-doped single crystals (220–320 cm²V⁻¹s⁻¹).^{6,28} Furthermore, the calculated RT mobility in the order of 2×10 cm²V⁻¹s⁻¹ for SrTiO₃ agrees well with the measured Hall mobility of about 5 cm²V⁻¹s⁻¹ determined for La-doped SrTiO₃ epitaxial thin films.²²

To determine the electrical transport properties in cubic $SrGeO_3$ experimentally, we fit the IR reflectance spectrum of a mirror-polished 2 at.% La-doped $SrGeO_3$ polycrystalline pellet (Fig. 6). At such high doping level, the phonon spectrum is screened due to the large electronic contribution of free carriers to the dielectric function. Thus, the fitting is performed by only using the Drude model,⁴⁴

$$\varepsilon_D(\omega) = \varepsilon_\infty - \frac{\varepsilon_\infty \omega_p^2}{\omega^2 + i\omega/\tau_p}$$
(10)

where $\omega_{\rm p}$ denotes the unscreened plasma frequency and $\tau_{\rm p}$ denotes the carrier scattering relaxation time. We determine the optical mobility of 42 ± 3 cm²V⁻¹s⁻¹ (Eq. (8)), the carrier concentration of $1.3 \pm 0.1 \times 10^{20}$ cm⁻³ (Eq. S(1)) and the optical resistivity of $1.1 \pm 0.1 \times 10^{-3} \Omega$ cm⁻¹ (Eq. S(2)). The reduced optical mobility as compared to the calculation result may indicate the presence of defects, including the possibility of Ge vacancy formation or a reduction of Ge⁴⁺ to Ge²⁺. The Hall effect measurement of substitutionally doped SrGeO₃ single crystals will be the subject of further investigation, when crystals of larger size can be grown and characterized.

VI. CONCLUSION

In summary, we have successfully synthesized cubic SrGeO₃ perovskite single crystals using the high-pressure flux growth. The optical phonon spectrum is determined from IR optical reflectance and Raman analyses to evaluate the electron transport governed by LO phonon scattering. Employing the classical phonon theory and a combined experimental-theoretical approach, we analysed the individual eigenmodes to gain a fundamental understanding of the similarities and differences in the phonon spectra for the cubic perovskites SrGeO₃, BaSnO₃ and SrTiO₃. Cubic SrGeO₃ exhibits a calculated RT mobility in the order of 3.9×10^2 cm²V⁻¹s⁻¹, demonstrating great promise as a high-performance TCO. We suggest a universal guideline for the exploration of new high RT mobility semiconductors. The combined properties of a small effective mass *and* a large polarization of the hardest LO mode is in favor of supporting an exceptionally high RT mobility despite the electron-phonon interactions.

Acknowledgements

We are thankful to Dr T. Stanislavchuk from New Jersey Institute of Technology for sharing the BaSnO₃ IR ellipsometry data. The work at Tokyo Institute of Technology was supported by the MEXT Element Strategy Initiative to Form Core Research Center (JPMXP0112101001). C.A.N. acknowledges the support through a fellowship granted by the German Research Foundation (DFG) for proposal NI1834. T. Katase was supported by PRESTO, Japan Science and Technology Agency (JPMJPR16R1) and Grant-in-Aid for Scientific Scientists B (19H02425) from JSPS.

Figure captions

Fig. 1: (a) The cubic perovskite SrGeO₃ crystal structure. (b) Optical micrograph of a cubic SrGeO₃ single crystal. (c) The 100 out-of-plane HR-XRD pattern of a cubic SrGeO₃ single crystal with the intensity plotted on a logarithmic scale. (d) PBEO-calculated band structure along high symmetry directions in the first Brillouin zone indicates 2.7 eV indirect and 3.4 eV direct band gaps and a large CB dispersion. (e) Reflection ellipsometry spectrum for the evaluation of (f) the absorption coefficient data $\alpha^{1/2}$ and α^2 indicate optical band gaps in agreement with the specular reflectance *R* edge and the calculated values.

Fig. 2: (a) IR reflectance spectrum of a mirror-polished cubic SrGeO₃ polycrystalline pellet. (b) Raman scattering spectrum of a cubic perovskite SrGeO₃ single crystal. The first-order Raman peaks at 493 cm⁻¹ and 742 cm⁻¹ provide the LO₂ and LO₃ phonon frequencies in the dispersion model, as given by the maxima of the loss function $-\text{Im}(\varepsilon^{-1})$.

Fig. 3: (a) Real part of ε_1 of the dielectric function of cubic SrGeO₃, BaSnO₃ and SrTiO₃. The LO phonon frequencies correspond to the zeros of ε_1 . (b) The maxima of the imaginary part ε_2 of the dielectric function and the loss function $-Im(\varepsilon^{-1})$ correspond to the frequency of TO and LO phonon modes, respectively. The peak heigths of the TO and LO phonons indicate the magnitude of polarization, but it must be considered that the peak broading due to damping $(\gamma_{\mu} > 0)$ is taken into account.

Fig. 4: Calculated phonon band structures of cubic $SrGeO_3$, $BaSnO_3$ and $SrTiO_3$ obtained by density functional perturbation theory. The 3 IR active TO modes at the Γ point of the first Brillouin zone (empty circles) are schematically illustrated based on the calculated ion displacement vectors. The inactive eigenmodes are indicated with a cross. The LO eigenfrequencies at the Γ point are indicated by the horizontal lines.

Fig. 5: Relaxation time of carrier scattering τ_{ν} at T = 298 K by LO phonons as a function of the phonon energy $\hbar\omega_{l_{\nu}}$ and oscillator strength ε_{lv} for cubic (a) SrGeO₃, (b) BaSnO₃ and (c) SrTiO₃, according to Eqs. (5) and (6). The smallest relaxation time among the three LO phonon modes, which is the most crucial for the intrinsic electron mobility, is indicated by the dashed line. The LO peak heigths of the loss function $-Im(\varepsilon^{-1})$ indicate the magnitude of polarization, but it must be considered that the peak broading due to damping ($\gamma_{\mu} > 0$) is taken into account.

Fig. 6: IR reflectance spectrum of a mirror-polished, 2 at.% La-doped cubic $SrGeO_3$ ($La_{0.02}Sr_{0.98}GeO_3$) polycrystalline pellet.

References

¹ A. Ohtomo and H.Y. Hwang, Nature **427**, 423 (2004).

² J. Mannhart and D.G. Schlom, Science (80-.). **327**, 1607 (2010).

³ J. Son, P. Moetakef, B. Jalan, O. Bierwagen, N.J. Wright, R. Engel-Herbert, and S. Stemmer, Nat Mater **9**, 482 (2010).

⁴ T.A. Cain, A.P. Kajdos, and S. Stemmer, Appl. Phys. Lett. **102**, 182101 (2013).

⁵ X. Luo, Y.S. Oh, A. Sirenko, P. Gao, T.A. Tyson, K. Char, and S.-W. Cheong, Appl. Phys. Lett. **100**, 52104 (2012).

⁶ H.J. Kim, U. Kim, H.M. Kim, T.H. Kim, H.S. Mun, B.-G. Jeon, K. T.Hong, W.-J. Lee, C. Ju, K.H. Kim, and K. Char, Appl. Phys. Express **5**, 61102 (2012).

⁷ U. Kim, C. Park, T. Ha, Y.M. Kim, N. Kim, C. Ju, J. Park, J. Yu, J.H. Kim, and K. Char, APL Mater. **3**, 36101 (2015).

⁸ K. Krishnaswamy, L. Bjaalie, B. Himmetoglu, A. Janotti, L. Gordon, and C.G. de Walle, Appl. Phys. Lett. **108**, 83501 (2016).

⁹ Y. Wang, W. Tang, J. Cheng, S. Nazir, and K. Yang, Phys. Chem. Chem. Phys. **18**, 31924 (2016).

¹⁰ H. Mizoguchi, T. Kamiya, S. Matsuishi, and H. Hosono, Nat. Commun. **2**, 470 (2011).

¹¹ T. Hughbanks, J. Am. Chem. Soc. **107**, 6851 (1985).

¹² H. Mizoguchi, H.W. Eng, and P.M. Woodward, Inorg. Chem. **43**, 1667 (2004).

¹³ S. James Allen, S. Raghavan, T. Schumann, K.-M. Law, and S. Stemmer, Appl. Phys. Lett. **108**, 252107 (2016).

¹⁴ C.A. Niedermeier, S. Rhode, K. Ide, H. Hiramatsu, H. Hosono, T. Kamiya, and M.A. Moram, Phys. Rev. B **95**, 161202 (2017).

¹⁵ P. Singh, B.J. Brandenburg, C.P. Sebastian, P. Singh, S. Singh, D. Kumar, and O. Parkash, Jpn. J. Appl. Phys. **47**, 3540 (2008).

¹⁶ T.N. Stanislavchuk, A.A. Sirenko, A.P. Litvinchuk, X. Luo, and S.-W. Cheong, J. Appl. Phys. **112**, 44108 (2012).

¹⁷ S. supplementary material at [url].

¹⁸ W. Nunn, A. Prakash, A. Bhowmik, R. Haislmaier, J. Yue, J.M. Garcia Lastra, and B. Jalan, APL Mater. **6**, 66107 (2018).

¹⁹ H. Yoshikawa and S. Adachi, Jpn. J. Appl. Phys. **36**, 6237 (1997).

²⁰ I. Hamberg and C.G. Granqvist, J. Appl. Phys. **60**, R123 (1986).

²¹ H.J. van Daal, J. Appl. Phys. **39**, 4467 (1968).

²² A. Verma, A.P. Kajdos, T.A. Cain, S. Stemmer, and D. Jena, Phys. Rev. Lett. **112**, 216601 (2014).

²³ K. Krishnaswamy, B. Himmetoglu, Y. Kang, A. Janotti, and C.G. de Walle, Phys. Rev. B **95**, 205202 (2017).

²⁴ H.J. Kim, U. Kim, T.H. Kim, J. Kim, H.M. Kim, B.-G. Jeon, W.-J. Lee, H.S. Mun, K.T. Hong, J. Yu, K. Char, and K.H. Kim, Phys. Rev. B **86**, 165205 (2012).

²⁵ W.G. Spitzer, R.C. Miller, D.A. Kleinman, and L.E. Howarth, Phys. Rev. **126**, 1710 (1962).

²⁶ F.A. Grant, Rev. Mod. Phys. **31**, 646 (1959).

²⁷ T. Hitosugi, N. Yamada, S. Nakao, Y. Hirose, and T. Hasegawa, Phys. Status Solidi **207**, 1529 (2010).

²⁸ Z. Galazka, R. Uecker, K. Irmscher, D. Klimm, R. Bertram, A. Kwasniewski, M. Naumann, R. Schewski, M. Pietsch, U. Juda, A. Fiedler, M. Albrecht, S. Ganschow, T. Markurt, C. Guguschev, and M. Bickermann, J. Phys. Condens. Matter **29**, 75701 (2017).

²⁹ R.J. Terry, N. Combs, C.D. McMillen, S. Stemmer, and J.W. Kolis, J. Cryst. Growth 125529

(2020).

- ³⁰ Y. Shimizu, Y. Syono, and S. Akimoto, High Temp. High Press. **2**, 113 (1970).
- ³¹ A. Nakatsuka, H. Arima, O. Ohtaka, K. Fujiwara, and A. Yoshiasa, Acta Crystallogr. Sect. E **71**, 502 (2015).
- ³² H.T. Hall, Rev. Sci. Instrum. **31**, 125 (1960).

³³ A. M. Gasanaliev, A. I. Rasulov, B. Yu. Gamataeva, and A. K. Mamedova, Russ. J. Phys. Chem. A **86**, 154 (2012).

³⁴ C.A. Niedermeier, J. Yamaura, J. Wu, X. He, T. Katase, H. Hosono, and T. Kamiya, ACS Appl. Electron. Mater. (2019).

³⁵ P.E. Blöchl, Phys. Rev. B **50**, 17953 (1994).

³⁶ G. Kresse and J. Furthmüller, Phys. Rev. B **54**, 11169 (1996).

³⁷ G. Kresse and D. Joubert, Phys. Rev. B **59**, 1758 (1999).

³⁸ J.P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. **105**, 9982 (1996).

³⁹ A.A. Mostofi, J.R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Comput. Phys.

Commun. **178**, 685 (2008).

⁴⁰ M. Stapelbroek and B.D. Evans, Solid State Commun. **25**, 959 (1978).

- ⁴¹ A. Togo and I. Tanaka, Scr. Mater. **108**, 1 (2015).
- ⁴² R.E. Hummel, *Electronic Properties of Materials*, 4th ed. (Springer-Verlag New York, 2011).

⁴³ W.G. Fateley, *Infrared and Raman Selection Rules for Molecular and Lattice Vibrations: The Correlation Method* (Wiley-Interscience, 1972).

⁴⁴ C. Kittel, *Introduction to Solid State Physics*, 7th ed. (New York, Wiley, 1996).

⁴⁵ T. Kurosawa, J. Phys. Soc. Japan **16**, 1298 (1961).

⁴⁶ G. Irmer, V. V Toporov, B.H. Bairamov, and J. Monecke, Phys. Status Solidi **119**, 595 (1983).

- ⁴⁷ M. V Klein, B.N. Ganguly, and P.J. Colwell, Phys. Rev. B **6**, 2380 (1972).
- ⁴⁸ A.B. Kuzmenko, Rev. Sci. Instrum. **76**, 83108 (2005).
- ⁴⁹ A. Grzechnik, P.F. McMillan, and W. Petuskey, MRS Proc. **398**, 501 (1995).

⁵⁰ A. Grzechnik, H. Hubert, P. Mcmillan, and W. Petuskey, Integr. Ferroelectr. **15**, 191 (1997).

⁵¹ A. Grzechnik, A.V.G. Chizmeshya, G.H. Wolf, and P.F. McMillan, J. Phys. Condens. Matter **10**, 221 (1998).

⁵² M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, Phys. Rev. B **73**, 45112 (2006).

⁵³ D.M. Eagles, J. Phys. Chem. Solids **25**, 1243 (1964).

⁵⁴ D.M. Eagles, J. Phys. Chem. Solids **26**, 672 (1965).

⁵⁵ K. Tsuda and M. Tanaka, Acta Crystallogr. Sect. A **51**, 7 (1995).

- ⁵⁶ W. Zhong, R.D. King-Smith, and D. Vanderbilt, Phys. Rev. Lett. **72**, 3618 (1994).
- ⁵⁷ H.P.C. Miranda, http://henriquemiranda.github.io/phononwebsite/phonon.html.
- ⁵⁸ B.G. Kim, J.Y. Jo, and S.W. Cheong, J. Solid State Chem. **197**, 134 (2013).
- ⁵⁹ J.D. Axe, Phys. Rev. **157**, 429 (1967).
- ⁶⁰ H. Fröhlich, Adv. Phys. **3**, 325 (1954).
- ⁶¹ F.E. Low and D. Pines, Phys. Rev. **98**, 414 (1955).
- ⁶² A.K. Prodjosantoso, Q. Zhou, and B.J. Kennedy, J. Solid State Chem. **200**, 241 (2013).
- ⁶³ L. Cao, E. Sozontov, and J. Zegenhagen, Phys. Status Solidi **181**, 387 (2000).
- ⁶⁴ M. Ahrens, R. Merkle, B. Rahmati, and J. Maier, Phys. B **393**, 239 (2007).
- ⁶⁵ T. Arai, S. limura, J. Kim, Y. Toda, S. Ueda, and H. Hosono, J. Am. Chem. Soc. **139**, 17175 (2017).

