aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Probing intraband excitations in ZrTe _{5}: A high-pressure
infrared and transport study
D. Santos-Cottin, M. Padlewski, E. Martino, S. Ben David, F. Le Mardelé, F. Capitani, F.
Borondics, M. D. Bachmann, C. Putzke, P. J. W. Moll, R. D. Zhong, G. D. Gu, H. Berger, M.
Orlita, C. C. Homes, Z. Rukelj, and Ana Akrap
Phys. Rev. B 101, 125205 — Published 20 March 2020
DOI: 10.1103/PhysRevB.101.125205


http://dx.doi.org/10.1103/PhysRevB.101.125205

Probing intraband excitations in ZrTe;: a high-pressure infrared and transport study

D. Santos-Cottin,! M. Padlewski,? E. Martino,? S. Ben David,! F. Le Mardelé,! M. D. Bachmann,? C. Putzke,*
P. J. W. Moll,>% R. D. Zhong,® G. D. Gu,® H. Berger,? M. Orlita,® 7 C. C. Homes,® Z. Rukelj,"® * and Ana Akrap!:

! Department of Physics, University of Fribourg, Chemin du Musée 3, 1700 Fribourg, Switzerland
2IPHYS, EPFL, CH-1015 Lausanne, Switzerland
3Maz Planck Institute for Chemical Physics of Solids,
Néthnitzer Strasse 40, 01187 Dresden, Germany
* Laboratory of Quantum Materials (QMAT), Institute of Materials (IMX),
Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
5 Condensed Matter Physics and Materials Science Department,
Brookhaven National Laboratory, Upton, New York 11973, USA
SLNCMI, CNRS-UGA-UPS-INSA, 25, Avenue des Martyrs, 38042 Grenoble, France
"Institute of Physics, Charles University in Prague, 12116 Prague, Czech Republic
8 Department of Physics, Faculty of Science, University of Zagreb, Bijenicka 32, 10000 Zagreb, Croatia
(Dated: January 30, 2020)

Zirconium pentatetelluride, ZrTes, shows remarkable sensitivity to hydrostatic pressure. In this
work we address the high-pressure transport and optical properties of this compound, on samples
grown by flux and charge vapor transport. The high-pressure resistivity is measured up to 2 GPa,
and the infrared transmission up to 9 GPa. The dc conductivity anisotropy is determined using
a microstructured sample. Together, the transport and optical measurements allow us to discern
band parameters with and without the hydrostatic pressure, in particular the Fermi level, and the
effective mass in the less conducting, out-of-plane direction. The results are interpreted within a
simple two-band model characterized by a Dirac-like, linear in-plane band dispersion, and a parabolic

out-of-plane dispersion.

I. INTRODUCTION

Zirconium pentatelluride, ZrTes, is presently amongst
the most investigated topological materials. This com-
pound was studied in the context of a possible chiral
anomaly,’ a suggested 3D Dirac dispersion,”” for being
a potential weak' " or strong topological insulator,™’ as
well as for its anomalous Hall effect linked to a putative
Weyl dispersion.'” The true ground state of ZrTes is an
unresolved question. This is linked to the very small en-
ergy scales characterizing the electronic band structure
near the Fermi level.>'" Moreover, the samples seem to
be significantly influenced by their preparation method."”

High pressure can be an excellent probe in a layered
system such as ZrTes. Pressure changes the atomic or-
bital overlaps, in turn modifying the band structure.
High-pressure behavior can often give a glimpse into
the material’s normal state properties. ZrTes is or-
thorhombic, as seen in Fig. 1, with its most conducting
direction—a axis—running along the zirconium chains.
The layers are stacked along the least conducting, b
axis. Both the conduction and valence bands are based
upon the tellurium p orbitals. ZrTes; shows a remark-
able sensitivity of the transport properties to hydrostatic
pressure'” and strain.'* Relatedly, thinning or exfoliat-
ing the crystals down to sub-micron thickness, leads to
large resistivity changes.'” This sensitivity to lattice dis-
tortion is amplified by the small energy scales that char-
acterize ZrTe;. The band gap is finite but very small,
2A = 6 meV, and the carrier concentration can be made
as low as n ~ 10'® cm ™3, resulting in a significantly re-
duced Fermi surface.'' Very small carrier density means

that a small magnetic field of ~ 2 T is sufficient to take
the system into quantum limit, when all the carriers are
confined to the lowest Landau level.” Under high pressure
Zr'Tes becomes superconducting,'” which underlines the
importance of understanding the normal high-pressure
state from which the superconductivity arises.

FIG. 1. Orthorhombic structure of ZrTes in which zirconium
atoms (green balls) are surrounded by tellurium atoms (yellow
balls). The unit cell is shown by a solid line. The b axis points
between the planes, the zirconium chains run along a axis.'®

Such malleable properties—by pressure, temperature,
strain, and magnetic field—are desirable for many mate-
rial applications. This is yet more interesting due to a
simple, two-band nature of ZrTes at low energies. How-
ever, we need to be certain to have a good understanding
of the low-energy band structure.
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FIG. 2. (a) Ambient pressure resistivity of ZrTes, measured along a axis, is shown as a function of temperature for both
flux- and CVT-grown sample, sample A and B respectively. Dashed vertical lines denote the resistivity peak temperature, T™.
(b) Resistivity measured under several high pressures for (b) sample A and (c) for sample B. Full lines show resistivity for
increasing the pressure, while dotted lines are curves for releasing the pressure. (d) Pressure dependence of the temperature
T* where resistivity has a peak. Dotted lines are guides to the eye.

Previously we have established an effective two-band
model at low energies, * based mostly on the interband
optical excitations. In this work, we test this effec-
tive model using high pressure as a handle on the elec-
tronic properties. The high sensitivity of ZrTes to pres-
sure allows us to address the intraband, Drude response.
Through the high-pressure transport measurements, am-
bient pressure anisotropy study, and high-pressure op-
tical transmission, we obtain valuable insight into the
charge dynamics in ZrTes at very low energies. Specif-
ically, we show that the effective mass m* has a strong
pressure dependence, and we explain the behavior of the
dc conductivity, as a function of pressure and tempera-
ture.

II. EXPERIMENTAL

Measurements were performed on samples synthesized
by two different methods. One batch of samples was
made by self-flux growth, and another by chemical va-
por transport (CVT)."" Throughout this paper, we re-
fer to flux-grown samples as sample A, and CVT-grown
samples as sample B, although the measurements have
been performed on multiple crystals of each batch, and
are therefore reproducible. The low-temperature carrier
concentration is around 20 times higher in the CVT-
grown sample than in the flux-grown sample.''* At
low temperatures these carrier concentrations are n4 ~
3-107% ecm =3 and ng ~ 6- 10717 cm 3.

Electrical resistivity was measured under high pressure
inside a piston cylinder cell produced by C&T Factory.
7373 Daphne oil was used as a pressure-transmitting
medium to ensure hydrostatic conditions. Pressure was
determined from the changes in resistance and supercon-
ducting transition temperature of a Pb manometer next
to the samples. © Electrical contacts to the sample were

made using graphite conductive paint to ensure no degra-
dation due to chemical reaction with the sample.

Optical reflectance is measured at a near-normal an-
gle of incidence, using FTIR spectroscopy, with in situ
gold evaporation.'” At high energies, the phase was fixed
by ellipsometry. We use Kramers-Kronig relations to ob-
tain the frequency-dependent complex dielectric function
€(w), where w is the incident photon frequency. Analy-
sis of the optical spectra was performed using RefFIT
software.

Transmission under high pressure was measured in a
diamond anvil cell up to 9 GPa, at the base temperature
of the setup, 25 K. Synchrotron light passed through ex-
foliated micrometer-thin flakes of single crystals. High
pressure was applied in a membrane diamond anvil cell,
with CsI as a pressure medium. As a reference, we used
transmission through Csl within the same diamond anvil
cell. The anvils were made of Ila diamonds with 500 pym
culet diameter. Applied pressure was determined from
ruby fluorescence. The high-pressure infrared experi-
ments were done at the SMIS infrared beamline of Soleil
synchrotron.

The focused ion beam (FIB) microfabrication to cre-
ate samples from resistivity anisotropy measurement, was
conducted using Xe plasma Helios G4 and Ga ion Helios
G3 FIB microscopes manufactured by FEI. From a well
characterized single crystal, a rectangular lamella was ex-
tracted along the desired crystallographic direction. Af-
ter transferring to a sapphire substrate and gold con-
tacts deposition by RF-sputtering, the final microstruc-
ture was patterned in the desired shape and individual
electrical contacts created by etching through the de-
posited gold layer.

Finally, first principle calculations of band structure
were done using density functional theory (DFT) with
the generalized gradient approximation (GGA) using
the full-potential linearized augmented plane-wave (FP-
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FIG. 3. Reflectivity (a), optical conductivity o1 (b) and optical transmission (c) are shown as a function of light frequency for
sample B, at 25 K, with incident light polarized in the a — ¢ plane. In each panel, a Drude-Lorentz fit of reflectivity is shown
in dotted lines, resulting in a calculated transmission and 1. Absorption onset or optical gap is marked by an arrow in each
panel. It is visible as a hump in the reflectivity, a half-step in the optical conductivity o1. Inset in (c) shows the first derivative
of transmission, in which a kink corresponds to the absorption onset.

LAPW) method”” with local-orbital extensions
WIEN2k implementation™, as detailed in Ref.

in the

III. RESULTS

Experimental data consist of resistivity under pressure,
ambient and high-pressure infrared transmission, and fi-
nally a study of resistivity anisotropy on microstructured
samples. We present the results in the same order below.

A. High-pressure resistivity

Figure 2 shows the resistivity along the a axis for two
high-mobility single crystal samples, made by the two
methods mentioned above. The carrier mobilities are
e = 0.45x10% cm?/(Vs), and uB = 0.1x 105 cm?/(Vs),
for samples A and B respectively.'" Specifically, Fig. 2a
shows the ambient pressure resistivity of sample A (flux-
grown) and sample B (CVT-grown). In both cases, the
resistivity has a strong peak at a temperature 7. This
is 78 K for sample A, and 145 K for sample B. The re-
sistivity peak is related to the low-temperature carrier
density, so that a lower T™ corresponds to a lower carrier
density n, and hence a lower Fermi level ep."'»'~ In both
sample A and sample B, we observe a clear p(T') oc T?
behavior at low temperatures.

The peak temperature, 7%, is linked to dramatic
change in many transport quantities. Thermopower and
Hall effect change sign at this temperature, and the car-
rier density n has a local minimum at 7. The resistivity
peak seems to be linked to a minimum in carrier den-
sity at T*. The resistivity maximum has been the most
puzzling experimental observation on ZrTes in the past,

and was thought to originate from a possible charge den-
sity wave (CDW).””* Presently it is understood that
it comes from a temperature-induced shift of the chem-
ical potential,”’ with a concomitant crossover from low-
temperature electron-dominated, to high-temperature
hole-dominated conduction.' »“® Indeed, this link be-
tween T and carrier density can be demonstrated even
quantitatively. The chemical potential shift also results
in a 72 behavior of the resistivity.

Figure 2b shows the resistivity in the flux-grown sam-
ple A taken at many different pressures, both while in-
creasing the pressure (solid lines), and while releasing
the pressure (dotted lines). Surprisingly, the resistiv-
ity in sample A becomes 20 times higher under 2 GPa
than at ambient pressure. This large effect is similar
to the increase of resistivity in magnetic field.”” The re-
sistivity peak strongly shifts in temperature, from 78 K
at ambient pressure, to 110 K at the highest achievable
pressure, 2 GPa. At higher pressures and in particular
upon decreasing the pressure, the resistivity develops a
low-temperature upturn. This upturn counterintuitively
increases as the pressure decreases, showing a hysteretic
behavior. Finally, the upturn disappears when pressure
is completely removed.

Similarly, Fig. 2c shows the resistivity in the CVT-
grown sample B. Here too the peak temperature T over-
all increases with pressure. While the absolute value of
the resistivity increases under pressure, this effect is now
much smaller than in sample A. Moreover, no upturns
can be seen at low temperature. These differences be-
tween samples A and B indicate that the chemistry of the
sample growth strongly affects the high pressure behav-
ior. We speculate that these upturns may be related to a
plastic deformation, possibly leading to a tunneling-like
temperature dependence. The effect is much stronger in
the flux-grown crystals, where all our high-pressure ex-
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FIG. 4. (a) Infrared transmission at 25 K for sample B, taken at a series of pressures up to 9 GPa. Pressure values are in
GPa, next to each transmission curve. Blue circles mark the position of a kink in the first derivative, which is taken as an
approximate optical gap. (b) Extracted approximate value of the optical gap, or Pauli blocking edge, as a function of pressure.
Dotted line serves to extract the parameter «, as described in the text. (c) Pressure dependence of an infrared phonon at

23 meV (185 cm™!) for ambient pressure.

periments show a resistivity upturn. While we do not
have a clear explanation for the resistivity upturn, it is
almost certain that it is an extrinsic effect, so we disre-
gard it in the remaining discussion.

Figure 2d shows the change of the resistivity peak T as
a function of pressure in samples A and B. In both cases
the temperature T* increases under pressure, with an
approximately linear, and rather large slope. While our
data only reaches 2 GPa, it is known from the literature
that above 3 or 4 GPa, T* first starts to decrease and
soon thereafter it disappears.

At ambient pressure, the metallic resistivity well be-
low T* is described by o0 = g9 + AT?,'" with A4 =
0.1 uQem/K? and Ap = 0.036 pQcem/K? for sample A
and sample B, respectively. The coefficient A is inversely
proportional to ep,”” indicating that the Fermi level in
sample A is lower than in sample B. The extracted A
seems to decrease under pressure, at least at very low
pressures. However, under higher pressure it becomes
impossible to extract the prefactor A, due to the low-
temperature upturns.

To summarize the measurements presented so far, we
see that T™ increases under pressure, and so does the ab-
solute value of the resistivity at T*. We notice a decrease
in the T2 resistivity prefactor, A. Finally, a strong up-
turn appears in the resistivity under pressure, but only
in the flux-grown sample.

B. Infrared transmission at ambient and high
pressure

Figure 3 shows ambient-pressure optical properties of
sample B at 25 K. This is the temperature at which all
of the high-pressure optical results will be discussed. We
elected to measure the sample B (CVT-grown sample)

since its higher carrier density puts the optical gap in the
accessible energy range under high pressure. In contrast,
the Fermi level and the optical gap are much lower in the
sample A, around 30 meV (200 cm~1), and at the edge of
our experimental window. Figure 3 shows the ambient-
pressure reflectivity (a), optical conductivity (b), and the
ambient-pressure optical transmission (c¢) measured in a
diamond anvil cell. Transmission is more easily accessible
under pressure than reflectivity. The other advantage is
that the negative logarithm of transmission, —Int, for a
thin, transparent sample behaves qualitatively similar to
the real part of the optical conductivity, o1. This means
that we may be able to extract Pauli blocking edge (2¢F)
from infrared transmission. This quantity, 2ep, is equal
to the energy of the onset of interband absorption.

The main message of Fig. 3 is that all the
three quantities—reflectivity, optical conductivity, and
transmission—are consistent. To show this, we apply a
fit to the reflectivity data using a Drude-Lorentz model
which describes the complex dielectric function:

2 2
Wyp Q-

j
B 1
+Zw2-—w2—iw7j (1)

J

éw) = oo w? +iw/Tp
Here €., is the real part of the dielectric function at high
frequency, wg, p and 1/7p are the square of the plasma
frequency and scattering rate for the delocalized (Drude)
carriers, respectively. For the Lorentz oscillators w;, v,
and (); are the position, width, and strength of the jth
vibration or excitation. The resulting Drude-Lorentz
model includes a Drude contribution and a number of
Lorentzian oscillators,’” and it is shown in dotted line
in Fig. 3a—c. The same Drude-Lorentz model which de-
scribes the reflectance, also describes the optical conduc-
tivity o1, and it agrees well with the measured transmis-
sion.
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FIG. 5. Anisotropy of resistivity determined on a CVT-grown
sample, prepared by focused ion beam technique. (a) Electron
microscope picture of a microstructured sample prepared by
focused ion beam technique. Top part shows the crystal from
which two lamellas are shaped and cut. Bottom part shows
a sample whose plane contains a and b axes. (b) Resistivity
measured on sample B for all three crystal directions.

This self-consistency check is important when dealing
with high-pressure results. While the reflectance and op-
tical conductivity are linked by a Kramers-Kronig rela-
tion, it is not a priori evident that the optical transmis-
sion, separately measured inside a diamond anvil cell,
with a pressure medium, will be free of extrinsic effects.
The agreement between the experimental data and the
Drude-Lorentz model also tells us that our experimental
window for transmission is from 150 to 1000 cm ™! (20 to
120 meV).

Finally, the data and the model show that there is
no clear feature in transmission which can be associated
with the Pauli blocking edge, or the onset of absorption,
as illustrated in Fig. 3c. In the simplest approach, where
o1(w) around the Pauli edge resembles a step function,
transmission ¢(w) will have a kink in its first derivative,
as illustrated in the inset of Fig. 3c. That is why, as an
estimate of the optical gap (Pauli blocking) from our
data, we take the position of the kink in dt(w)/dw.

Figure 4a shows a series of transmission curves taken
on sample B (CVT-grown) for a wide range of pressures
reaching 9.0 GPa. For each pressure, blue circles mark
the energy of the kink in the first derivative, similar to
Fig. 3c. This value is taken as an estimated absorption
onset or optical gap. Figure 4b shows how this absorption
edge evolves under pressure. From the ambient pressure
up to 2.5 GPa it increases, followed by a more complex
behavior up to the highest pressure reached. This low-
pressure increase of the absorption onset agrees with the
increase of resistivity peak, which we will shortly show to
be proportional to ep. At pressures above 2.5 GPa, the
behavior of the absorption onset is reversed and it drops
4 GPa, before increasing again. Similar nonmonotonic
behavior is also observed in T in function of pressure,””
where a linear increase of T*(P) is followed by a decrease

of T* around 1.5—2 GPa. The nonmonotonic trend of T
suggests that the onset of absorption at higher pressures
becomes influenced not only by the Fermi level, but also
by changes in other parameters such as the band gap A,
or the Fermi velocities along all three axes.

Figure 4c shows the evolution of the only infrared-
active phonon that is observed from the transmission
data, whose ambient pressure frequency is at 185 cm™!
(23 meV). This mode is likely the high-frequency Bs,
mode that is described by the Zr atom moving against
Te atoms along the chain direction.”’

The phonon hardening under pressure can be readily
understood — as the pressure makes the interatomic dis-
tances smaller, the vibrations become stiffer and move to
higher frequencies. The phonon behavior also confirms
that our data is reliable down to 150 cm™! (20 meV).

The main experimental observation from the above
high-pressure optical results is that the Fermi level e lin-
early increases under pressure up to 2.5 GPa. Through-
out the whole pressure range, we see no dramatic change
of low-energy transmission. This suggests that the low-
energy band structure likely stays similar up to the high-
est pressures reached in this study.

C. Anisotropy of conduction
in microstructured samples

To complement the high-pressure data, we determined
the anisotropy of the resistivity as a function of temper-
ature, shown in Fig. 5. The measurement is performed
on a microfabricated CVT-grown sample which allows to
obtain a precise measurement of the resistivity for the
otherwise inaccessible out-of-plane b direction. The mea-
sured resistivity ratio is high, py/p, ~ 80 for the out-of-
plane resistivity, and a modest p./p, ~ 2 for the resis-
tivity along the two in-plane axes. Interestingly, despite
a large factor between the in-plane and out-of-plane re-
sistivities, their temperature dependence is very similar.

The values of anisotropy change with temperature, es-
pecially around the resistivity maximum. This is due to
a small, parasitic strain in the microfabricated devices.
The temperature dependence of the resistivity anisotropy
underlines the strong impact of pressure or strain on the
low-energy conductivity.

IV. THEORETICAL MODEL

ZrTes; has a complex crystal structure with many
atoms in the unit cell. The DFT-calculated band struc-
ture is shown in Fig. 6, where the spin-orbit coupling is
taken into account. While DFT gives the correct energy
band dispersion at high energies,'" at the energies compa-
rable to the very small, mili-electron-volt-sized spin-orbit
gap, any ab initio technique will inevitably be unreliable.
Instead, an effective model is necessary to account for all
the low energy band features.
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Most of the above experimental observations may be
explained within a previously developed effective two-
band model, with a linear energy dispersion in the ac
plane and a parabolic dispersion in the out-of-plane b
direction. " We can qualitatively understand the most
important features of the dc resistivity by considering
only the intraband effects. The most distinct element—
the resistivity peak at T*—turns out to be a consequence
of a strong chemical potential shift.

In the remainder of this Section, we refer to the axes
a and c as z and y. The least conducting b direction is
labeled z.

A. Hamiltonian and its eigenvalues

Let us start from a simple, two-band Hamiltonian
with four free parameters which have been previously
determined:

B A + ck?
= (hvxkx +ifoyk,

A — Ck2 (2)

hvgk, — ihvyky)
The elements v, are the Dirac velocities in the x and
y direction (corresponding to a and c¢ axis respectively),
and ¢ = h?/2m*, where m* is the effective mass. These
parameters can be unambiguously determined by com-
paring the experimental data from the optical and trans-
port measurement on ZrTes, and the predictions derived
from the above Hamiltonian. This Hamiltonian contains
quasi-Dirac features in the vicinity of the I' point in the
Brillouin zone. It phenomenologically implements the
energy band gap 2A originating from the spin-orbit cou-
pling, with an assumption of free-electron like behaviour
in the z direction (along the b axis).
The eigenvalues of the Hamiltonian (2) are

otk = £ T2 (0hy )2 4+ T2 (0 ky)? + (A + ck2)2. (3)

These energies, €1 x and €2k, are symmetrical with re-
spect to the middle of the bandgap, as illustrated in
Fig. 6b.

B. High-pressure behavior

Our main assumption for the high-pressure analysis is
that ZrTes consists of layers which are weakly bound by
van der Waals forces. In view of its layered structure,
shown in Fig. 1, as well as the high resistivity anisotropy,
this is a fair assumption.

We examine the changes of the physical constants un-
der the applied hydrostatic pressure P. Usually this situ-
ation is modeled only by ab initio calculations, but under
a few reasonable presumptions, we can quantitatively de-
termine several effects. There are 5 parameters that de-
termine our system: Fermi velocities v, and v,, effective
mass m*, energy gap 2A, and Fermi level e at zero
temperature. All of these parameters are susceptible to
change as we apply hydrostatic pressure. However, not
all of them change drastically under pressure. Since the
Fermi velocities are connected to the slope of the electron
dispersions in the z,y plane—a plane with strong inter-
atomic forces—we suspect that the pressure will result in
only a modest change of the velocities. Equivalently, one
can say that the change of the z,y plane area due to the
pressure is insignificant. The effective mass m* describes
the effects of interlayer forces which are much weaker
than intralayer forces. Hence the main contribution to
the volume decrease under pressure will come from the
decreasing of the distance between the layers. Therefore,
m’% and ek are the two quantities that bear most of the
pressure dependence. While m% can be calculated, €&
can be determined from our experiments.

We want to use the fact that the total carrier number
N remains constant under pressure. This is why we need



to know how the density of states and the volume depend
on pressure.

We first calculate the single band density of states per
unit volume using the eigenvalues (3), and we obtain:

g(e) = L vam’ Ve — A =CvVm* eve — (4)

T2h3 vy,

where we introduce C' = v/2/(7?h3v,v,).

From the experimental dependence of the absorption
onset on pressure below 2.5 GPa(Fig. 4b), we can deduce
that

ep =er(l+aP) (5)

where o = (1/ep)0ep/OP. The coefficient o may be
obtained from the Pauli edge shift in the optical exper-
iment. Since the expression for the optical conductivity
has the form

(W, 0) = %ZJQ\/ “2A O(hw — 2¢5), (6)

Y

we see that high pressure influences not only the am-
plitude of o,, but also its onset, through the Pauli
edge. The approximate value of the proportionality fac-
tor deduced from our experiment (Fig. 4b) is ap =~
2.3-1071°% Pa~!, where we have employed the data for
the sample B.

Another way to obtain « is to look at the behavior of
the resistivity anomaly under pressure, shown in Fig. 2d.
The peak temperature T'5 is linear in pressure, Tp =
T*(1 +~P). One can estimate y4 ~ 2.4 - 10710 Pa~1,
and vp ~ 0.86-10719 Pa—!, from data on samples A and
B respectively.

We can now use the relation between the resistivity
maximum temperature T and the Fermi energy, which
is valid for our model:

T* = const. + (ep/A) - 17K (7)

From comparison between Egs. (5) and (7), we can con-
clude @« = v(T*A)/(17Kep). This gives ay = 2.3 -
10719 Pa—!, where we use the parameters for sample A,
2A = 6 meV and ep = 14 meV, extracted from optical
and magneto-optical measurements.

Similarly, the volume change under pressure can be
written as Vp = V(1 — BP), where the compressibility is
defined as 8 = —(1/V)9V/OP. From the X-ray exper-
iment under pressure ° and using the above definition,
we calculate the compressibility 3 ~ 2.5 - 107! Pa~l.
The experiments therefore show that « is 10 times larger
than g, and so the parameter S can be safely discarded
in further calculations.

Next, we use the fact that the total number of electrons
N is independent of pressure. Therefore

€F
N = Np: VPTLP = Vp/ g(E)dE
A

—CVP\/ €F
=CVvVm*(ep —

A)32(3eE +2A)
)3/2(35F +2A).  (8)

Throughout further derivation, we shall assume for sim-
plicity that er > A. The above relation gives after sub-
stituting the values of €& and Vp

= CVp/mip(eh — A)P/2(3eE +2A)
~ CV (1 — BP)y/m*(P)(1 4 aP)®?
(er — A)/?(3er +24) (9)
Equations (8) and (9) give the same total carrier number

for ambient pressure P = 0, and a finite pressure, only if
the effective mass is equal to:

*
% m

"P T A+ aP)(1- BP)

1 - P(5a — 28)]

(10)
The above development of m™* is valid because « and
are very small with respect to the applied pressure. The
mass decreases with pressure as expected, under the con-
dition that o > 28/5. This condition is clearly satisfied,
as seen above.

To summarize this part, we assume that m* changes
under pressure more than any other model parameter,
which is logical seeing the layered structure of the crystal.
It is possible to extract the parameter « in two different
ways, from T* and ep, and they agree quite well. Finally,
(B is much smaller than a.

7 ~m |

C. Calculation of the dc resistivity anisotropy

The intraband conductivity tensor is defined in the di-
rection of principal axes v = z,y, z

ie? n,,

(11)

o) = T
with the effective concentration of charge carriers n,,
and the relaxation constant I'. The dc resistivity is then
Pzz = 1/025(0). The effective number of charge carriers
n,, is defined and calculated in the Appendix. It is the
only relevant parameter in determining the resistivity ra-
tios, as seen from the expression (11). The out-of-plane
resistivity anisotropy ps/ps, based on our model, is equal
to:

Pow _ Mzz 3 EF_ 50, (12)

2
Pzz  Naz  4m*o3

The in-plane anisotropy p./p, is:

Pyy _ Naz

~ 2.2, (13)

While the experimental in-plane anisotropy, p./pa ~ 2,
agrees very well with the model result, the out-of plane
anisotropy is experimentally six times smaller. This may
be related to the questionable assumption that the relax-
ation coefficient in the intraband conductivity is the same
in all the three directions, despite a highly anisotropic



Fermi surface. The Fermi surface of such a doped sys-
tem is an elongated ellipsoid in which the short axes (z, y)
are similar in length and determined by velocity ratios.
In the z direction, the parabolic dispersion covers ~ 70%
of the Brillouin zone.

Perhaps more relevant is the fact that the out-of-plane
to in-plane resistivity ratio in Eq. (12) is highly suscep-
tible to the changes of velocity v,, which may not be
known very precisely. If this velocity changes by a factor
of 2, the ratio in Eq. (12) would give the experimentally
observed value in Fig. 5b.

D. Pressure and temperature effects on the
resistivity

Finally, we consider the variation of the resistivity at
low pressures, below 2 GPa, and at low temperatures.
In a metal at a finite temperature, the deviation of the
chemical potential p from the Fermi level e is a function
of the density of states Eq. (31), in the leading order of
T. It is given by:

prep(1—12/et), (14)

where 7 &~ wkpT/2. Analogously, for a finite pressure P,
the chemical potential Eq. (32) depends on ef as:

pe = E (L= 73/(D)?). (15)

Finite values of pressure and temperature (P,T") alter
the effective concentration Eq. (26) in a trivial way, see
Appendix:

7_2

Mae (P, T) & 1z (0, 0) (1 - ;W> (1—aP)
(16)

This results in the 72 behavior of the resistivity at low
temperatures:

pe(P,T) = ps(0,0)(1 + aP) + ApT*  (17)

with a constant Ap = 0.66 x 1072(1 — aP) Qm/K?. For
our sample A, the calculated prefactor Ap accounts for
about 60% of the experimental value. This is a surpris-
ingly good agreement, considering that there may at the
same time be other scattering mechanisms which also
give a T? resistivity dependence.

The full expression for the resistivity, Eq. (36), can
be evaluated numerically, and the results are shown in

J

Fig. 6¢ for three different pressures. We note that the
temperature of the resistivity peak, T™, shifts linearly
in temperature under pressure, in agreement with our
experimental data. The strong increase of p(T*) under
pressure, observed in experiment (Fig. 2b, ¢), is not cap-
tured by this two-band model. This may be due to impu-
rities, which are not contained within the model. Finally,
our model predicts an increase of the zero temperature
resistivity, pg, under pressure, and a decrease of Ap. We
observe both of these effects, in particular in the sample
B which does not have low-temperature upturns.
V. CONCLUSION

Based on our high-pressure transport and infrared ex-
periments, ZrTes is confirmed to be very sensitive to hy-
drostatic pressure. In the high-pressure resistivity, we
observe a strong increase of the peak temperature 7™
even for fairly low pressures. In the high-pressure opti-
cal transmission, one can follow a linear increase of the
absorption onset, again at low pressures. Both of these
observations point to an increase in the Fermi energy as
the main effect of low pressures. Within our two-band,
low-energy effective model, these experimental observa-
tions can be well explained by the decrease of the effec-
tive mass under pressure. Finally, based on the effective
model, we derive expressions for the resistivity in the
low-temperature and low-pressure regime.
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VII. APPENDIX
A. Ratio of the dc resistivity p../pze

The intraband conductivity tensor is defined by:

2

1€° Ngy

Opa(W) = — 18
v (@) me w + I (18)

with the effective concentration of charge carriers n,, and the relaxation constant I'. The dc resistivity is then:

mel’
Pre = 1/04,(0) = e (19)
The effective number of charge carriers ng is given by:
1 > Ofx

Noaa = _V mevaka—gk, (20)

where vox = (1/h)0ek/Oks. At low temperatures (T & 0), we have 0 fx/0ex = —d(ep —ex), and for o = x, z we have

Dere Ok, = (e ) ke _ (o) ke (21)
T VR (ok )2+ BP0k, )P+ (AR ek
and
A + ck?)2ck, A + ck?)2ck,
Der/ Ok = —— 2( _ ) _ — _ ! ) (22)
V2 (vgke)? + B2 (vyky )2 + (A + ck2) €k

Next, we calculate the effective number of charge carriers in z and z direction. By introducing new dimensionless
variables v hk, = x, vyhk, =y and k./c = z, the integral Eq. (20) becomes

1 2mev, 1 1
e = G v ] 7 e T @)

Changing from Cartesian to cylindrical coordinates by introducing p? = 22 + 3?, Eq. (20) becomes:

1 2 e Vg 1 1 o) 2m oo
e = s iy [ do [ de [ depeoon (er - Vo (B ) (24)
0 0 —00

(2m)3 B v, Veek

We note that there are two zeros of z argument within the § function zg = #4/1/¢% — p> — A. This gives an extra

factor of 2, and the integral reduces to

1 2mev, 1 /VE%A2 pidp

Nag = e e V2 = T (25)
Ver = Ver —p2 - A

@nP 1 v, Veer Jo

which can be easily evaluated, giving the final result:

1 8 meuy, *m 9 9
Mew = G TR I gy V2 ep (3eF — Aer — 207, 2

Similarly we can calculate n.,. The integration is a bit more complex due to the extra term in the numerator of
Eq. (22). Here we only give the result, since the derivation is similar:

1 2m., 2 1 4 er — A
(2m)2 R 105 v,vy v2m*  er

(156% — 4A% g — 3Aet. — 8A?) (27)

Nyz =

The ratio of the two quantities can be written in the form

n.. 15 1 15e%, 3 ep
= — 4A ) =~ . 28
Ny 105 m*v2 (35F +2A + > m* (28)
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Finally, by inspecting the expression (19) we can determine

Pzx Nzz
— = == ~1/500 29
- /500, (29)
while from Eq. (26) we can conclude
p v
Py — %2 9.9 (30)
Pzx Uy

B. Effective carrier concentration ng.(P,T)

In metals at finite temperatures the deviation of the chemical potential p from ep is

2(kgT)?> 1 0
U ER 1—77—( sT)” 1 99() (31)
6 er gle) 0= |,
or inserting Eq. (8) in Eq. (31)
Wz(kBT)2 3€F—2A:| < ’7'2>
Rep |1 — Repl|ll——), 32
pEer [ 12¢2, ep— A r e, (32)
where 7 = 7kpT/2. Assuming a finite pressure P, we have:
Pl P LT P
=P (1- =ep(l 1- =ep(l 1-
uin =2k (1= s ) = er1+0P) (1= gy ) = e+ aP)1 =0 (33)

where we have < 1. Finite values of (P,T) alter the effective concentration Eq. (26) in a trivial way

1 8 mevy s VHP—A, 9
nmm(Pv T) - (27.‘.)2 15 h3 Uy 2WLP wp (3#’P AM’P 2A ) (34)

Inserting Eqgs. (10) and (32) into the above relation, and assuming that ep > A, we have:

1 8 meu, er—A o 1—2n 14+ 2aP
wx(P, T —————V2m*—— (3¢ — Aep — 2A
O e T PR T = v e G e ) A= A £aP)?
~ g (0,0)(1 = 3n/2)(1 — aP) (35)
Finally, changing the variable 7 to its explicit form, Eq. (33), the resistivity behaves like:
mel mel’
(P, T)=1/0,(P,T) = ~ 14 3n/2)(1 P
pe(PT) =1/ (PT) = 5 M 5 M (14 30/2)(1 +-aP)
= p:(0,0)(1 + aP) + ApT? (36)

with the constant Ap = 0.66 x 1079(1 — aP) Qm/K2.
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