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Despite the growing interest in topological materials, the difficulty of experimentally synthesizing
and integrating them with other materials has been one of the main barriers restricting access to
their unique properties. Recent advances in synthesizing metastable phases of crystalline materials
can help to overcome this barrier and offer new platforms to experimentally study and manipulate
band topology. Because III-V semiconductors have a wide range of functional material applications
(including optoelectronic devices, light-emitting diodes, and highly efficient solar cells), and because
Bi-doped III-V materials can be synthesized by ion plantation and ion-cutoff methods, we revisit
the effect of bismuth substitution in metastable III-V semiconductors. Through first-principles
calculation methods, we show that in wurtzite structure III-V materials, Bi substitution can lead
to band inversion phenomena and induce nontrivial topological properties. Specifically, we identify
that GaBi and InBi are Dirac-Weyl semimetals, characterized by the coexistence of Dirac points and
Weyl points, and GaAs0.5Bi0.5,GaSb0.5Bi0.5, InSb0.5Bi0.5 are triple-point semimetals, characterized
by two sets of ”near Dirac” triple points on the Fermi level. These experimentally-accessible bismuth-
based topological semimetals can be integrated into the large family of functional III-V materials
for experimental studies of heterostructures and future optoelectronic applications.

I. INTRODUCTION

The interplay between topology and solid-state mate-
rials has given rise to numerous novel properties. Topo-
logical semimetals1–4, for instance, are characterized by
high-mobility charge carriers5,6 (which can potentially
enable high-performance photovoltaic devices,7,8 solar
cells,9 and photodiode detectors for telecommunication
industry10,11) and exotic electromagnetic responses aris-
ing from their nontrivial topological nature12 (including
the gyrotropic magnetic effect13, second-harmonic gen-
eration14,15, the chiral magnetic effect, and large mag-
netoresistance16–18, which are useful in information stor-
age).

In order to unlock the potential of these applications,
it is necessary to find or synthesize robust and versatile
material realizations of topological semimetals. These
materials would ideally offer processing and manufactur-
ing possibilities similar to hallmark III-V semiconductor
materials such as GaAs or InSb. One promising strategy
is to start with the class of III-V materials and search for
topological semimetals within this class using composi-
tional substitution or alloying techniques. A first step in
this direction has been taken by theoretically consider-
ing the effect of bismuth substitution in zincblende III-V
materials19 on the electronic structure. In the case of
zincblende GaBi and InBi it was shown that Bi substi-
tution induces a band inversion and generates a topolog-
ical semimetal similar to HgTe.20 With proper amount
of Bi substitution, applying uniaxial strain then provides
access to the topological insulator phase. Furthermore,
in zincblende materials with CuPt type-B ordering, in-
cluding InP0.5Sb0.5, InAs0.5Sb0.5, the spin-orbit coupling
strength, which is originally linear in momentum, could

be further augmented by local disorder. Because the local
disorder does not average out in nano-scale supercells, the
spin-orbit coupling strength is further enhanced, making
these materials triple-point semimetals, which act as a
bridge connecting Dirac semimetals and Weyl semimet-
als21.

To further explore avenues for realizing topological
phases in III-V materials, it is important to broaden
the space of compounds and crystal structures, includ-
ing metastable phases and alloys. In this regard, it is
encouraging that various experimental approaches, such
as ion-implantation methods and ion-exchange methods,
provide the capability to synthesize several metastable
wurtzite III-V nanostructures.22–24 Among the various
III-V materials, only the nitride-based compounds natu-
rally crystallize in wurtzite phase. In most other cases,
including the aforementioned Bi-substituted compounds,
the zincblende phase is more stable. Modern experi-
mental techniques for material synthesis, however, make
metastable phases a promising focus of potential appli-
cations.

Based on these motivations, in this work we revisit
the effect of bismuth substitution by focusing on Bi-
substituted III-V materials in the wurtzite phase. Pre-
vious studies on ternary LiGaGe-type materials, which
crystallize in a stuffed wurtzite structure and the same
space group as the wurtzite III-V materials, have shown
that this general class of crystal structures can host
various types of topological semimetals. For instance,
SrHgPb25 was predicted to a realize a Dirac-Weyl
semimetal, exhibiting both Dirac and Weyl points, and
CaAgBi26 was predicted to host type-I and type-II Dirac
points. Therefore, in this work we employ first-principles
methods to study the topological properties of wurtzite
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III-V materials and show that wurtzite GaBi and InBi
are Dirac-Weyl semimetals characterized by the coexis-
tence of Dirac points and Weyl points. The Dirac points
on the kz axis are induced by a band inversion and pro-
tected by C6v point group symmetry, and the six pairs
of Weyl points are on the kz = 0 plane; this coexistence
pattern is similar to the case of SrHgPb.25 We furth-
more implement an alloying strategy and show that the
alloys GaAs0.5Bi0.5, GaSb0.5Bi0.5, InSb0.5Bi0.5, when the
point-group symmetry is reduced to C3v, are triple-point
semimetals, characterized by two sets of triple points on
the kz axis in close proximity to the Fermi level. The
splitting between the bands which form the triple points
is negligible compared to the topologically nontrivial en-
ergy window of these materials, making these systems
near-Dirac semimetals.

II. III-V MATERIALS: CRYSTAL
STRUCTURES

Whereas minerals such as AgI, ZnO, AlN, GaN, and
InN naturally occur in a wurtzite crystal structure,27 the
well-known conventional semiconductors GaAs, GaSb,
and InSb crystallize in the zincblende structure.28 Simi-
larly, the Bi-based III-V materials studied here are most
stable in the zincblende structure, except for InBi, which
instead is most stable in the lead oxide structure29.
The wurtzite structure, which is closely related to the
zincblende structure, is only metastable.30

The wurtzite structure can thought of as buckled di-
atomic honeycomb bilayers stacked in the c direction,
as shown in Fig. 1. In this structure with space group
P63mc (No. 186) and associated point group C6v,
all atoms are four-fold coordinated (see Fig. 1)—as is
the case for the zincblende structure. The close struc-
tural and electrochemical similarity of the wurtzite and
zincblende structures can be understood by comparing
the view along the (111) direction of the zincblende struc-
ture to the top view of wurtzite structure. The views
are similar, and moreover, expose the deformation which
brings the wurtzite structure into the zincblende struc-
ture. Specifically, the latter is obtained by deforming the
former such that the four-fold coordinated atoms form
perfect tetrahedra.

Given that the (metastable) wurtzite III-V materials
are structurally similar to the zincblende materials, it is
not surprising that they exhibit similar electronic prop-
erties. In particular, Bi substitution is expected to cause
a band inversion in both cases, leading to topologically
nontrivial electronic structure. In the case of zincblende
materials this was pointed out in Ref. 19; here we report
the topological properties of the wurtzite compounds.

Despite qualitative similarities, such as the presence
of a band inversion, the Bi-substituted zincblende and
wurtzite materials exhibit important differences in their
electronic structure, which are rooted in the distinct
(point group) symmetry of the two structures. In par-

ticular, the wurtzite structure is characterized by a prin-
cipal six-fold screw axis (see Fig. 1), which implies that
all energy bands are manifestly two-fold degenerate along
the rotation axis, i.e. the kz axis in Fig. 1. As a result,
an inversion of bands with different symmetry quantum
numbers necessarily gives rise to a protected Dirac point
crossing along the kz axis.1,3 In the next section, we show
that this indeed occurs in the Bi-substituted wurtzite III-
V materials.

kx

ky

kz

(a) (b)

FIG. 1. (a) The wurtzite crystal structure, where light gray
and dark gray atoms are the cations (Ga, In) and anions (As,
Sb, Bi), respectively; (b) Schematic plot of the high-symmetry
points in the first Brillouin zone of the wurtzite crystal struc-
ture.

III. Bi-BASED III-V MATERIALS:
DIRAC-WEYL SEMIMETAL

To obtain the electronic structure of the Bi-substituted
III-V materials in the wurtzite structure, we employ first-
principles density-functional theory (DFT) calculations.
Details of the computational methodology are presented
in Appendix A. The energy band structures of GaBi and
InBi (shown in Fig. 2), both with and without spin-orbit
coupling, demonstrate the effect of Bi-substitution: a
band inversion occurs involving Γ8 and Γ9 bands at the
zone center. The Γ9 band consists of jz = ± 3

2 p-states,

whereas the Γ8 band consists of jz = ± 1
2 s-states. The

key consequence of the inverted band ordering in GaBi
and InBi is the presence of symmetry-protected energy
band crossings on the Γ−A high symmetry line, located

at kD = (0, 0,±0.287) Å
−1

and kD = (0, 0,±0.201) Å
−1

,
and with energies E − EF = −0.07 eV and E − EF =
−0.05 eV, respectively. These band crossings realize band
inversion-induced Dirac points of the kind first proposed
for, and observed in, Na3Bi.3

As mentioned in the previous section, the double de-
generacy of all bands along the Γ−A line can be derived
from a two-fold screw rotation symmetry, which is con-
tained by a six-fold screw axis. The Dirac point crossing
is protected by the different symmetry properties of the
Γ8 and Γ9 bands. This distinction critically relies on the
six-fold (screw) rotation (i.e. point group C6v); break-
ing rotation symmetry allows the bands to couple and
hybridize, generating a Dirac mass and giving rise to a
topological insulator phase.
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FIG. 2. The calculated band structures of wurtzite (a) GaBi
and (b) InBi without spin-orbit coupling, and (c) GaBi and
(d) InBi with spin-orbit coupling are shown along the high-
symmetry lines. The inset corresponds to the boxed areas
and the dashed line denotes the Fermi level.

In addition to the Dirac points stabilized by (screw) ro-
tation symmetry, we also find Weyl points in the kz = 0
plane, perpendicular to the screw rotation axis. The
Weyl points also originate from the band inversion, as ev-
idenced by Figs. 2(c) and (d), but do not occur on high-
symmetry lines. In GaBi, for instance, one pair of the

Weyl points is located at kW± = (±0.069, 0.194, 0) Å
−1

,
with the energy of E−EF = 0.156 eV; the location of the
remaining pairs can be obtained by rotation symmetry.
To visualize the distribution pattern of Weyl points, we
provide the logarithmic plot of the energy difference be-
tween the conduction band and valence band, as shown in
Fig. 3(b), where the twelve light points correspond to the
Weyl points. Note that the local stability of Weyl points
in the kz = 0 plane follows from a combined symme-
try involving time-reversal and two-fold rotation.31 The
coexistence pattern of Dirac and Weyl points is summa-
rized in Fig. 3(a), showing both Dirac points on the kz
axis (black dots) and Weyl points on the kz = 0 plane
(green and blue dots). Such coexistence was first pre-
dicted to occur in a class of hexagonal ABC materi-
als with the same space group in Ref. 25, showcasing
SrHgPb as an example. Dirac-Weyl semimetals of this
kind raise the prospect of studying the interplay between
Dirac and Weyl electrons, in particular considering the
large distance between Weyl points in momentum space.
Here we show that Bi-substituted III-V materials in the
wurtzite structure are candidate materials for realizing

Dirac-Weyl semimetals.
To robustly prove the nontrivial topology of the Weyl

points we determine the chiral charge by calculating the
integral of Berry curvature over a sphere enclosing each
Weyl point, with a radius of 0.005 Å. Specifically, we
calculate C = 1

2πi

∮
dS · B(k) with the Berry curvature

B(k) defined as B(k) = ∇k ×
∑

occ.〈un(k)|∇k|un(k)〉,
where the sum is over all occupied bands labeled by n.
The chirality of each Weyl point is shown in Fig. 3(a),
where the green dots indicate chirality C = +1 and blue
dots C = −1. Since Weyl points with chirality +1 and
−1 are the sources and sinks of Berry curvature, respec-
tively, we plot the Berry curvature B(k) as function of
(kx, ky) in the kz = 0 plane, shown in Fig. 3(c), as a
graphical representation of the nontrivial topology. The
Weyl points are labeled by green and blue dots and are
shown to indeed correspond to sources or sinks.

An important consequence of nontrivial bulk topology
is the appearance of surface states. In the case of Weyl
electrons, Fermi arc surface states must connect the pro-
jections of the Weyl points onto the surface Brillouin
zone. In the present case, where the Weyl points are
located in the kz = 0 plane, Fermi arc surface states are
expected on the (001) surface. To verify this, we calculate
the surface spectral function at the Weyl point energy
E−EF = 0.156 eV and show the result in Fig. 3(d). The
central hexagon corresponds to the bulk states because
the energy is not chosen to be the Fermi energy EF , and
the six lines around that hexagon, which connects Weyl
points of opposite chirality, correspond to the surface
Fermi arc states, which, in the case of Weyl points, are
protected by topology and are robust against weak exter-
nal perturbations. These topological Fermi arcs could be
detected by angle-resolved photo-emission spectroscopy
as the signal of the topological nature of these materi-
als.32,33

IV. Bi-BASED III-V ALLOYS: TRIPLE-POINT
SEMIMETALS

The presence of both Weyl and Dirac points in Bi-
substituted GaAs and InSb is encouraging, yet for appli-
cation purposes it is desirable to have topological band
crossings right at the Fermi energy. As shown by Fig. 2,
the Dirac points are below the Fermi energy and asso-
ciated with an electron pocket, whereas the Weyl points
are above the Fermi energy and associated with a hole
pocket. Aiming to remedy this, we employ an alloy-
ing strategy inspired by similar work on zincblende III-
V materials19. By alloying normal insulators GaAs,
GaSb, and InSb with Dirac-Weyl semimetals GaBi and
InBi the series of alloys GaAs0.5Bi0.5, GaSb0.5Bi0.5, and
InSb0.5Bi0.5 can be obtained; the crystal structures of
GaAs0.5Bi0.5, which is taken as an example, is shown in
Figure 4(a).

The main effect of alloying is to tune the strength of
spin-orbit coupling, which directly affects the band inver-
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FIG. 3. (a) Schematic illustration of the distribution of Dirac
points (black dots), Weyl points with chirality +1 (green dots)
and chirality -1 (blue dots) in Dirac-Weyl semimetal GaBi.
(b) The logarithmic plot of the energy difference between con-
duction band and valence band in the kz = 0 plane. (c) Cal-
culated Berry curvature of GaBi around two Weyl points on
the kz = 0 plane; the arrow denotes the in-plane projection of
Berry curvature. (d) Calculated surface Fermi arcs of GaBi
on the (001) surface.

sion. A material which is still inverted but closer to the
band inversion transition is likely to exhibit protected
Dirac band crossings at the Fermi energy, without ad-
ditional Fermi surface. We find that this is indeed the
case for GaAs0.5Bi0.5, as shown in Fig. 4(b): the crossing
of energy bands on the Γ − A line is now at the Fermi
energy. Alloying, however, also reduces the point group
symmetry; in case of GaAs0.5Bi0.5 and similar alloys the
symmetry is reduced from C6v to C3v. This has impli-
cations for the degeneracy of energy bands, in particular
on the rotation axis, and affects the protection of Dirac
points. When rotation symmetry is reduced to three-
fold, the jz = 3

2 states are no longer degenerate on the
kz axis but instead are split (except for the time-reversal
invariant points). As the result, the Dirac points are split
into triple points, giving rise to a triple-point topological
semimetal.34 In the case of GaAs0.5Bi0.5 this is clearly
shown in the bottom panel of Fig. 4(c).

The electronic states in the vicinity of the triple points
can be well-described by the low-energy k·p Hamiltonian
derived in Ref. 21. Adapted to the present case, the
Hamiltonian is given by

H(k) =


E0 +Akz 0 Dkx Dky

0 −E0 +Akz F ∗ky −F ∗kx
D∗kx Fky Bkz + Cky Ckx
D∗ky −Fkx Ckx Bkz − Cky

 (1)

where here kx and ky are interchanged with respect to
Ref. 21, which is due to a different choice of coordi-
nate system. We fit the parameters of (1) to the first-

A (eV Å) B (eV Å) C (eV Å)
-2.000 2.286 0.754

D (eV Å) E0 (meV) F (eV Å)
2.413 1.242 -2.485

TABLE I. The fitted parameters of the k · p Hamiltonian.

principles band structure calculations and show the re-
sult in Fig. 4(c), which demonstrates that (1) provides a
good description of the low-energy electronic structure.
The values of the fit parameters are listed in Table I.
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FIG. 4. (a) The crystal structure of the unit cell of alloy
GaAs0.5Bi0.5, where light gray, dark gray, and brown atoms
denote Ga, As, and Bi, respectively. (b) The calculated band
structure of GaAs0.5Bi0.5, labeled by the irreducible represen-
tations of C3v point group, is shown along the high-symmetry
line. The dashed line denotes the Fermi level. (c) The fit of
the k · p Hamiltonian (red circles) with DFT results (black
lines) in the vicinity of the triple points. (d) The calculated
surface Fermi arcs of the (100) plane of GaAs0.5Bi0.5.

As suggested by Fig. 4(b), Fig. 4(c) shows that the
splitting of bands on the kz axis as a result of symmetry
lowering is small in magnitude. In fact, we find that the
splitting is ∆E ≈ 3 meV. Such small splitting and close
proximity of the triple points leads to the expectation
that semimetals of this kind behave as Dirac semimet-
als, motivating the term near-Dirac semimetal. Since the
near-Dirac point is at the Fermi energy, with no addi-
tional electron or hole pockets, such near-Dirac semimet-
als provide a promising venue for observing signatures
of and studying the properties of Dirac semimetals. For
instance, it is expected that the Fermi arc surface states
can be clearly resolved. To verify this, we calculate the
surface spectral function of the GaAs0.5Bi0.5 (100) alloy
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surface and show the result in Fig. 4(d), which corrobo-
rates that the spectral function closely resembles that of
a proper band-inverted Dirac semimetal.1

It is worth noting that for substitution proportions
x = 0.25, 0.75 in GaAs1−xBix a supercell with C6v sym-
metry can be constructed, as shown in Appendix D. For
x = 0.5 that is not the case, reducing the symmetry to
C3v. In the case of the former, four-fold degenerate Dirac
points can be strictly protected by symmetry, and we
therefore examine the band structures of GaAs0.75Bi0.25

and GaAs0.25Bi0.75 for an ideal Dirac point crossing. We
find that Dirac points exist in both materials; details of
them could be found in Appendix D. Combined with the
band structures of GaAs, GaAs0.5Bi0.5, and GaBi, these
band structures could further demonstrate the effect of
bismuth alloying.

To show the thermodynamic stability of GaAs0.5Bi0.5,
we first calculate its phonon dispersion relation. The
calculated phonon modes at Γ point have a small nega-
tive mode ω = −17.18 cm−1 without using acoustic sum
rules. After applying the sum rules, the negative mode
is eliminated and the phonon dispersion relation is ev-
erywhere positive, as shown in Figure 5(a), showing that
GaAs0.5Bi0.5 is a metastable crystalline material. Fur-
thermore, we consider the energies of all alloy orderings
in a 2× 2× 1 GaAs0.5Bi0.5 supercell; the seven orderings
are listed in Appendix C, among which the ordering (vii)
is the desired triple-point near-Dirac semimetal with C3v

group symmetry. The energies of these alloying orders
are shown in Figure 5(b). From Figure 5(b), it is shown
that the energy of ordering (vii) is lower than the other
ordering by at least 0.18 eV per unit cell, which suggests
that it is energetically favorable to obtain the proposed
triple-point semimetal compared with other disordered
crystalline phases which do not host nontrivial topology.
In conclusion, these results could show that the triple-
point near-Dirac semimetal structure of GaAs0.5Bi0.5 is
more stable than other alloy ordering and could be real-
ized in experiments.
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FIG. 5. (a) The calculated phonon dispersion relations of
GaAs0.5Bi0.5 is shown along the high-symmetry lines of the
Brillouin zone of the hexagonal lattice. (b) The relative en-
ergies of different alloying orders of the 2 × 2 × 1 supercell
GaAs0.5Bi0.5. The lowest-energy ordering (vii) is the triple-
point near-Dirac semimetal.

V. CONCLUSION

In this work, we revisited the effect of bismuth sub-
stitution to lead to nontrivial topological properties in
metastable wurtizte III-V materials. Based on first-
principles calculations, full substitution of bismuth would
lead to Dirac-Weyl semimetals GaBi and InBi, character-
ized by the coexistence of Dirac points and Weyl points
in the Brillouin zone. By alloying them with normal insu-
lators, the reduction of the spin-orbit coupling strength
could remove the additional hole pockets near the Bril-
louin zone center, and the change of crystal symmetry
splits the Dirac points into a set of triple points, making
the thermodynamically metastable alloys GaAs0.5Bi0.5,
GaSb0.5Bi0.5, and InSb0.5Bi0.5 triple point semimetals.
The integration of topological properties with conven-
tional wurtzite III-V materials, along with the advanced
experimental approaches to synthesizing them, could en-
rich the family of accessible topological materials and
provide new platforms for people to experimentally study
the various properties arising from topology.
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Appendix A: Methodology

In this work, calculations were performed based on
density functional theory implemented in the software of
Quantum Espresso35. For structural relaxation, since the
experimental values of the lattice constants of wurtzite
III-V materials are not readily available while those of
zincblende materials are,27,36,37 the initial lattice con-
stants are obtained by the relations aWZ = 1√

2
aZB and

cWZ =
√

3
8aWZ. Then the lattice constants of wurtzite

materials were obtained through structural relaxation
with the strongly constrained and appropriately normed
(SCAN) semilocal meta-GGA functional.38

The electronic band structures were calculated with
the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional39,
since GGA or LDA functionals are known to underesti-
mate band gaps of semiconductors.40 In the band struc-
ture calculations, a 6× 6× 6 k-point grid and an energy
cutoff of 50 Ry could give converged results and are thus
used. Furthermore, phonon dispersion relation calcula-
tions are performed to show the thermodynamic stability
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of these wurtzite materials; they were calculated with a
4× 4× 2 q-point grid and an energy cutoff of 100 Ry.

In order to study the topological properties of the pro-
posed materials, the Hamiltonian of each material was
constructed based on maximally-localized Wannier func-
tions, obtained in the software of Wannier90,41 with the
projections of the bands around the Fermi level chosen
to be the s-orbital states of the cations and the p-orbital
states of anions, as used in previous work.42,43 The va-
lidity of this choice of projection is shown by comparing
the band structures obtained in Quantum Espresso and
Wannier90. Furthermore, the computational software of
Wanniertools44 is used to obtain the topological proper-
ties, such as the surface Fermi arcs, the chirality of Weyl
points, and Berry curvature, of these materials, based
on the Hamiltonian obtained from the software of Wan-
nier90.

Appendix B: Absence of bismuth substitution -
normal insulators

Without bismuth substitution, the wurtzite III-V ma-
terials, GaAs, GaSb, and InSb, are normal insulators,
as shown in the band structures in Figure B.1. To fur-
ther analyze these band structures, we define the spin-
orbit coupling strength of the anions in these materials
as the energy difference between p1/2- and p3/2-states.
Under C6v group symmetry, p3/2-states will split into Γ7

and Γ9 bands, formed by | 32 ,±
1
2 〉 and | 32 ,±

3
2 〉 states re-

spectively. To distinguish the Γ7 band originating from
p1/2 and p3/2 states, we label them by Γ7(1) and Γ7(2).
Therefore, the spin-orbit coupling strength is expressed
as Esoc = 1

2 (EΓ9
+EΓ7(2)

)−EΓ7(1)
. The energy band gap

Egap and Esoc of GaAs, GaSb, and InSb can be found
in Table B.1. These values are in accordance with those
being reported before,42 thus verifying the validity of our
calculations.
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FIG. B.1. The calculated band structures of wurtzite (a)
GaAs, (b) GaSb, and (c) InSb without spin-orbit coupling,
and (d) GaAs, (e) GaSb, and (f) InSb with spin-orbit coupling
are shown along the high-symmetry lines. The dashed line
denotes the Fermi level.

GaAs GaSb InSb GaBi InBi

aWZ (Å) 3.866 4.428 4.498 4.397 4.657
cWZ (Å) 6.386 7.028 7.433 7.136 7.543
Egap (eV) 1.72 0.64 0.36 -0.91 -0.68
Esoc (eV) 0.50 0.94 0.97 2.54 2.54

TABLE B.1. Calculated lattice constants aWZ and cWZ,
energy band gap Egap, spin-orbit coupling strength Esoc of
wurtzite GaAs, GaSb, InSb, GaBi and InBi

For GaBi and InBi, however, the band gap cannot
be defined by the energy difference between Γ8 and Γ9

bands. Therefore, we could identify the energy difference
between Γ9 and Γ8 bands as the band inversion strength.
Instead of introducing Ebis = EΓ9

− EΓ8
, as what was

done in Ref. 19, we will continue to use the definition of
Egap since both quantities only involve the energies of Γ9

and Γ8 bands. Therefore, negative band gap indicates
that Γ9 and Γ8 bands are inverted in our case. These
values could also be found in Table B.1.

Appendix C: The different alloy ordering of 2 × 2 × 1
supercell of wurtzite GaAs0.5Bi0.5

In this appendix, the crystal structures of different al-
loying orders of GaAs0.5Bi0.5 in a 2× 2× 1 supercell are
listed. There are in total seven inequivalent crystal struc-
tures, shown in Figure C.1, with light gray, dark gray, and
brown atoms representing Ga, As, and Bi, respectively.

(i) (ii) (iii) (iv)

(v) (vi) (vii)

FIG. C.1. The different alloy ordering of 2 × 2 × 1 supercell
GaAs0.5Bi0.5. The ordering (vii) is the desired triple-point
near-Dirac semimetal.

Appendix D: The crystal structure and band
structures of GaAs0.75Bi0.25 and GaAs0.25Bi0.75

For GaAs0.75Bi0.25 and GaAs0.25Bi0.75, we can con-
struct 2× 2× 1 supercell with C6v crystal symmetry, as
is shown in Figure D.1, while for GaAs0.5Bi0.5 this is not
possible. From the calculated band structures, we could
further demonstrate the effect of bismuth substitution in
III-V materials - to increase spin-orbit coupling and to in-
duce band inversion. This can be seen from the positions
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FIG. D.1. The crystal structures and calculated band struc-
tures of GaAs0.75Bi0.25 (a, b) and GaAs0.25Bi0.75 (c, d). Here
light gray, dark gray, and brown atoms represent Ga, As, and
Bi, respectively. The dashed line denotes the Fermi level.

of the Dirac point or from the band inversion strength de-
fined in Appendix B. As is shown in Table D.1, when sub-
stituting bismuth into GaAs, which has no band inversion
and Dirac points, the spin-orbit coupling strength grad-
ually increases, thus the band inversion strength should
increase and the Dirac points move from Γ point to A
point.

Although Dirac points exist in both GaAs0.75Bi0.25

and GaAs0.25Bi0.75, the bands forming the Dirac point
are different. In GaAs0.75Bi0.25, Γ9 band becomes higher
than the Fermi energy due to its stronger spin-orbit cou-
pling strength than GaAs0.5Bi0.5, but its change is not
sufficient enough to induce a band inversion between Γ9

and Γ8 bands, so the Dirac point is formed by Γ9 and Γ7

bands. And in GaAs0.25Bi0.75, the Dirac point does come
from band inversion between Γ9 and Γ8 bands, which is
also the case for GaBi. Similarly, it is not on the Fermi
level because of the additional electron pockets on the
Fermi level.

x 0.00 0.25 0.50 0.75 1.00
Esoc (eV) 0.50 0.94 1.26 1.57 2.54
Egap (eV) 1.72 0.14 -0.45 -0.63 -0.91
(kz)D (Å) – 0.02 0.237 0.269 0.287

TABLE D.1. The spin-orbit coupling strength, the energy
band gap, and the positions of Dirac points on the kz axis
of GaAs1−xBix. The magnitude of negative band gap corre-
sponds to band inversion strength of anions.

Appendix E: Mirror-symmetry protected nodal lines
in type-B triple-point semimetal GaAs0.5Bi0.5

Since GaAs0.5Bi0.5 belongs to the space group No. 160,
the triple-points on the Fermi level should be classified
into type-B, according to Ref. 34. Each pair of the type-
B triple-points are accompanied by the existence of four
nondegenerate nodal lines which are protected by mirror
symmetry, as is shown in Figure E.1. Type-B triple-
points are different from type-A not only in the number
of nodal lines, but also in the Berry phase associated with
these nodal lines; the Berry phase accumulated along the
loop enclosing these nodal lines are all quantized to be
φB = π.
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FIG. E.1. The distribution pattern of the mirror-symmetry
protected nodal lines in GaAs0.5Bi0.5. Each black dot repre-
sents one triple-point.

1 N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev.
Mod. Phys. 90, 015001 (2018).

2 S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J.
Mele, and A. M. Rappe, Phys. Rev. Lett. 108, 140405
(2012).

3 Z. Wang, Y. Sun, X.-Q. Chen, C. Franchini, G. Xu,
H. Weng, X. Dai, and Z. Fang, Phys. Rev. B 85, 195320
(2012).

4 H. Gao, J. W. F. Venderbos, Y. Kim, and A. M. Rappe,
Annu. Rev. Mater. Res. 49, 153 (2019).

5 S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy,
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