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Majorana-based quantum computation seeks to encode information non-locally in pairs of Majorana zero
modes (MZMs), thereby isolating qubit states from a local noisy environment. In addition to long coherence
times, the attractiveness of Majorana-based quantum computing relies on achieving topologically protected Clif-
ford gates from braiding operations. Recent works have conjectured that mean-field BCS calculations may fail
to account for non-universal corrections to the Majorana braiding operations. Such errors would be detrimen-
tal to Majorana-based topological quantum computing schemes. In this work, we develop a particle-number
conserving approach for measurement-based topological quantum computing and investigate the effect of quan-
tum phase fluctuations. We demonstrate that braiding transformations are indeed topologically protected in
charge-protected Majorana-based quantum computing schemes.

I. INTRODUCTION

Topological quantum computation is predicated on the
idea that information stored non-locally in pairs of non-
Abelian anyons or topological defects is robust to local noise
sources.1,2 Braiding the anyons or defects implements a non-
trivial operation on the quantum state, while preserving the
topological protection of the encoded information. Topologi-
cal protection is generally defined as exponentially suppressed
scaling of error rates in parameter ratios of the system that can
be made large.

At present, the most promising approach towards realiz-
ing topological quantum computing utilizes Majorana zero
modes (MZMs), non-Abelian topological defects of a super-
conductor.3–6 Each MZM is described by a Majorana operator,
γj = γ†j , satisfying anticommutation relations

{γj , γk} = 2δj,k. (1)

Majorana-based qubits encode quantum information in the
fermion parity of pairs of MZMs, corresponding to the op-
erator iγjγk. Braiding MZMs j and k corresponds to the op-
erator7,8

R(jk) =
1 + γjγk√

2
. (2)

Braiding, combined with a two-qubit entangling measure-
ment, is sufficient to implement all Clifford operations. Sup-
plementing braiding and measurement with a non-Clifford
gate (e.g., using magic state distillation, which also bene-
fits from protected Clifford gates) enables universal quantum
computation.1,2 The attractiveness of Majorana-based quan-
tum computing is equally dependent on achieving long coher-
ence times for the idle qubit, and on achieving topologically
protected Clifford operations.

There has been impressive experimental progress in tuning
semiconductor-superconductor nanowires into a topological
superconducting phase hosting MZMs at either endpoint.9–20

The continued experimental improvement of these systems

has led to theoretical interest in designing Majorana-based
qubits out of such heterostructures.21–25 In particular, several
works in the last few years have proposed charge-protected
Majorana-based qubits.26–28 These qubits have a large charg-
ing energy to suppress extrinsic quasiparticle poisoning (i.e.,
stochastic electron tunneling into a Majorana island that
changes the topological state of the system). Additionally,
these qubits are operated according to a measurement-based
braiding protocol26–33 to circumvent the difficulty of physi-
cally moving MZMs in 1D wire networks34,35 and the suscep-
tibility of anyon braiding to problematic diabatic errors.36

Charge-protected Majorana-based qubits are operated in
the Coulomb-blockaded regime, for which quantum phase
fluctuations of the superconducting order parameter are im-
portant. The majority of previous studies of Majorana systems
have used mean-field BCS models, which do not take into ac-
count such fluctuations. A natural question to consider is the
extent to which mean-field results apply to a physical sys-
tem with particle-number conservation.37–42 Field-theoretic
bosonization has emerged as a useful tool for comparing mean
field and number conserving predictions for 1D topological
superconductors.43–46 Previous works have demonstrated that
Majorana nanowires have a topologically protected ground
state degeneracy even in the absence of long-range super-
conducting order,44 examined the fractional Josephson ef-
fect in Coulomb-blockaded Majorana-based devices,45 calcu-
lated the charge distribution associated with the topological
state and thus the susceptibility of Majorana-based qubits to
noise.46 These studies have reaffirmed the topological protec-
tion of an idle charge-protected Majorana-based qubit.

Majorana-based quantum computation additionally relies
on MZM braiding to implement topologically protected Clif-
ford gates. Recent studies have questioned whether number
conservation introduces non-universal corrections to the Ma-
jorana braiding transformations. References 41 and 42 used
number projected Bogoliubov-de-Gennes theory for 2D p+ip
superconductors to argue that Cooper pair coupling to local
observables may affect MZM braiding in 2D p+ip supercon-
ductors. The potential braiding phase errors raised by Refs. 41
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and 42 would be detrimental to the field of Majorana-based
quantum computing and thus warrant serious investigation.

In this work, we extend the bosonized formalism of
Refs. 44–46 to study measurement-based braiding for charge-
protected Majorana-based qubits. In particular, we examine
whether the MZM parity measurements proposed in Ref. 26
are susceptible to non-universal corrections from quantum
fluctuations of the superconducting phase, and the implica-
tions for measurement-based braiding. We find:

1. In the absence of charging energy, the left/right end
of the proximitized wire segment j hosts a charged
fermionic zero mode Γj,L/R. The neutral product
of two such operators iΓ†j,JΓk,K , J,K ∈ {L/R}, is
closely related to the MZM parity.

2. The quantum dot-based tunneling measurement pro-
posed in Ref. 26 couples to the MZM parity. Cor-
rections to this measurement from number conserva-
tion occur outside of the ground state subspace and are
therefore exponentially suppressed in the charge gap
over the temperature. Spatial quantum phase fluctu-
ations in the superconductor reduce the measurement
visibility, but do not otherwise affect projective parity
measurements.

3. The quantum dot-based tunneling measurement can be
used in a measurement-based braiding protocol. As
quantum fluctuations in the superconductor do not pre-
clude projective measurements, the operation imple-
mented by this protocol simulates a topologically pro-
tected braiding transformation.

The remainder of this paper is organized as follows. In
Sec. II, we describe our model of the charge-protected qubit
displayed in Fig. 1. We then derive the zero modes at each
end of the proximitized segments and demonstrate their anti-
commutation as well as other key properties, see Sec. III. We
identify the MZM parity and demonstrate that it is insensitive
to all local operators, up to exponentially suppressed terms.
In Sec. IV, we then consider the quantum dot-based tunnel-
ing measurement depicted in Fig. 1. We show that such a
measurement couples to the MZM parity. Finally, in Sec. V
we argue that the measurement-based braiding protocol out-
lined in Ref. 26 is topologically protected. We conclude by
identifying the role number conservation plays throughout our
analysis and discussing the connection to previous works in
Secs. VI and VII. We relegate technical details of the calcula-
tions to the appendices.

II. SETUP

We consider the charge-protected Majorana-based qubit de-
picted in Fig. 1. The full structure of the qubit will only be im-
portant in Sec. V when we consider measurement-based braid-
ing (which requires a minimum of six MZMs). We highlight
the relevant physics below.

A spinless semiconducting nanowire (orange) is proximi-
tized by an s-wave superconductor (dark blue) in three seg-
ments. Each segment is connected to a superconducting back-
bone, which is assumed to have many channels so that there
is no relative charging energy between different regions. A
tunnel barrier separates the end of each proximitized region
from a quantum dot or lead that can be used for a tunnel-
ing measurement, see Section IV. The device in Fig. 1 hosts
six MZMs (red dots), one at each end of the proximitized
nanowires. We label the proximitized wires by j ∈ {1, 2, 3}
and left/right end of the wires by J ∈ {L/R}. Below, we refer
to the MZM at the J th end of the jth wire as γj,J . The qubit
forms a floating (non-grounded) superconducting island with
four degenerate (up to exponentially suppressed corrections
that we neglect here) ground states. Two of these states consti-
tute the computational basis, while the remaining two are an-
cilla degrees of freedom used to facilitate measurement-based
braiding, see Section V. Our analysis of the device shown in
Fig. 1 generalizes straightforwardly to the non-linear geome-
tries proposed in Ref. 26.

We study this device using a number conserving bosonized
formalism, previously used in Refs. 44–47. We model the
semiconductor with spinless electrons defined by

ψsm(x) ∼ eikF xeiθ(x)+iφ(x) + e−ikF xeiθ(x)−iφ(x). (3)

In the above notation, θ and φ are bosonic operators whose
commutator

[φ(x), θ(y)] = iπΘ(x− y), (4)

ensures that electron operators at distinct points anticommute.
The charge density is related to φ by ρ(x) = ∂xφ(x)/π, while
the operator eiθ(x) adds a charge to the semiconductor at posi-
tion x. In the above, kF is the semiconductor Fermi momen-
tum and Θ(x) is the Heaviside function.

The superconductor carries both charge (ρ) and spin (σ)
fields

(5)

ψsc,σ(x) ∼eik
(ρ)
F xe

i√
2

(θρ(x)+φρ(x)+σ[θσ(x)+φσ(x)])

+ e−ik
(ρ)
F xe

i√
2

(θρ(x)−φρ(x)+σ[θσ(x)−φσ(x)])
, (6)

and similarly has commutation relations

[φλ(x), θλ′(y)] = iπδλ,λ′Θ(x− y) (7)

where λ, λ′ ∈ {ρ, σ}. The charge density in the supercon-
ductor is defined by ρsc(x) =

√
2∂xφρ(x)/π and the current

is
√

2∂xθρ/π. Thus the operator eiθρ(x)/
√

2 adds a charge to
the superconductor at position x. We denote the Fermi mo-
mentum in the superconductor by k(ρ)

F . The number operator
for the combined semiconductor and superconductor is

N = Nsm +Nsc (8)

Nsm =
1

π

3∑
j=1

(φ(xj,R + `)− φ(xj,L − `)) (9)

Nsc =

√
2

π
(φρ(x3,R)− φρ(x1,L)) . (10)
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FIG. 1. Basic qubit layout proposed in Ref. 26. A semiconductor (orange) is proximitized by a superconductor (blue) in three spatial regions,
xj,L < x < xj,R for j ∈ {1, 2, 3} and L/R indicating left/right. At the end of each proximitized segment, there is a bare semiconductor
region of length `, terminated by a tunnel barrier. Each bare semiconductor region hosts a charged fermionic zero mode Γj,J , where the neutral
product iΓ†

j,JΓk,K corresponds to the MZM parity iγj,Jγk,K . The regions between two proximitized wires hosts a quantum dot. To perform
a measurement, the barriers are lowered to permit tunneling between the quantum dot and the bare semiconducting regions. Reference 26
discusses how the same physics can be used to measure any pair of MZMs using coherent links (floating topological superconductors in a fixed
fermion parity state). Our analysis generalizes straightforwardly to the non-linear qubit structures proposed in Ref. 26.

We model the semiconductor as a Luttinger liquid and the
superconductor as a Luther-Emery liquid.48 Due to the spin
gap in the superconductor, one can integrate out spin de-
grees of freedom in the superconductor and obtain an ef-
fective pair tunneling Hamiltonian across the semiconduc-
tor/superconductor interface.44 Thus, the effective low-energy
Hamiltonian has only charge degrees of freedom, and can be
written as

Hsm =
v

2π

3∑
j=1

∫ xj,R+`

xj,L−`
dx
{
K (∂xθ)

2
+K−1 (∂xφ)

2
}
(11)

Hsc =
vρ
2π

∫ x3,R

x1,L

dx
{
Kρ (∂xθρ)

2
+K−1

ρ (∂xφρ)
2
}

(12)

HP =
∆P

2πa

3∑
j=1

∫ xj,R

xj,L

dx cos
(√

2θρ − 2θ
)

(13)

In the above, v and K are the Fermi velocity and Luttinger
liquid parameter for the semiconductor, while vρ and Kρ are
for the superconductor. The term HP describes pair-tunneling
between the semiconductor and superconductor. This term
is a relevant perturbation that flows to strong coupling in the
infrared limit and opens up a topological superconducting gap
∆P .

44 As Hsm, Hsc, and HP all commute with the number
operator N , our model is explicitly number-conserving.

When the semiconductor and superconductor are de-
coupled from each other, for instance in the region
xj,R < x < xj+1,L, the semiconductor and superconductor
fields introduced above are the natural degrees of freedom to
describe the system. In the jth proximitized wire, the pair-
ing term in Eq. (13) strongly couples the semiconductor and
superconductor. In this case, the convenient fields to use are

θ−(x) =
1√
2
θρ(x)− θ(x) (14)

θ+(x) =
1

2

(
1√
2
θρ(x) + θ(x)

)
, (15)

and their respective dual fields

φ−(x) =
1

2

(√
2φρ(x)− φ(x)

)
(16)

φ+(x) =
√

2φρ(x) + φ(x). (17)

Note that the total charge of a proximitized wire can be written
in terms of φ+

N j
+ =

1

π

∫ xj,R

xj,L

dx ∂x

(√
2φρ + φ

)
(18)

=
1

π

∫ xj,R

xj,L

dx ∂xφ+ (19)

and commutes with θ−. Henceforth, we will derive an effec-
tive low-energy theory for the system. At energies ε � ∆P ,
the field θ−(x) for each proximitized wire is pinned and takes
values θ− = 0 or π. The even and odd superpositions of these
minima,

|±〉j =
1√
2

(|θ− = 0〉j ± |θ− = π〉j) (20)

are eigenstates of the relative fermion parity (−1)N
j
− , where

N j
− =

1

π

∫ xj,R

xj,L

dx ∂xφ−. (21)

When the total charge of the qubit is fixed, say, to be even,
there are four such states: |±〉1|±〉2|+〉3, and |±〉1|∓〉2|−〉3
where the subscript here refers to a particular proximitized
segment in Fig.1. References 44 and 46 argued that these
states are indistinguishable by all local operators, have an ex-
ponentially suppressed degeneracy splitting, and are predicted
to have exceptionally long coherence times. Thus, the topo-
logical information is completely encoded in θ−. We now
extend this analysis to consider qubit measurement, with the
aim of understanding whether topological protection extends
to Clifford gates implemented by measurement-based braid-
ing of MZMs.

We introduce two new elements: (1) bare semiconducting
regions at the end of each proximitized wire, terminated by a
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tunneling barrier of potential VB

HB = VB

3∑
j=1

{cos (2φ (xj,L − `)) + cos (2φ (xj,R + `))} ;

(22)

and (2) a Hamiltonian HC describing the charging of the is-
land

HC = EC (N −Ng)2
, (23)

where N is defined by Eq. (8) and Ng is a dimensionless gate
voltage. When operated at a Coulomb valley, i.e., Ng ∈ Z,
adding or removing an electron from the island costs an en-
ergy EC . In the limit EC is much larger than the temperature
T , single electron processes are exponentially suppressed.
This is the sense in which the qubit is “charge-protected.”
Henceforth, we assume that the level spacings for the super-
conductor δsc and the semiconductor δsm are negligibly small.
The latter applies to a sufficiently long wire, v/Lwire � T , as
well as when there is a strong coupling between the supercon-
ductor and semiconductor which further suppresses δsm due to
small δsc

49

In the remainder of the paper, we study the weak tun-
neling limit for the qubit-dot coupling and assume that the
barrier potential VB is sufficiently large that φ(xj,L/R) are
pinned to mj,L/Rπ (mj,L/R ∈ Z). At low energies, the
pairing amplitude ∆P pins the difference field θ− to njπ for
xj,L < x < xj,R (nj ∈ Z). Finally, we assume that the super-
conducting field θρ is spatially homogeneous throughout the
superconductor due to a large number of transverse channels
(i.e., Kρ →∞). This constraint will be relaxed in Section VI.

Given the above assumptions and T � min (VB ,∆P ), one
can derive the low-energy theory by imposing mixed bound-
ary conditions for the bare semiconducting regions at the ends
of each proximitized segment. We show below that this results
in a fermionic zero mode localized in each of these regions.

III. ZERO MODE SOLUTION

In this section, we show that the bare semiconductor region
at the end of a proximitized wire localizes a fermionic zero
mode. This zero mode arises from the mixed boundary condi-
tions in the segment - normal boundary conditions at one end
(ψsm,R = ψsm,L corresponding to φ-field being pinned by the
barrier Hamiltonian in Eq. (22)), and Andreev boundary con-
ditions at the opposite end (ψsm,R = ψ†sm,L corresponding to
θ− being pinned by the pairing term in Eq. (13)).50

The fields in the bare semiconductor region to the J th side
of the jth proximitized segment admit normal mode expan-
sions

φj,J(y)= φ0
j,J+i

√
2K

∞∑
k=0

cos
(
[2k + 1]πy2`

)
√

2k + 1

(
b†k − bk

)
(24)

θj,J(y)= θ0
j,J+

√
2

K

∞∑
k=0

sin
(
[2k + 1]πy2`

)
√

2k + 1

(
b†k + bk

)
. (25)

The bosonic operators bk have canonical commutation rela-
tions [bk, b

†
k′ ] = δk,k′ , while the zero modes satisfy

[φ0
j,J , θ

0
k,K ] = iπΘ(j − k + J/2), (26)

where J = L = −1 and J = R = +1. For simplicity, we
have used the shifted coordinates y = x − xj,J , which range
between [−`, 0] for J = L and [0, `] for J = R. One can show
that the expansions in Eqs. (24-25) satisfy the commutator of
Eq. (4), see Appendix A for details.

Equations (24-25) diagonalize Hbare:

Hbare = J
v

2π

∫ J`

0

dy
{
K (∂yθj,J)

2
+K−1 (∂yφj,J)

2
}
(27)

=
πv

`

∞∑
k=0

(
k +

1

2

)(
b†kbk +

1

2

)
. (28)

The quasiparticle excitations in this segment have an energy
gap of πv/`. The bosonic zero modes

φ0
j,J = πmj,J , θ0

j,J =
θρ(xj,J)√

2
− πnj , (29)

ensure that φj,J(y) and θj,J(y) satisfy the boundary condi-
tions imposed HB and HP . Note that πnj is exactly the dif-
ference field θ− for wire j defined in Eq. (14), which encodes
the topological state of the jth wire.

The bare semiconductor regions localize a zero mode of
the full many body spectrum of Hbare Γj,J , which when pro-
jected into the ground state subspace with no excited bosons
(〈b†kbk〉 = 0), Γj,J takes the simple form

Γj,J = eiθ
0
j,J−iφ

0
j,J . (30)

Equation (30) satisfies fermionic anticommutation relations,
{Γj,J ,Γk,K} = 2δj,kδJ,K . The derivation and ground state
projection of Γj,J closely follows that in Ref. 51, which con-
sidered a similar problem of a quantum Hall edge subject to
mixed boundary conditions. Their result was further extended
to the number conserving case by Ref. 47. For this reason, we
relegate further details to Appendix A.

In addition to being a zero mode of Hbare, Γj,J also com-
mutes with Hsm + Hsc + HP. However, Γj,J has a non-
trivial commutator with the number operator N . Working
from Eq. (30),

[N,Γj,J ] =
1

π
[φ(xj,R)− φ(xj,L), θ0

j,J ]iΓj,J = −Γj,J .

(31)

In the above, we used the relation [A, f(B)] = [A,B]f ′(B)
when A and B both commute with their commutator. It fol-
lows that Γj,J acquires non-trivial time-dependence fromHC :

dΓj,J(t)

dt
= i[HC ,Γj,J(t)] (32)

= iEC [(N −Ng)2,Γj,J(t)] (33)
= −iEC (2N − 2Ng + 1) Γj,J(t). (34)
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In imaginary time, the evolution of Γj,J(τ) is

Γj,J(τ) = e−EC(2N−2Ng+1)τΓj,J(0). (35)

Similar logic shows

Γ†j,J(τ) = eEC(2N−2Ng−1)τΓ†j,J(0). (36)

When the qubit is tuned to a Coulomb valley, e.g., Ng = 0
and 〈N〉 = 0, we have

〈TτΓ†j,J(τ1)Γk,K(τ2)〉C = e−EC |τ1−τ2|〈Γ†j,J(0)Γk,K(0)〉,
(37)

where the averaging is taken over charging Hamiltonian, see
Appendix B.

To evaluate the equal time correlator, we first note that the
zero mode operators satisfy fermionic anticommutation rela-
tions

{Γ†j,J ,Γk,K} = 2δj,kδJ,K . (38)

The neutral product iΓ†j,JΓk,K is Hermitian for
(j, J) 6= (k,K) and can be written as

iΓ†j,JΓk,K = ieiπ(nj+mj,J )e−iπ(nk+mk,K). (39)

The θρ dependence drops out of Eq. (39) in the limit
Kρ →∞. We will return to this point at the end of Section VI.

We note several important features of Eq. (39), all of which
are discussed in more detail in Appendix A. (1) The opera-
tors nj/k, mj/k,J/K are integer-valued, thus the eigenvalues
of iΓ†j,JΓk,K are ±1. (2) iΓ†j,JΓk,K acts on the topologi-
cally protected parity eigenstates |±〉 of Eq. (20) exactly as
expected for bilinears of the Majorana operators γ reviewed
in the introduction. (3) iΓ†j,JΓk,K commutes with all local
operators. Points (1-3) imply that in the limit Kρ → ∞,
iΓ†j,JΓk,K can be identified with the MZM parity. To em-
phasize this point, throughout the remainder of the paper we
will write

iΓ†j,JΓk,K = iγj,Jγk,K , (40)

where iγj,Lγj,R|±〉j = ±|±〉j . The correlation function
Eq. (37) thus reduces to

〈TτΓ†j,J(τ1)Γk,K(τ2)〉 = e−EC |τ1−τ2|γj,Jγk,K . (41)

Equations (39)-(41) establish a correspondence between
MZM parity operators in number-conserving and mean-field
approaches (see also Section VI). While fermion operators
couple to both φ and θ− degrees of freedom, the parity op-
erator iΓ†j,JΓk,K is neutral and commutes with all local oper-
ators. Thus, degenerate ground states of the system (encoded

in terms of MZM parity operators) cannot be distinguished by
any local operator.

IV. TUNNELING MEASUREMENT

We now review the tunneling measurement of MZM parity.
The basic idea is depicted in Fig. 1. Two bare semiconductor
regions are separated by tunnel barriers from an intermediate
quantum dot, e.g., between x2,R and x3,L. The measurement
protocol involves lowering tunneling barriers and increasing
the amplitude for virtual tunneling of an electron between the
quantum dot and Majorana island (we assume that the charg-
ing energy is large so that there is still a charge gap in the
system suppressing real single-electron tunneling processes).
The relevant charge fluctuation processes involve an electron
tunneling in and out of the Majorana island either through the
same MZM, or in through one and out through the other. As a
result, one finds a MZM parity-dependent energy shift of the
combined qubit-quantum dot system, which can be used to in-
fer the parity of the participating MZM pair. For simplicity,
we focus on a parity measurement of two adjacent MZMs; the
measurement can be generalized to other MZM pairs with the
use of coherent links (floating topological superconducting is-
lands in a fixed parity state) or by modifying the geometry of
the qubit, as discussed at length in Ref. 26.

Following the above outlined idea, we now derive the
measurement-induced energy shift using our particle-number
conserving formalism. The dot-Majorana island tunneling
Hamiltonian can be written as

Ht =
√
`c†d (tj,Jψ(xj,J + J`) + tk,Kψ(xk,K +K`)) + h.c.

(42)

where cd is the annihilation operator for the quantum dot
and tj,J is the tunneling amplitude for an electron to tun-
nel into the semiconductor at ψ(xj,J + J`). The semi-
conductor electrons at the boundaries can be expanded as
ψ(xj,J + J`) = Γj,J/

√
`+ . . ., so that for sufficiently low

temperatures (where the energy scale is set by the level spac-
ing of the bare semiconductor region) Ht becomes

Ht = tj,Jc
†
dΓj,J + tk,Kc

†
dΓk,K + h.c. (43)

Note that unlike the previous works 26, 52, and 53, Eq. (43)
uses the number conserving expression for the fermionic zero
mode Γk,K , rather than writing Ht in terms of Majorana op-
erators γk,K .

Odd orders in Ht necessarily change the charge of the is-
land and thus are exponentially suppressed by a large charge
gap EC � T (for Ng = 0). Using imaginary-time path-
integral formalism, one can derive the second order tunneling
action to find
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S
(2)
t =

1

2

∫ β

0

dτ1dτ2

(
tj,Jc

†
d(τ1)Γj,J(τ1) + tk,Kc

†
d(τ1)Γk,K(τ1) + h.c.

)(
tj,Jc

†
d(τ2)Γj,J(τ2) + tk,Kc

†
d(τ2)Γk,K(τ2) + h.c.

)
.

(44)

Averaging over the charging energy, we have〈
S

(2)
t

〉
C

=
1

2

∫ β

0

dτ1

∫ β

0

dτ2

{(
|tj,J |2〈TτΓj,J(τ1)Γ†j,J(τ2)〉C + |tk,K |2〈TτΓk,K(τ1)Γ†k,K(τ2)〉C

+ tj,J t
∗
k,K〈TτΓj,J(τ1)Γ†k,K(τ2)〉C + t∗j,J tk,K〈TτΓk,K(τ1)Γ†j,J(τ2)〉C

)
c†d(τ1)cd(τ2) + (τ1 ↔ τ2)

}
(45)

= −1

2

∫ β

0

dτ1dτ2

{
e−EC |τ1−τ2|

(
|tj,J |2 + |tk,K |2 + 2Im[t∗j,J tk,K ]iγj,Jγk,K

)
c†d(τ1)cd(τ2) + (τ1 ↔ τ2)

}
, (46)

where in the last equality we have used Eq. (37). In the limit T � EC , we can take β = 1/T →∞ so that〈
S

(2)
t

〉
C

= −2
|tj,J |2 + |tk,K |2 + 2Im[t∗j,J tk,K ]iγj,Jγk,K

EC

∫ β

0

dτ c†d(τ)cd(τ) +O
(
E−2
C

)
, (47)

see Appendix C for details. The effective tunneling Hamilto-
nian is thus

Heff = −2
|tj,J |2 + |tk,K |2 + 2Im[t∗j,J tk,K ]iγj,Jγk,K

EC
c†dcd.

(48)

Higher orders in perturbation theory modify the parity-
dependent energy splitting, but do not change the structure of
Eq. (48). Thus, our number conserving formalism has recov-
ered the essential result from Ref. 26 that tunneling results in
a parity-dependent energy shift of the joint state of the quan-
tum dot and the qubit. The MZM parity can then be readout
by probing the quantum dot ground state, e.g., through spec-
troscopy, charge sensing, or differential capacitance.26

It is worth noting that noisy measurement or insufficient
integration time could result in a partial projection of the
MZM parity state. Errors in the braiding phase implemented
with a measurement-based protocol, reviewed below, will be
bounded from below by measurement errors. Therefore, topo-
logical protection is only achievable provided measurement
errors are sufficiently suppressed. Measurement errors war-
rant further consideration, but are independent of number con-
serving effects and are thus beyond the scope of the current
analysis.

V. IMPLICATIONS FOR BRAIDING

The motivating question for this paper is whether number
conservation in a topological superconductor introduces non-
universal corrections to the MZM braiding phase. We argue
this is not the case in the context of measurement-based braid-
ing.

Measurement-based braiding replaces physically mov-
ing MZMs with a sequence of projective parity measure-

ments.29,30 This protocol utilizes the ancilla Hilbert space pro-
vided by encoding a qubit in six, rather than four, MZMs.
Mathematically, a measurement projects the MZM pair iγjγk
into a definite parity state. The even and odd parity projectors
are given by

Π
(jk)
± =

1± iγjγk
2

. (49)

Recall that braiding MZMs j and k corresponds to the oper-
ator R(jk) given in Eq. (2). Let us encode the qubit state in
MZMs h, i, j, and k, while a and b correspond to the ancilla
MZM pair. Then, R(jk) can be related to a sequence of even
parity projections:

Π
(ab)
+ Π

(aj)
+ Π

(ak)
+ Π

(ab)
+ ∝ R(jk)Π

(ab)
+ . (50)

The above follows straightforwardly from Eq. (1). Note that
each projector changes which four MZMs encode the qubit
state, but does not collapse the encoded information.

While it is not in general possible to guarantee the out-
come of a measurement (e.g., whether Π+ or Π− is ap-
plied), this complication can be circumvented by employing
“forced measurement”.29 If the wrong measurement outcome
is obtained, simply repeat the previous parity measurement
in the sequence, then re-attempt the desired measurement.
This repeat-until-success protocol does not change the rela-
tive phase implemented by the sequence, and on average re-
quires two repeated measurements. Reference 31 considered
how forced measurement may be circumvented by appropri-
ately modifying the software tracking the measurement out-
comes, while Ref. 36 investigated the tradeoff between forced
measurement and adiabatically tuning MZM couplings. Ref-
erence 32 further investigated how to minimize the number of
necessary MZM measurements for Clifford gates.

The previous section demonstrated that number conserva-
tion only affects the tunneling measurement of MZM parity
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at energies on the order of O (EC), and thus at low tem-
peratures T � EC results in exponentially suppressed cor-
rections O

(
e−EC/T

)
. Therefore, the underlying arguments

of measurement-based braiding are unaltered by the number-
conserving analysis of this paper. Essentially, measurement-
based braiding relies on the ability to project a pair of MZMs
to the desired parity eigenstate. Errors in this protocol arise
from residual hybridization of MZMs. Generally, MZM hy-
bridization is exponentially suppressed in the energy gap over
the temperature, and in the distance separating the MZMs
over the correlation length of the topological superconductor.
When this is the case, the resulting braiding phase errors in a
measurement-only protocol are similarly small and the proto-
col is topologically protected.

VI. COMPARISON TO PREVIOUS RESULTS

We now discuss and compare our results with the previous
works on this subject.26,47,52–56 The mean field equivalent of
our bosonized analysis is to suppress superconducting phase
fluctuations by replacing the field

√
2θρ with a scalar quantity

Φ. In this case, the pairing Hamiltonian becomes

HMF
P =

∑
j

∆P

2πa

∫ xj,R

xj,L

dx cos(2θ − Φ), (51)

and no longer commutes with the number operator N . Equa-
tion (30) is modified to

ΓMF
j,J → ei

Φ
2 e−iπ(nj+mj,J ), (52)

where nj , mj,J are both integer-valued operators. When
Φ = 0, ΓMF

j,J is Hermitian and commutes with all bulk opera-
tors, therefore it can be identified with the Majorana operator
γj,J as established in Refs. 44, 51, and 55.

For Coulomb-blockaded Majorana islands, previous
works26,52,53 have used a phenomenological form of the
Majorana tunneling Hamiltonian,

H̃t = tc†dγe
−iΦ̂/2 + h.c. (53)

where Φ̂ is fluctuating superconducting phase that satisfies
the commutation relation [Φ̂, N ] = 2i with N being the to-
tal charge of the island. By comparing with Eqs. (29) and
(43), one may notice that eiΦ̂/2 is similar to the dependence
on eiθρ/

√
2 in Γ. However, θρ is dual to Nsc rather than

N = Nsc + Nsm, i.e. this operator adds a charge to the su-
perconductor in contrast to a total charge between the super-
conductor and semiconductor. Thus, Majorana tunneling pro-
cesses in general act on both topological and non-topological
degrees of freedom. However, as we show above parities
Γ†j,JΓk,K couple only to topological degrees of freedom (up
to exponentially small corrections O(e−EC/T )).

The differences between Γj,J and ΓMF
j,J connect naturally

to the concerns raised by Refs. 41 and 42. In their case, the
number-conserving version of the Majorana operator included
a Cooper pair in its definition, and thus seems reminiscent of

the dependence on eiθρ(xj,J )/
√

2 in Γj,J . However, their con-
cern that the Cooper pair would introduce non-universal cor-
rections to the braiding phase does not occur in our scenario.
Indeed, by neglecting spatial fluctuations in θρ (and taking the
limit Kρ → ∞), one can show that the θρ dependence drops
out of the neutral product Γ†j,JΓk,K . Temporal fluctuations in
θρ do not modify the tunneling measurement, as the charg-
ing energy effectively sets the times equal in S(2)

t , so that the
measurement only couples to the MZM parity. Thus, for tem-
peratures T � EC , the tunneling-based parity measurement
is not affected by imposing number conservation.

One might worry that our conclusions would change if we
keep Kρ finite so that there are spatial fluctuations in θρ. In
Appendix D, we argue that for Kρ finite, the correlation func-
tion in Eq. (37) becomes

〈TτΓ†k,K(τ1)Γj,J(τ2)〉

= e−EC |τ1−τ2|e−
1
4 〈[θρ(xj,J )−θρ(xk,K)]2〉γj,Jγk,K , (54)

which in turn modifies the effective tunneling Hamiltonian to
be

Heff = −|tj,J |
2 + |tk,K |2

EC
c†dcd

+e−
1
4 〈[θρ(xj,J )−θρ(xk,K)]2〉 2Im[t∗j,J tk,K ]iγj,Jγk,K

EC
c†dcd.

(55)

The factor e−
1
4 〈[θρ(xj,J )−θρ(xk,K)]2〉 ≤ 1 saturates the bound

when Kρ →∞, and otherwise reduces the measurement vis-
ibility (decays algebraically) when Kρ remains finite (the ex-
actKρ dependence is sensitive to which measurement is being
performed), see Eq. (D12). Thus, our results indicate that spa-
tial quantum phase fluctuations in the superconductor reduce
the measurement visibility, in addition to affecting the degen-
eracy splitting of the qubit states as reported earlier in Ref. 44.
This reduction in the measurement visibility may be particu-
larly important for two-qubit measurements, for which the gap
separating the ground state and first excited state in a fixed
parity sector is reduced from O (EC) for a single-qubit mea-
surement to O

(
t2/EC

)
.26 For the measurements proposed in

Ref. 26, reduced visibility requires a longer integration time
to achieve the same measurement accuracy, and can become
problematic if the integration time becomes comparable to the
qubit coherence times.

VII. CONCLUSIONS

In this paper, we employed a number conserving bosonized
formalism to study 1D topological superconductors formed
from semiconductor-superconductor heterostructures. We
demonstrated the presence of fermionic zero modes localized
to the ends of a proximitized nanowire, and related these zero
modes to the MZM parity operator. We carefully consid-
ered the effect of tunnel coupling between the proximitized
nanowire and an adjacent quantum dot, and showed that the
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combined system exhibits a parity-dependent energy shift in-
dependent of the topological state of the rest of the qubit, up
to exponentially suppressed corrections from higher energy
processes. Finally, we showed that number-conserving cor-
rections do not affect projective parity measurements and, as
a result, measurement-based braiding operations are topolog-
ically protected.

Our findings contrast the conjecture by Refs. 41 and 42
that number conservation could introduce non-universal cor-
rections to the MZM braiding phase in a topological super-
conductor. The critical step in our argument is that while
the form of the fermionic zero mode Γj,L/R localized to
the left/right end of proximitized wire j is modified in our
number-conserving formalism as compared to a mean-field
analysis, the relevant quantity iΓ†j,JΓk,K can still be identified
with the mean-field MZM parity. Thus we affirm the potential
of Majorana-based qubits to achieve topologically protected
Clifford gates through braiding.

Previous studies have investigated the effect of quantum
fluctuations in the superconductor on the MZM hybridiza-
tion energy.44 Here, we have extended this analysis to the
tunneling-based MZM parity measurement and have shown
that spatial fluctuations can reduce the measurement visibil-
ity, in addition to the previously identified effects.

Understanding how different noise sources affect MZM
parity measurements is an interesting open question. The
bosonized particle-number formalism utilized here provides
a well-developed framework for investigating these effects.
Perturbation theory, for instance in gate voltage fluctuations
coupling to density, can be straightforwardly applied to under-
stand how this noise further reduces measurement visibility.
Additionally, the analysis could be extended to translate re-
duced visibility into fidelity estimates for measurement-based
braiding by specifying the readout method (e.g., charge sens-
ing or differential capacitance). As experimental progress

in tuning semiconductor-superconductor nanowires into the
topological phase continues to improve,57 such questions be-
come of increasing practical importance.

ACKNOWLEDGMENTS

We are grateful to Torsten Karzig, Chetan Nayak, and
Dmitry Pikulin for stimulating discussions. C.K. acknowl-
edges support from the NSF GRFP under Grant No. DGE
114085 and from the Walter Burke Institute for Theoretical
Physics at Caltech. Part of this work was performed at the As-
pen Center for Physics, which is supported by National Sci-
ence Foundation grant PHY-1607611.

Appendix A: Zero-mode solutions

The general normal mode expansions for a Luttinger liquid
are58

φ(x) = φ0 − iπ
√
K

`

∑
p 6=0

√
`|p|
2π

e−ipx−a|p|/2

p

(
b†p + b−p

)
(A1)

θ(x) = θ0 +
iπ

`
√
K

∑
p 6=0

√
`|p|
2π

e−ipx−a|p|/2

|p|
(
b†p − b−p

)
,

(A2)

where a is the short-distance cutoff. For the bare semicon-
ductor segment residing at the J th side of the j proximitized
wire, we write the fields as φj,J and θj,J , and impose bound-
ary conditions θj,J(0) = θ0

j,J and φj,J(J`) = φ0
j,J . This sets

bp = −b−p and p = π
(
k + 1

2

)
/` in the above expansions,

resulting in Eqs. (24-25). Their commutator is given by

[φj,J(x), θj,J(y)] = [φ0
j,J , θ

0
j,J ]− i4

∞∑
k=0

cos
(
[2k + 1]πx2`

)
sin
(
[2k + 1]πy2`

)
2k + 1

(A3)

= [φ0
j,J , θ

0
j,J ]− i2

∞∑
k=0

sin
(

[2k + 1]π(x+y)
2`

)
− sin

(
[2k + 1]π(x−y)

2`

)
2k + 1

(A4)

= [φ0
j,J , θ

0
j,J ]− iπ

2
(Sign(x+ y)− Sign(x− y)) , (A5)

where Eq. (A5) follows from the identity
∞∑
k=0

sin ([2k + 1]x)

2k + 1
=
π

4
Sign(x). (A6)

When J = L, x, y < 0 and

−iπ
2

(Sign(x+ y)− Sign(x− y)) = i
π

2
(1 + Sign(x− y)) = iπΘ(x− y), (A7)

which implies [φ0
j,L, θ

0
j,L] = 0. When J = R, x, y > 0 and

−iπ
2

(Sign(x+ y)− Sign(x− y)) = −iπ
2

(1− Sign(x− y)) = −iπΘ(y − x). (A8)
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Therefore, the for the right segment, [φ0
j,R, θ

0
j,R] = iπ, in or-

der to satisfy Eq. (4). Note that the bosonic operators bk for
different bare semiconductor segments commute, thus Eq. (4)
implies that the zero modes more generally satisfy

[φ0
j,J , θ

0
k,K ] = iπΘ(j − k + J/2). (A9)

1. Derivation of Γj,J

In this section, we derive a charge-one fermionic zero mode
of Hbare. Our derivation closely follows that of Refs. 50 and
51.

From the normal mode expansions in Eqs. (24-25) we split
the fields φj,J and θj,J into zero-mode and higher harmonic
pieces:

φj,J(x) = φ0
j,J +

∞∑
k=0

φk(x) (A10)

θj,J(x) = θ0
j,J +

∞∑
k=0

θk(x). (A11)

It is convenient to introduce fields ϕr/l defined by

ϕr/l(x) = θ0
j,J ∓ φ0

j,J +

∞∑
k=0

(
Kθk(x)∓ φk(x)

)
(A12)

= ϕ0
r/l ∓

∞∑
k=0

ϕkr/l(x) (A13)

which satisfy

[Hbare, ϕr/l(x)] = ∓iv∂xϕr/l(x). (A14)

The Heisenberg equation therefore implies that ϕr/l are chi-
ral:

∂tϕr/l = i[Hbare, ϕr/l] = ±v∂xϕr/l. (A15)

When K = 1 the right/left-moving electrons can be written in
terms of ϕr/l as

ψr/l(x) ∼ eiθ(x)∓φ(x) = lim
K→1

eiϕr/l(x). (A16)

(When K 6= 1, eiϕr/l mixes ψr and ψl.)
We can construct a zero mode of the full many-body spec-

trum by considering superpositions of e±iϕr/l . In particular,
Eq. (A14) implies

[Hbare,

∫ J`

0

dxeiϕr/l(x)] = ∓iv
(
eiϕr/l(J`) − eiϕr/l(0)

)
(A17)

= ∓iv
(
eiθ

0
j,J − e∓iφ

0
j,J

)
, (A18)

where in the last line we have used the boundary conditions
φk(J`) = 0 and θk(0) = 0. Similarly,

[Hbare,

∫ J`

0

dxe−iϕr/l(x)] = ∓iv
(
e−iθ

0
j,J − e±iφ

0
j,J

)
.

(A19)

Therefore, we have that the superposition

Γj,J =
J

`

∫ J`

0

dx
{
eiϕr + e−i2φ

0
j,J eiϕl + ei2θ

0
j,J−i2φ

0
j,J e−iϕr + ei2θ

0
j,J e−iϕl

}
(A20)

is a zero mode of Hbare:

[Hbare,Γj,J ] = 0. (A21)

WhenK = 1, the dependence on θ0
j,J and φ0

j,J can be writ-

ten as ei2θ
0
j,J = ψr(0)ψl(0) (Andreev boundary conditions)

and e−i2φ
0
j,J = ψ†l (J`)ψr(J`) (normal boundary conditions).

In this case Γj,J can be expressed in terms of left and right
moving electrons as

lim
K→1

Γj,J =
J

`

∫ J`

0

dx
{
ψr(x) +

(
ψ†l (J`)ψr(J`)

)
ψl(x) + (ψr(0)ψl(0))

(
ψ†l (J`)ψr(J`)

)
ψ†r(x) + (ψr(0)ψl(0)) ψ†l (x)

}
.

(A22)

Equation (A22) makes it especially apparent that Γj,J is both
charge-one and fermionic. This also holds in the case K 6= 1,

which becomes more obvious after taking the ground state
projection.
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To project Γj,J to the ground state subspace, we first rewrite
Eq. (A20) using Eq. (A13):

Γj,J = eiθ
0
j,J−iφ

0
j,J

∫ J`

0

Jdx

`

{
ei

∑
k ϕ

k
r + ei

∑
k ϕ

k
l + h.c.

}
.

(A23)

The integrand only depends on the operators bk, b†k- all zero-
mode dependence has been pulled in front. Therefore, after
projecting to the ground state subspace, the integrand con-

tributes an unimportant constant51 and we arrive at the expres-
sion used throughout the main text

Γj,J = eiθ
0
j,J−iφ

0
j,J . (A24)

2. Fermionic anticommutation

Fermionic anticommutation of the zero modes Γj,J fol-
lows straightforwardly from Eq. (26), Γ†j,JΓj,J = 1, and
eAeB = eBeAe[A,B] when [A, [A,B]] = [B, [A,B]] = 0:

Γ†j,JΓk,K = e−iθ
0
j,J+iφ0

j,J eiθ
0
k,K−iφ

0
k,K (A25)

= eiθ
0
k,K−iφ

0
k,Ke−iθ

0
j,J+iφ0

j,J e−[θ0
j,J ,φ

0
k,K ]e−[φ0

j,J ,θ
0
k,K ] (A26)

= Γk,KΓ†j,Je
iπΘ(k−j+K

2 )−iπΘ(j−k+ J
2 ) (A27)

= −Γk,KΓ†j,J (1− δj,kδJ,K) + δj,kδJ,KΓk,KΓ†j,J (A28)

It follows from here that {Γ†j,J ,Γk,K} = 2δj,kδJ,K . To
see the anticommutation before ground state projection, use
Eq. (A23) and note that the operators e±iϕ

k
r/l(x) anticommute.

3. Action on relative fermion parity eigenstates

Next, we show that iΓ†j,JΓk,K acts on the relative fermion
parity eigenstates of Eq. (20) exactly as expected for Ma-
jorana bilinears. For the same wire, when Kρ → ∞,
θ0
j,L = θ0

j,R = θ0
j

iΓ†j,LΓj,R = ie−iθ
0
j+iφ0

j,Leiθ
0
j−iφ

0
j,R (A29)

= iei(φ
0
j,L−φ

0
j,R)e

1
2 ([φ0

j,L,θ
0
j ]−[φ0

j,R,θ
0
j ]) (A30)

= ei(φ
0
j,L−φ

0
j,R). (A31)

The fermion parity eigenstates for wire k are

θk− =
θρ√

2
− θ0

k (A32)

|±〉k =
1√
2

(
|θk− = 0〉 ± |θk− = π〉

)
. (A33)

Using

eiφ
j
0,J |θk−〉 = |θk− + πΘ (j − k + J/2)〉 (A34)

and θk− + 2π = θk−, we have

iΓ†j,LΓj,R|±〉j = ei(φ
0
j,L−φ

0
j,R) 1√

2

(
|θj− = 0〉 ± |θj− = π〉

)
(A35)

=
1√
2

(
|θj− = π〉 ± |θj− = 0〉

)
(A36)

= ±|±〉j . (A37)

The neutral product of fermionic zero modes for differ-
ent wires similarly act as Majorana bilinears. Consider first
J = K = M and j < k:

iΓ†j,MΓk,M = iei(θ
0
k−θ

0
j )ei(φ

0
j,M−φ

0
k,M)e[φ0

j,M ,θ
0
k] (A38)

= iei(θ
0
k−θ

0
j )ei(φ

0
j,M−φ

0
k,M) (A39)

Note that

iΓ†j,LΓk,L|±〉j |±〉k (A40)

= iΓ†j,LΓk,L
1

2
(|0〉j |0〉k + |π〉j |π〉k ± |0〉j |π〉k ± |π〉j |0〉k)

(A41)

= iei(θ
k
0−θ

j
0) 1

2
(|π〉j |0〉k + |0〉j |π〉k ± |π〉j |π〉k ± |0〉j |0〉k)

(A42)

=
i

2
(−|π〉j |0〉k − |0〉j |π〉k ± |π〉j |π〉k ± |0〉j |0〉k) (A43)

= ±i|∓〉j |∓〉k. (A44)

Therefore, we have

iΓ†j,LΓk,L
1√
2

(|+〉j |+〉k ± i|−〉j |−〉k) (A45)

1√
2

(i|−〉j |−〉k ± |+〉j |+〉k) (A46)

± 1√
2

(|+〉j |+〉k ± i|−〉j |−〉k) . (A47)

The argument for iΓ†j,RΓk,R follows similarly, except θk−,
rather than θj−, advances by π.
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For opposite ends of different wires (j < k) we have

iΓ†j,LΓk,R = −ei(θ
0
k−θ

0
j )ei(φ

0
j,L−φ

0
k,R)e[φ0

j,L,θ
0
k] (A48)

= −ei(θ
0
k−θ

0
j )ei(φ

0
j,L−φ

0
k,R), (A49)

iΓ†j,LΓk,R|±〉j |±〉k

= iΓ†j,LΓk,R
1

2
(|0〉j |0〉k + |π〉j |π〉k ± |0〉j |π〉k ± |π〉j |0〉k)

(A50)

= ei(θ
k
0−θ

j
0) 1

2
(|π〉j |π〉k + |0〉j |0〉k ± |π〉j |0〉k ± |0〉j |π〉k)

(A51)

= ∓|∓〉j |∓〉k. (A52)

It follows that

iΓ†j,LΓk,R
1√
2

(|+〉j |+〉k ± |−〉j |−〉k) (A53)

= ± 1√
2

(|+〉j |+〉k ± |−〉j |−〉k) . (A54)

Thus, we have shown all choices of iΓ†j,JΓk,K act on the rel-
ative fermion parity eigenstates exactly as expected for the
MZM parity (for Kρ →∞).

4. Commutation with local operators

Topologically encoded information should be unobservable
to any local operator. We now demonstrate that Γj,J com-
mutes with all fermionic bilinears. For simplicity, we focus
on the ground state projected expression, Eq. (30).

First, commutation with gradients and superconducting
fields follows trivially. Thus, we want to show commuta-
tion with any term of the form ei(aθ(x)+bφ(x))ei(cθ(x)+dφ(x),
where a, b, c and d are ±1. This reduces to demonstrating
[Γj,J , e

i2φ(x)] = [Γj,J , e
i2θ(x)] = 0. These follow from

[eiθ
0
j,J , ei2φ(x)] = eiθ

0
j,J+i2φ(x)

(
e

1
2 [2φ(x),θ0

j,J ] − e 1
2 [θ0

j,J ,2φ(x)]
)

= 0 (A55)

[eiφ
0
j,J , ei2θ(x)] = eiφ

0
j,J+i2θ(x)

(
e

1
2 [2θ(x),φ0

j,J ] − e 1
2 [φ0

j,J ,2θ(x)]
)

= 0. (A56)

Therefore, Γj,J commutes with all local operators.

Appendix B: Correlation function derivation

We now derive Eq. (37). First, note that from the time-
dependent expressions Eqs. (35) and (36) we have two ex-

pressions for Γj,J(τ):

Γj,J(τ) = e−EC(2N−2Ng+1)τΓj,J(0) (B1)

= Γ(0)e−EC(2N−2Ng−1)τ . (B2)

The first expression is derived by solving the Heisenberg
equation of motion of Γj,J(τ), while the second comes from
solving the Heisenberg equation of motion for Γ†j,J(τ) and
taking the Hermitian conjugate. Similarly,

Γ†j,J(τ) = eEC(2N−2Ng−1)τΓ†(0) (B3)

= Γ†(0)eEC(2N−2Ng+1)τ . (B4)

Using these expressions, we have

TτΓ†j,J(τ1)Γk,K(τ2) = Θ(τ1 − τ2)Γ†j,J(τ1)Γk,K(τ2)−Θ(τ2 − τ1)Γk,K(τ2)Γ†j,J(τ1) (B5)

= Θ(τ1 − τ2)eEC(2N−2Ng−1)τ1Γ†j,J(0)Γk,K(0)e−EC(2N−2Ng−1)τ2

−Θ(τ2 − τ2)e−EC(2N−2Ng+1)τ2Γk,K(0)Γ†j,J(0)eEC(2N−2Ng+1)τ1 (B6)

= γj,Jγk,Ke
EC(2N−2Ng)(τ1−τ2)e−EC |τ1−τ2|. (B7)

In the penultimate line, we used the fact that the Γk,K(0)Γ†j,J(0) is proportional to the MZM parity and there-
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fore commutes with the number operator N . Now, in the
charging energy ground state,

−1

2
≤ 〈(N −Ng)〉C ≤

1

2
, (B8)

therefore 〈TτΓ†j,J(τ1)Γk,K(τ2)〉C is always exponentially de-
caying in time. We can simplify the problem by focusing on
Ng = 0, for which 〈(N −Ng)〉C = 0 and find Eq. (37) of the
main text

〈TτΓ†j,J(τ1)Γk,K(τ2)〉C = γj,Jγk,Ke
−EC |τ1−τ2|. (B9)

Appendix C: Tunneling measurement details

To arrive at Eq. (47), we need to expand the product
c†d(τ1)cd(τ2) around τ1 = τ2. This can be achieved by switch-
ing variables to

S =
τ1 + τ2

2
, s = τ1 − τ2 , (C1)

so that

∫ β

0

dτ1

∫ β

0

dτ2 e
−EC |τ1−τ2|c†d(τ1)cd(τ2) =

∫ β

0

dS

∫ 2 min(S,β−S)

−2 min(S,β−S)

ds e−EC |s|c†d(S +
1

2
s)cd(S −

1

2
s) (C2)

=

∫ β−τc

τc

dS

∫ 2 min(S,β−S)

−2 min(S,β−S)

ds e−EC |s|
(
c†d(S) +

1

2
s∂Sc

†
d(S) +O(s2)

)(
cd(S)− 1

2
s∂Scd(S) +O(s2)

)
(C3)

≈
∫ β

0

dS

∫ ∞
−∞

ds e−EC |s|c†d(S)cd(S) +
1

2

∫ ∞
−∞

ds se−EC |s|
∫ β

0

dS
(
∂Sc
†
d(S) cd(S) + c†d(S)∂Scd(S)

)
+O

(∫ ∞
−∞

ds s2e−EC |s|
)

(C4)

= 2
1

EC

∫ β

0

dSc†d(S)cd(S) +O
(
E−2
C

)
. (C5)

In the second line we assumed a short-time cutoff τc ∼ α in the S-integral. We then assumed ECτc � 1 and extended the range
of the s-integral in the third line. Therefore,

〈S(2)
t 〉C = −

(
|tj,J |2 + |tk,K |2 + 2Im[t∗j,J tk,K ]iγj,Jγk,K

) ∫ β

0

dτ1

∫ β

0

dτ2 e
−EC |τ1−τ2|c†d(τ1)cd(τ2) (C6)

= −2
|tj,J |2 + |tk,K |2 + 2Im[t∗j,J tk,K ]iγj,Jγk,K

EC

∫ β

0

dSc†d(S)cd(S) +O
(
E−2
C

)
. (C7)

Importantly, each subsequent expansion in the difference
τ1 − τ2 contributes an additional factor ofE−1

C . Alternatively,
the effective action could be derived by modeling the quantum
dot as in Ref. 26 to solve explicitly for the time dependence of
the quantum dot operators cd. This contributes an additional
term to the denominator of the quantum dot’s charging energy.

Appendix D: Effect of spatial fluctuations of θρ.

In this appendix, we discuss how our results effect of spatial
fluctuations of θρ, i.e., finite Kρ. Let’s consider first the case
of a single wire and examine how the equal time correlator
〈Γ†j,KΓj,J〉 changes when ∂xθρ 6= 0:

〈
Γ†j,LΓj,R

〉
= i〈e

i√
2

(θρ(xj,R)−θρ(xj,L))
eiπ(mj,L−mj,R)〉.

(D1)

Just as it was useful to define a difference field θj− for wire j,
it is also useful to define an average field

θj+ =
1

2

(
θρ√

2
+ θ

)
(D2)

so that θρ can be rewritten as

θρ√
2

= θ+ +
θ−
2
. (D3)

Given that θ− is pinned by ∆P to a spatially constant value
for a given wire implies that the θ− dependence drops out of
Eq. (D1):

〈Γ†j,LΓj,R〉 = i
〈
e−i(θ+(xj,L)−θ+(xj,R))eiπ(mj,L−mj,R)

〉
.

(D4)

The θ+ fields (only defined in the proximitized wire section)
decouple from the mj,J fields (defined in the bare semicon-
ductor wire section), so the correlator can be factored. As we
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have already shown that the term eiπ(mj,L−mj,R) = γj,Rγj,L,
we have

〈Γ†j,LΓj,R〉 = i
〈
e−i(θ+(xj,L)−θ+(xj,R))

〉
γj,Rγj,L. (D5)

Finally, using the formula〈
ei[θ+(x)−θ+(y)]

〉
= e−

1
2 〈[θ+(x)−θ+(y)]2〉, (D6)

we just need to evaluate 〈(θ+(x)−θ+(y))2〉. For a single wire,
the action in terms of the θ± fields is (neglecting the barrier
and charging energy terms)

S =

∫
dτ

1

2π

∫
dx
{
− 2i∂τθ+∂xφ+ − 2i∂τθ−∂xφ−

+ (2vρKρ + vK)

(
(∂xθ+)

2
+

1

4
(∂xθ−)

2

)
+ (2vρKρ − vK) (∂xθ+) (∂xθ−)

+

(
vρ

2Kρ
+

v

K

)(
1

4
(∂xφ+)

2
+ (∂xφ−)

2

)
+

(
vρ

2Kρ
− v

K

)
(∂xφ+) (∂xφ−) +

∆P

ξ
cos(2θ−)

}
. (D7)

where ξ ∼ v/∆P is the coherence length which defines the
short-range cutoff at the strong-coupling fixed point due to
the pairing term. Note that the action is quadratic for the θ+

field. If we take θ− to be pinned from the cosine term, then
we can neglect spatial and temporal fluctuations of θ−, so that
the action decouples for the ± fields (temporal fluctuations
contribute instanton terms, which result in an exponentially
suppressed degeneracy splitting46). Defining the coefficient of
(∂xθ+)2 as K+v+ and the coefficient of (∂xφ+)2 as v+/K+,
the resulting action for θ+, φ+ maps to a Luttinger liquid ac-
tion, with effective Luttinger liquid parameter

K+ = 2
√

2KρK

√
2vρKρ + vK

Kvρ + 2Kρv
, (D8)

which in the limit of Kρ � 1 becomes

K+ ≈ 2

√
2KρK

vρ
v
. (D9)

The correlator 〈(θ+(x) − θ+(y))2〉 will therefore be given
by that of a Luttinger liquid with Luttinger liquid parameter
K+:58

〈[θ+(xj,R)− θ+(xj,L)]2〉 =
1

2K+
log

(xj,R − xj,L)2 + ξ2)

ξ2
.

(D10)

Assuming the wire length is Lwire, this implies

〈
ei(θ+(xj,R)−θ+(xj,L))

〉
=

(
ξ2

L2
wire + ξ2

) 1
4K+

(D11)

Reconnecting to Eq. (55) in the main text, we have argued that
for a single wire

e−
1
4 〈[θρ(xj,L)−θρ(xj,R)]2〉 = e−

1
2 〈[θ+(xj,L)−θ+(xj,R)]2〉 (D12)

≈
(

ξ

Lwire

)√ v
32KρKvρ

, (D13)

where in the last line we have taken the limit Lwire � ξ and
plugged in the definition of K+. As Kρ → ∞, the exponent
approaches 0 and the results are unaffected. When Kρ re-
mains finite, the above expression is smaller than 1, and thus
reduces the measurement visibility.

For multiple wires, the calculation changes somewhat, but
the conclusion remains the same. Assuming that for multi-
ple wires the backbone contribution to the action is the dom-
inant term, we can as a first approximation ignore the prox-
imitized wires and find that the correlator is suppressed by a

factor
(

ξ
Lwire

) 1
4Kρ

. The proximitized wires will add additional
K dependence.
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