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We discover a eg-orbital (dz2 , dx2−y2) model within the diamond lattice (eg-diamond model) that
hosts novel topological states. Specifically, the eg-diamond model yields a 3D nodal cage (3D-NC),
which is characterized by a d-d band inversion protected by two types of degenerate states (i.e., eg-
orbital and diamond-sublattice degeneracies). We demonstrate materials realization of this model
in the well-known spinel compounds (AB2X4), where the tetrahedron-site cations (A) form the
diamond sub-lattice. An ideal half metal with one metallic spin channel formed by well-isolated and
half-filled eg-diamond bands, accompanied by a large spin gap (4.36 eV) is discovered in one 4-2
spinel compound (VMg2O4), which becomes a magnetic Weyl semimetal when spin-orbit coupling
effect is further considered. Our discovery greatly enriches the physics of diamond structure and
spinel compounds, opening a door to their application in spintronics.

Quantum topological systems have attracted tremen-
dous attention for both exotic physics (e.g., various quan-
tum Hall effect1,2, topological superconductivity3, Weyl
fermions4) and promising applications (e.g., spintron-
ics5 and quantum computing6). In particular, Weyl
semimetal systems, characterized with momentum space
separated monopole pairs, Fermi arc, and the chiral
anomaly, have recently been explored extensively both
experimentally and theoretically7–15. Magnetic Weyl
semimetals have attracted special attention because of
the intrinsic magnetic properties15–21 However, most of
the studied Weyl semimetals have either both spin chan-
nels entangled near the Fermi level or Weyl points formed
far away from the Fermi level13,14, adding difficulties in
studying the intrinsic properties of Weyl points. It is
highly desirable if the Weyl points are located at the
Fermi energy, allowing topological properties to be di-
rectly explored and exploited.

Studies of two-dimensional (2D) graphene have
spawned various intriguing physical phenomena22, such
as Dirac fermion23, quantum Spin Hall effect1, and super-
conductivity24,25. It has also stimulated many branches
of exciting researches, such as silicene, germanene as its
2D analogues26, valleytronics that utilize k and k′ valley
degree of freedom27,28, and px,y-orbital counterpart of
graphene with flat band and Wigner crystallization29,30.
The diamond structure, which is essentially formed by
stacking buckled honeycomb layer in the A-B-C configu-
ration, can be viewed as a three-dimensional (3D) ana-
logue of the 2D honeycomb lattice. It is the simplest
system to study analogous exotic physics in three dimen-
sions. Based on diamond structure, theoretical proposal
had indeed been made to achieve 3D topological insula-
tors31, whose proposal has yet been able to be mapped
onto real materials. It would be important to identify a
physical model based on diamond structure that spawns
intriguing topological states and can be realized in real
materials.

One of the most famous families of materials that

hold the same group symmetry as diamond (Fd-3m) is
the spinel compounds (AB2O4)32–34. With remarkable
magnetic properties, spinel compounds have been ex-
tensively studied for decades for their promising appli-
cations, e.g, permanent magnets, power handling, and
magnetic recording et al35. Surprisingly, its topolog-
ical properties have been greatly overlooked12, where
only HgCr2Se4 has been proposed to be magnetic Weyl
semimetal due to the band inversion between |S〉 and |P〉
states from Se36. Careful examinations show that there
are several advantages studying topological properties of
spinel compounds, including, for example, perfect dia-
mond structure sublattice, good isolation of localized d
orbitals for ideal band structure with clean topological
features, versatility and high tunability, and mature ma-
terials synthesis.

Here, based on tight-binding analysis, we develop a
novel two eg-orbitals (dz2 and dx2−y2) model on the
diamond structure (eg-diamond model). When both
nearest-neighbor (NN) and next-NN (NNN) interactions
are considered, the eg-diamond bands form a Dirac/Weyl
nodal cage (NC) in the 3D Brillouin zone with hour-
glass fermions corresponding to the Dirac/Weyl points
in the 2D case. The hourglass fermions involved are pro-
tected by the coexistence of eg orbitals degeneracy and
diamond crystal symmetry with A, B sublattices degen-
eracy. Furthermore, we demonstrate real materials real-
ization of the model in a representative 4-2 spinel com-
pound (V4+Mg2+2 O4) using first-principles calculations.
The spin-polarized eg-diamond bands are exactly half-
filled and isolated from other bands because of the strong
tetrahedron crystal field splitting and the exchange split-
ting. The spin-orbit coupling effect further breaks the
degeneracy of the 3D-NC, leading to the magnetic Weyl
semimetal state. It is exciting to note that VMg2O4 has
excellent lattice matching (and chemical compatibility)
with MgO, which is a widely used spintronics oxide ma-
terial in industry. This opens the door for the realization
of novel spintronics devices, such as achieving low switch-
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FIG. 1. Topological semimetal in eg-orbital diamond
model. a Two-orbital diamond model with nearest-neighbor
t and next nearest neighbor hopping t′. Insets show the
dz2 and dx2−y2 orbitals for the given coordinates. b First-
Brillouin zone with high-symmetry k-points and k-paths. c
Tight-binding band structure of double degenerate single-
orbital diamond model with only the NN hopping along high-
symmetry paths shown in b. d Tight-binding band structure
of eg-diamond model with nonzero NNN hopping t′, showing
various linear crossing around the Fermi level.

ing energy magnetic devices.
Tight binding model We first present here the 3D eg-

diamond model, different from the well-known sp3 or
sp3s∗ diamond model. In the diamond structure with the
face-centered cubic (FCC) Bravais lattice, there are two
equivalent atomic sites in a unit cell (blue dashed lines),
labelled as A and B in Fig.1a. By choosing the coordi-
nates in Fig.1a as the orbital quantization axes, we select
two energetically degenerate atomic dx2−y2 and dz2 or-
bitals (eg orbitals due to local tetrahedral crystal field) on
each site for the eg-diamond model. Without including
the spin degree of freedom, this eg-diamond model can
be essentially described by a four-band Hamiltonian. To
succinctly demonstrate the physics, we limit our Hamil-
tonian to only the essential NN and NNN interactions,
which can be written as:

H =
∑
i

εid
†
idi +

∑
〈i,j〉

td†idj +
∑
〈〈i,j〉〉

t′ijd
†
idj +H.c., (1)

where εi represents the on-site energy of state at i site;

d†i and di are the creation and annihilation operators of
d electrons at the site i, respectively; t and t′ are the NN
and NNN hoppings, respectively. In the diamond struc-
ture, each atom has four NNs and twelve NNNs. Given
the strict orthogonality between the two eg orbitals, NN
hopping terms between dz2 and dx2−y2 are zero. Non-
zero NN hopping terms are among dz2 or dx2−y2 orbitals,
which have the same hopping amplitude t for eg orbitals
along four tetrahedron directions due to the geometric
isotropic nature of those hoppings. More extensive TB-

model with parameters based on Slater-Koster matrix
also confirms these features37.

In the absence of the NNN interactions, the same am-
plitude between hoppings among dz2 orbitals and that
among dx2−y2 orbitals guarantees the double degeneracy
of the bands. This can be understood as two copies of
single-orbital diamond model due to the degeneracy of
two eg orbitals on each site, as shown in Fig.1c37. In the
single-orbital diamond model, the same NN hopping am-
plitude enables the formation of Dirac nodal lines along
X-W path due to 2-fold rotation symmetries (C2 axis
along x, y, and z directions through A and B sites). It
is straightforward that X-W and its inversion and rota-
tional symmetric paths (four 3-fold rotation axis along
tetrahedral bond direction) will have the same degener-
acy. It is important to emphasize that there exist two
types of band degeneracies: type-A is due to the degen-
eracy of eg orbitals (dz2 and dx2−y2) and the type-B ow-
ing to the C2 rotational symmetry in the single-orbital
diamond Hamiltonian with degenerate A and B sites.

Next, NNN hopping interactions are included. There
are two types of NNN hoppings, i.e., hoppings between
dz2 and dx2−y2 orbitals (termed type-I thereafter, t′1),
and hoppings among dz2/dx2−y2 orbitals (termed type-II
thereafter, t′2). Considering each single-orbital diamond
Hamiltonian as one block, type-I hopping terms mix the
two unit blocks with the off-diagonal interaction, and the
type-II hopping terms act as on-site energy variation of
the two blocks37. Detailed analysis about effects of these
two hopping terms to the band structure can be found in
the supplementary materials37. Interestingly, we notice
that under some symmetric hopping conditions, the band
degeneracy along certain high-symmetry k-paths remains
even for nonzero t′1 and t′2 NNN hoppings.

Specifically, we find that at the center of the eight
hexagonal Brillouin boundary (KHC), the type-A degen-
eracy remains when the NNN hopping Hamiltonian keeps
the C4 rotational symmetry. Similarly, at the Γ and any
point between Γ and KHC , the band degeneracy remains
while both C4 rotational symmetry and the summation
of hoppings along 12 NNN directions equals to zero37.
Note the type-B degeneracy along X-W path is also con-
served as the C2 rotation symmetry remains. One impor-
tant outcome of the coexistence of two types of band de-
generacy along different k-paths is the guaranteed band
crossing (nodal point, hourglass fermion) along certain
k-paths, where the two terminal k-points have different
types of degeneracies, as shown in Fig. 1d. Such band
crossing can be understood from the continuity nature of
the wavefunctions that essentially leads to a d-d band in-
version, since the two degenerate bands are formed with
different orbital states37. As a consequence, those nodal
points surprisingly construct a three-dimensional nodal
cage, which will be further discussed later.

Magnetic semimetal in spinel compounds To realize
the aforementioned eg-diamond model in real materi-
als, we focus on the well-known spinel compounds that
also have a space group of Fd-3m as the diamond struc-
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FIG. 2. Electronic and magnetic properties of
VMg2O4. a Conventional atomic structure of an ionic spinel
compound with chemical formula of AB2O4 with the primi-
tive unit cell labelled using dashed red lines. Cations A and
B occupy the tetrahedral and octahedral sites, respectively.
b Band structure of 4-2 spinel (V4+Mg2+

2 O4), showing half-
filled four-band structure isolated from the other bands with
d − d crystal splitting gap ∆E1, p − d charge transfer gap
∆E2, and exchange splitting gap ∆E3. Wannier fitted re-
sult is overlaid with cyan dotted lines. c Maximally localized
wannier functions of dz2 and dx2−y2 orbitals from wannier
fitting. d Enlarged four-band structure near the Fermi level
from DFT considering SOC effect. The black arrow indicates
the position of Weyl points.

ture32–34. These inorganic oxides, with a chemical for-
mula of AB2O4, are constructed by FCC lattice of O2−

anions and interstitial cations in tetrahedral (T-site) and
octahedral (O-site) sites formed by O2− ions, as shown in
Fig.2a. It is important to mention that in normal spinels,
A cations in T-sites form exactly a diamond structure and
B cations in O-sites form a 3D kagome lattice instead. To
the best of our knowledge, though the diamond structure
made by transition metal ions exist in many compounds,
their intriguing electronic and topological properties have
not been studied.

For A cations, the local tetrahedral crystal field splits
five degenerate d orbitals into three-fold degenerate t2g
and two-fold degenerate eg orbitals. Further exchange
splitting of these d-orbitals breaks the time reversal sym-
metry and lifts the spin degeneracy37. With proper filling
of eg orbitals, e.g., one electron per site, half-filled mag-
netic eg-diamond bands can be formed around the Fermi
level. Indeed, we found one experimentally studied 4-2
spinel compound (VMg2O4) that perfectly satisfies these
criteria38,39, where vanadium cations (4s23d3) have one d
electron left after donating four valence electrons (V4+)
to neighboring oxygen anions (O2−). Our density func-
tional theory calculations37 show that VMg2O4 is ferro-
magnetic (FM) with a magnetic moment of 2 µB per unit
cell, which are mainly contributed by V cations, as con-
firmed by the spin distribution plot37. The energy differ-
ence between FM and antiferromagnetic (AFM) state is

around 0.43 eV at the PBE level, indicating a promising
room temperature FM feature37.

The band structure of VMg2O4 without considering
the spin-orbit coupling (SOC) effect is shown in Fig.2b.
There is a clear spin-polarized four-band structure right
at the Fermi level with very good isolation from other
bands. It exhibits an ideal half-metallicity feature where
one spin channel is metallic and the other spin channel
is insulating with a band gap as large as 4.36 eV at the
PBE level of accuracy. Further calculations using hybrid
functionals show the same band structure with a even
larger spin gap (5.17 eV for meta-GGA and 6.62 eV for
HSE37). To understand this peculiar electronic struc-
ture, we plotted and analyzed the projected density of
states (PDOS) of VMg2O4. As shown in Fig.2b, the four
bands around the Fermi level are nearly half-filled and
mainly contributed by V d electrons, which agrees with
the magnetic moment distribution. The PDOS of Mg
are located far above the Fermi level, as the two valence
electrons are fully transferred to O2− ions to form the
Mg2+ with zero valence electrons. The oxygen states are
about 2 eV below the Fermi level because of the closed
shell electronic configuration.

The observed band isolation in spin up channel can
be traced to the underlying energy splittings indicated
as ∆E1 and ∆E2, as shown in Fig.2b. The energy gap
above (∆E1) is between d orbitals, which is essentially
the tetrahedral crystal field splitting energy (∆tet) be-
tween eg and t2g orbitals. The large separation, ∆tet ≈
2 eV, is due to strong interactions with O2− ions and
the high oxidation state of V4+. ∆E2 below the Fermi
level is between d and p orbitals, which is the charge-
transfer gap determined by the energy-level separation of
orbitals between vanadium and oxygen. The separation
can be well characterized by elemental electronegativity
and the Madelung potential40. On the other hand, the
large band gap in the spin down channel can be under-
stood as the cooperative effect of ∆E2 and ∆E3. ∆E3

is essentially the exchange splitting of the V d electrons,
which is known to be significant because of the strong
localization effect of transition metal d orbitals. Ideally,
such large gap would guarantee pure spin current and
prevent any current leakage of the minority spin. To the
best of our knowledge, this is also the largest spin gap
among reported half-metallic ionic compounds.

Eg-diamond model and 3D-NC in VMg2O4 More in-
terestingly, these four bands (Fig.2b) have multiple linear
crossings around the Fermi level, indicating a semimetal-
lic feature. This is also supported by the enlarged PDOS
plot, which shows nearly zero DOS around the Fermi level
(Fig.2d). There also exist several degenerate bands along
Γ-L, X-W, which agree perfectly with our eg-diamond
model. To confirm the eg-diamond model, we performed
the maximally localized Wannier functions (MLWFs) cal-
culation to fit to the DFT band structure using the Wan-
nier90 package41. The MLWFs fitted band structure
based on two eg-orbitals on diamond lattice agrees per-
fectly with DFT results, as shown in Fig.2b. The calcu-
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lated MLWFs show clearly the shape of dz2 and dx2−y2

orbitals (Fig.2c), confirming the orbital characteristics
and again validating the eg-diamond model. This is fur-
ther supported from the band-resolved partial charge dis-
tribution plot of these bands, which show a characteristic
shape composed of the two orbitals37.

As demonstrated from the eg-diamond model, we ex-
pect the band structure of VMg2O4 to form a nodal cage
in the first-Brillouin zone. To confirm the 3D-NC feature,
we calculated 3D band structures in two 2D k-planes with
one at the hexagonal Brillouin boundary [(111) surface,
Fig.3a] and the other one at kx-ky plane across the Γ
point [(110) surface, Fig.3c]. The 3D band structure37

and the band gap plot between middle two Dirac bands
(Fig.3b and d) show clearly nodal ring features within
both the hexagon (111) and octagon (110) planes. Based
on the C4 rotational and the inversion symmetry, the
other seven hexagonal Brillouin zone boundaries also pos-
sess the same feature as (111) surface37. Similarly, same
rules apply to symmetry invariant planes of (110) sur-
face, i.e., (101) and (011) planes across the Γ point due
to the C3 rotational symmetry37.

From the band structure in Fig.2b, we noticed nearly
all the nodal points are located closely adjacent to the
Fermi level (< 20 meV). Therefore, the Fermi surface
could essentially capture the 3D-NC feature. Indeed, the
Fermi surface plot, as shown in Fig.3e, shows a smooth
surface that ends at the hexagonal Brillouin zone bound-
aries. Small energy dispersion of the 3D-NC lead to
the coexistence of electron and hole pockets, where hole
pockets are mostly located near square zone boundaries.
Cross sections of the 3D Fermi/nodal cage for different
planes (2D Fermi surface37) show that the nodal ring
within (111) surface is nearly flat, while that of (110) sur-
face shows small energy oscillation (± 20 meV) as it cut
across the square zone boundaries. We also calculated
the 3D band structure and 2D Fermi surface for two se-
ries of 2D k-planes, i.e., (111) planes and (110) planes
from the boundary to the center of the Brillouin zone,
which further confirm the intriguing 3D-NC feature37.

Magnetic Weyl semimetal Generally, such nodal cage
is not robust, which will become gapped after consid-
ering SOC effect42,43. Depending on whether the sys-
tem becomes fully gaped or not, the material becomes
the quantum anomalous Hall insulator or magnetic Weyl
semimetal. Therefore, we proceed to include the SOC to
determine the topological phases of VMg2O4. Firstly, we
performed non-collinear calculations with different spin
configurations37, which show that the system remains to
be FM with nearly degenerate energies along different
magnetization directions. The corresponding band struc-
ture for the magnetization direction along <111> direc-
tion is plotted along high-symmetry k-paths (Fig.2d),
where most of the NC become gapped with several k-
points remaining degenerate, such as that along Γ-W
that is perpendicular to the magnetic field. Detailed
calculations show 18 Weyl pairs, as confirmed by the
Berry phase of ±π through the Berry curvature integra-

FIG. 3. 3D Nodal cage. a 2D hexagonal k-plane of the
(111) surface at the Brillouin zone edge. b Band gap between
the middle two bands for the 2D k-plane in a. c and d same
as a and b for the 2D octagonal k-plane of the (110) surface
across the Γ point of the 3D Brillouin zone. e Fermi surface
at the energy of Fermi level, showing the feature of 3D nodal
cage. Purple and blue regions represent the hole and elec-
tron pockets, respectively. Green region highlights the cross
section at the Brillouin zone boundary.

tion around these points37.
To demonstrate topological properties of VMg2O4, we

calculated the surface state using a semi-infinite system
based on Green’s function. Figure 4a and d show clearly
topological surface states connecting bulk states for (111)
and (110) surfaces, respectively. As one of the charac-
teristic feature of Weyl semimetals, Fermi arcs for these
two surfaces are also calculated, as shown in Fig.4b and
e. The Fermi arcs show dramatic difference between dif-
ferent surfaces due to different projections of Weyl pairs.
For the (110) surface, two pairs of Weyl points can be
clearly seen from the two separated Fermi arcs as required
by the C2 rotational symmetry. For the (111) surface, the
Fermi arcs form a “Fermi ring” with three pairs of Weyl
points due to the C3 rotational symmetry. These Weyl
points are accidentally overlapping while projecting to
the (111) surface, which are separated within the bulk
Brillouin zone. Spin textures of the Fermi arc shown in
Fig.4c and f also confirm the positive and negative chi-
rality of Weyl points.
Discussion and perspectives One of the intriguing

properties of Weyl semimetal is their proposed large in-
trinsic anomalous Hall conductivity σA

H , which comes
from the integration of Berry curvature from bulk band
structure44,45. Considering the small charge current σ
due to the semi-metallic feature, it is believed that Weyl
semimetal could have a large anomalous Hall angle σA

H/σ.
Therefore, we calculated intrinsic anomalous Hall con-
ductivity of VMg2O4, which shows a relatively large peak
(≈ 100 Ω−1 · cm−1) around the Fermi level37. Theo-
retical proposals suggest engineering extra bulk bands
to cross the Fermi level may help to increase σA

H
46. To

test this idea, we modified the band dispersion through
strain engineering and successfully realize the proposed
band structure upon compressive strain. The σA

H indeed
shows a large enhancement by at least 2-folds37.
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FIG. 4. Topological properties of Weyl semimetal
VMg2O4. a Topological surface state connecting bulk states
for the (111) surface. b and c Fermi arc and the correspond-
ing spin texture of the (111) surface. d, e, and f Same as a,
b, and c for (110) surface.

The intriguing phenomenon observed in VMg2O4

can also be extended to other spinel compounds.
Through theoretical calculations, we find spinel com-
pounds formed with elements having the same valance
states as VMg2O4, e.g., VMg2Se4 and VCa2O4, share
the same features as VMg2O4

37. On the other hand,
based on the same model with different electron filling,
some other potentially interesting phases can be realized
with elements having different valence states. For ex-
ample, we can acquire large gap (≈ 3 eV) half-metal
phase in MnMg2O4 and realize an FM insulating state
in CrMg2O4

37. It is interesting to mention that FM in-
sulator possesses two different band gaps (0.6 eV and 3.6
eV) in different spin channels, which could potentially be

used as spin filter in magnetic tunneling junction devices.
On the other hand, the lattice compatibility/match

with (001) textured MgO tunneling barrier is critical for
practical applications. Many materials, such as heusler
materials, that have been studied face practical integra-
tion issues with MgO because of lattice mismatch. Inter-
estingly, the material we studied here has a very small lat-
tice mismatch with MgO for both (001) and (111) planes
(< 0.4%), because of their structural similarity37. This
lattice matching might facilitate high quality growth of
VMg2O4 directly on top of MgO to study or utilize its in-
triguing magnetic Weyl semimetal features. For example,
we can build MTJ devices with VMg2O4/MgO/VMg2O4

stacking or simply use VMg2O4 as the spin filtering
layer37.

In summary, we have discovered a novel eg-diamond
model which spawns intriguing nodal cage feature due
to the coexistence of orbital and sublattice degeneracies.
We discovered that such model can be realized in the
well-studied spinel oxide compounds. Using 4-2 spinel
compound VMg2O4 as a representative example, we con-
firmed the validity of the eg-diamond model and demon-
strate the formation of 3D-NC due to linear crossing be-
tween the middle two bands. The material is calculated
to be a magnetic Weyl semimetal, which is novel to spinel
compounds. We further expand the model to a series of
spinel compounds and demonstrate their promising ap-
plications as spintronic materials. This theoretical dis-
covery substantially enriches the physics of spinel com-
pounds and could potentially lead to new applications.
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