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In previous studies, the topological invariants of 1D non-Hermitian systems have been defined in open bound-
ary condition (OBC) to satisfy the bulk-boundary correspondence. The extreme sensitivity of bulk energy
spectra to boundary conditions has been attributed to the breakdown of the conventional bulk-boundary cor-
respondence based on the topological invariants defined under periodic boundary condition (PBC). Here we
propose non-Hermitian many-body polarization as a topological invariant for 1D non-Hermitian systems de-
fined in PBC, which satisfies the bulk-boundary correspondence. Employing many-body methodology in the
non-Hermitian Su-Schrieffer-Heeger model for fermions, we show the absence of non-Hermitian skin effect due
to the Pauli exclusion principle and demonstrate the bulk-boundary correspondence using the invariant defined
under PBC. Moreover, we show that the bulk topological invariant is quantized in the presence of chiral or
generalized inversion symmetry. Our study suggests the existence of generalized crystalline symmetries in non-
Hermitian systems, which give quantized topological invariants that capture the symmetry-protected topology
of non-Hermitian systems.

PACS numbers:

Introduction.— Recent progress in the study of non-
Hermitian systems, such as open systems or dissipative sys-
tems with gain and loss [1–40], has uncovered various intrigu-
ing physical phenomena that do not exist in Hermitian sys-
tems. For instance, the characteristic complex energy spec-
tra of non-Hermitian systems are theoretically predicted to
host exceptional surfaces or bulk Fermi-arcs [41–58], which
are later realized in experiments [59, 60]. Nowadays, there
are growing research activities to extend the idea of topo-
logical Bloch theory developed in Hermitian systems to non-
Hermitian Hamiltonians [61–72].

One central issue in the study of topological phenomena
in non-Hermitian systems is to understand the bulk-boundary
correspondence (BBC). In Hermitian systems, it is well-
established that the bulk topological invariants defined by
Bloch wave functions in periodic boundary condition (PBC)
predict robust boundary states in systems under open bound-
ary condition (OBC) [73–75]. Contrary to this, in non-
Hermitian systems, the bulk energy spectra exhibit extreme
sensitivity to boundary conditions [76–78]. For instance,
in recent studies of the non-Hermitian Su-Schrieffer-Heeger
(SSH) model, it was shown that the bulk eigenstates, which
are extended under PBC, are exponentially localized on one-
side of the finite-size system with OBC [62, 79]. This phe-
nomenon is named the non-Hermitian skin effect in Ref. 79,
which has been extensively discussed recently [79–89]. Since
the energy spectra under PBC and OBC differ so drastically,
there has been even a common belief that the bulk invari-
ant defined under PBC has intrinsic limitations in explaining
BBC of non-Hermitian systems in general. To circumvent this
problem, several interesting theoretical ideas are proposed un-
der OBC, such as generalized Bloch theory [61–64], trans-
fer matrix approach [65], and entanglement spectrum analy-
sis [66]. Lack of proper topological invariants defined under
PBC that satisfy BBC gives the impression that the BBC of

non-Hermitian systems belongs to a rather special category
which is distinct from that of Hermitian systems. However,
is it really true that the BBC of non-Hermitian topological
systems evades the theoretical framework developed to under-
stand the topological phases in Hermitian systems?

Here we address this important question focusing on 1D
fermionic non-Hermitian systems. For the non-Hermitian
SSH model describing spinless fermions, we show that the
non-Hermitian skin effect, observed in a single-particle ap-
proach, does not appear in the many-body approach due to the
Pauli exclusion principle [90]. We have also found that at half-
filling, topologically trivial and non-trivial phases display the
same charge density distribution in systems with OBC. When
one extra electron or hole is added, however, the additional
charge is exponentially localized near the edges when the sys-
tem is topologically non-trivial, whereas it spreads over the
entire system when the system is topologically trivial.

Moreover, we have identified a bulk topological invariant
defined under PBC: the non-Hermitian many-body polariza-
tion, which correctly describes the BBC and gives the same
bulk critical points for topological phase transitions as those
predicted under OBC [79]. We find that the many-body po-
larization defined under PBC is quantized in the presence of
chiral or generalized inversion symmetry. This clearly shows
that, in non-Hermitian systems, one can define bulk topolog-
ical invariants under PBC, which are quantized due to gener-
alized crystalline symmetries and correctly predict the associ-
ated boundary states, as in the case of conventional fermionic
Hermitian systems. Finally, we propose the non-Hermitian
version of the edge entanglement entropy that can be used to
detect the edge degeneracy in 1D non-Hermitian systems.

Model.— The non-Hermitian SSH model Hamiltonian
ĤSSH is composed of two parts as ĤSSH = Ĥ0 + ĤNH in
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FIG. 1: (Color Online) (a) Schematic figure describing the non-
Hermitian SSH model for spinless fermions. The dotted box denotes
the unit cell. t1 (t2) indicates the intracell (intercell) hopping while
γ denotes the asymmetric hopping term that makes the system to
be non-Hermitian. (b) Distribution of the particle density |Ψ(i)|2
from single-particle wave functions (square dots) and many-body
wave functions (star-shaped dots) obtained by solving a finite-size
chain with 14 sites under OBC. We choose the model parameters
t1 = 2, t2 = 1, γ = 0.3 which correspond to a trivial insulator. To
obtain |Ψ(i)|2 from single-particle wave functions, the contributions
from all states below the gap are added.

which

Ĥ0 =
∑
i

{[
J −∆J(−1)i

]
ĉ†i ĉi+1 + h.c.

}
, (1)

ĤNH =
∑
i

γ(ĉ†i+1ĉi − ĉ
†
i ĉi+1), (2)

where ĉi (ĉ†i ) denotes the electron annihilation (creation) op-
erator at the i-th site. Ĥ0 indicates the Hermitian SSH Hamil-
tonian with the intracell (intercell) hopping amplitude t1 =
J+∆J (t2 = J−∆J) while ĤNH denotes the non-Hermitian
part describing asymmetric hopping processes. [See Fig. 1
(a).] The model is equivalent to Creutz-ladder-like system
with gain and loss, which is experimentally realizable in ul-
tracold fermionic system [62, 91].

Diagonalizing the Hamiltonian ĤSSH under OBC and us-
ing the corresponding single-particle eigenvector |ψn〉 with
the band index n, one can obtain the particle density at the
i-th site |Ψsingle(i)|2 ≡

∑
n∈occ〈ψn|ĉ

†
i ĉi|ψn〉. Here we have

added the contribution from all the single-particle wave func-
tions below the Fermi level, as plotted in Fig. 1 (b) with square
dots. One can observe the exponential localization of the par-
ticle density on the right edge, manifesting the non-Hermitian
skin effect. However, this accumulation obviously violates the
Pauli exclusion principle, which should be corrected to obtain
physically meaningful results [90].

To take into account of Fermi statistics, we take the many-
body approach using Fock basis states. For a system with

L lattice sites filled with N electrons, the number of al-
lowed Fock basis states is given by

(
L
N

)
. For example,

a 4-site system filled with 2 electrons has 6 Fock basis
states: |1100〉, |1010〉, |1001〉, |0110〉, |0101〉, |0011〉 where 0
and 1 indicate the number of electron at each site. The
Hamiltonian acts on Fock bases as follows: ĉ†3ĉ2|1100〉 =

|1010〉, ĉ†3ĉ2|0110〉 = 0, and so on. Since a single-particle
Hamiltonian is of the form Ĥ =

∑
i,j Hij ĉ

†
i ĉj where Hij de-

notes its (i, j)-th element, the (α, β)-th element of the Hamil-
tonian in Fock space HF

αβ can be obtained as HF
αβ =

±Hij when 〈α|ĉ†i ĉj |β〉 = ±1 for Fock bases |α〉, |β〉, while
HF

αβ = 0 otherwise. HF is diagonalized using the exact di-
agonalization method.

In Fig. 1 (b), we plot the particle density distribution
|Ψmany(i)|2 ≡ 〈ΨG

R|ĉ
†
i ĉi|ΨG

R〉 with star-shaped dots, where
|ΨG
R〉 is the many-body ground state wave function that satis-

fies HF|ΨG
R〉 = E|ΨG

R〉. The sum of the wavefunction density
is normalized to N , which is the total particle number of the
system. One can observe only mild slanting of particle densi-
ties instead of the exponential localization [91]. The absence
of non-Hermitian skin effect in fermionic systems prompts a
question: what happens to BBC when many-body formalism
is used?

Biorthogonal formulation.— To describe the topological
property of the many-body wave functions, we adopt the for-
mulation of biorthogonal quantum mechanics. In general, a
diagonalizable non-Hermitian matrix H can have different left
and right eigenvectors |ΨL〉, |ΨR〉 that satisfy [55]

H|ΨR,n〉 = En|ΨR,n〉, H†|ΨL,n〉 = E∗n|ΨL,n〉. (3)

The sets of eigenvectors can be chosen to satisfy the
biorthonormality condition 〈ΨL,n|ΨR,m〉 = δnm , which en-
sures that the transition amplitude |〈ΨL,n|ΨR,m〉|2 between
two states with different energy eigenvalues is zero. In this
paper, we focus on the Hamiltonian matrices with biorthogo-
nality.

The biorthogonal bases naturally construct the identity op-
erator as 1̂ =

∑
n |ΨR,n〉〈ΨL,n|. The expectation value of

the observable in a pure right state |ΨR〉 =
∑
n Cn|ΨR,n〉 is

expressed as

〈Ô〉 = 〈ΨL|Ô|ΨR〉, (4)

where |ΨL〉 =
∑
n Cn|ΨL,n〉, such that 〈ΨL|ΨR〉 =∑

n C
∗
nCn = 1. The corresponding particle density at the

site i is given by |ΨLR(i)|2 ≡ 〈ΨL|ĉ†i ĉi|ΨR〉. Let us note that
|ΨLR(i)|2 is different from the conventional particle density,
which is relevant to |ΨRR(i)|2 ≡ 〈ΨR|ĉ†i ĉi|ΨR〉/〈ΨR|ΨR〉
in terms of biorthogonal formulation.

Topological zero-modes.— One of the most prominent char-
acteristics of the SSH model that distinguishes the topologi-
cally trivial and non-trivial phases is the existence of zero-
modes at the edge. To confirm the existence of the zero-
modes in the non-Hermitian SSH model, |ΨLR(i)|2 is com-
puted by using the ground state many-body wave function
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FIG. 2: (Color Online) Distribution of |ΨLR(i)|2 for a non-
Hermitian SSH chain with 14 sites under OBC. (a) Topological in-
sulator where t1 = 1, t2 = 2, γ = 0.3. At half-filling, |ΨLR|2
is uniformly distributed. Adding (subtracting) an electron, the extra
electron density is accumulated (depleted) at the edges, which shows
the existence of topological zero modes localized at the edges. The
zero-mode is always observed when |t1| < |t2|. (b) Trivial insulator
where t1 = 2, t2 = 1, γ = 0.3. At half-filling, the electron density
is uniformly distributed as in the case of the topological insulator.
Adding (subtracting) an electron, the extra electron density accumu-
lated (depleted) spreads throughout the bulk, showing the absence of
localized zero-modes.

{|ΨG
L 〉, |ΨG

R〉} as shown in Fig. 2. At half-filling, the distri-
bution of |ΨLR(i)|2 is uniform in both trivial and topological
phases. However, when one electron or hole is added, the ex-
tra charge is localized at the edges in topological phases. In
contrast, in trivial phases, the extra charge is spread over the
entire system. The localized edge modes are always present
(absent) when |t1| < |t2| (|t1| > |t2|) [91]. Moreover, when
|t1| < |t2|, the ground state energy does not change when one
electron is added or subtracted. This means that the states
localized at the edges are indeed zero-energy edge modes.
When |t2| < |t1|, on the other hand, adding (subtracting) an
electron increases (decreases) the energy as much as the en-
ergy gap. Namely, the topological phase transition between
the trivial and topological insulators occurs at |t2| = |t1|. The
location of the critical point is the same as that from the gen-
eralized Brillouin zone approach under OBC [79]. Note that
the entire energy spectrum of our model is real in OBC when
|γ| < |t1|, |t2| [91].

Let us now obtain the critical points obtained under PBC.
Naive application of the Bloch theory in PBC predicts the
closing of bulk gaps at t2 = t1±2γ or t2 = −t1, which is not
consistent with the critical point where the zero-modes appear
or disappear [92]. Such a discrepancy occurs because the en-
ergy eigenvalues obtained in PBC are not real, but generally
complex. Interestingly, in our model, the many-body ground
state energy of HF in PBC is real and thus physically stable
when |γ| < |t1|, |t2| and N = L/2 is an odd integer [91].
The distribution of the particle density of the system in PBC
is shown in Fig. 3(a) obtained by using the many-body ground
state.

Non-Hermitian polarization.— In order to discuss the topo-
logical phase in PBC, we need to define a bulk topological
invariant. In Hermitian systems, the many-body bulk polar-
ization is a well-defined 1D topological invariant, whose def-
inition under PBC is given by [93]

P ≡ lim
N→∞

1

2π
Im ln〈ΨG|ei 2πN X̂ |ΨG〉 mod 1, (5)

where |ΨG〉 is the many-body ground state and N is the num-
ber of unit-cells. Here X̂ denotes the summation of position
operators for all atoms. P is quantized in the presence of ei-
ther inversion or chiral symmetry. The Hamiltonian Ĥ invari-
ant under the chiral Ŝ or inversion Î symmetry satisfies

ŜĤŜ−1 = Ĥ, ÎĤÎ−1 = Ĥ, (6)

where ŜĉiŜ−1 = (−1)iĉ†i , ŜiŜ = −i and Î ĉiÎ−1 = ĉL+1−i,
ÎiÎ−1 = i [94]. In terms of the corresponding matrix repre-
sentation S and I , the invariance of the Hamiltonian matrixH
becomes

S−1HS = −H, I−1HI = H. (7)

Under inversion symmetry, the polarization satisfies P ≡ −P
mod 1, so that it is quantized into either 0 or 1/2 mod 1.
Also, chiral symmetry imposes Pocc = Punocc with Pocc +
Punocc = 0 mod 1, which lead to the polarization quantiza-
tion: Pocc = 0 or 1/2 mod 1. Here Pocc (Punocc) denotes the
polarization of occupied (unoccupied) states.

We extend the idea of the many-body bulk polarization,
which has been used in Hermitian systems only, to non-
Hermitian systems by defining the non-Hermitian many-body
bulk polarization PLR as

PLR ≡ lim
N→∞

1

2π
Im ln〈ΨG

L |ei
2π
N X̂ |ΨG

R〉 mod 1, (8)

where |ΨG
R〉(|ΨG

L 〉) is the right (left) many-body ground state.
Here, we introduce chiral and generalized inversion symme-
tries for non-Hermitian systems, which quantize PLR, as fol-
lows

ŜĤŜ−1 = Ĥ†, ÎĤÎ−1 = Ĥ†. (9)

In terms of the corresponding matrix representation, we have

S−1HS = −H, I−1HI = H†. (10)
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Note that ĤSSH has both chiral and generalized inversion
symmetry. One can also check the existence of these symme-
tries in Fock space representation as well. Under generalized
inversion symmetry, PLR ≡ −PLR mod 1, and thus PLR

is quantized into 0 or 1/2. Likewise, under chiral symmetry,
PLRocc = PLRunocc results in the quantization of PLRocc with the
condition PLRocc + PLRunocc = 0 mod 1 [91]. Therefore in the
presence of either chiral or generalized inversion symmetry,
the non-Hermitian many-body polarization is quantized into
either 0 or 1/2.

As shown in Fig. 3 (b), PLR defined under PBC is 1/2
when |t1| < |t2| whereas it is 0 when |t1| > |t2|. The phase
transition occurs at the critical point |t1| = |t2|, which is con-
sistent with the numerical study of the zero-modes in OBC
discussed before. In fact, one can understand the reason why
the critical point is located at |t1| = |t2| as follows. Switching
the role of t1 and t2 is equivalent to translating the system by
a half lattice constant. Then ith site moves to the (i + 1)th
site. Thus, PLR with t1 = α, t2 = β is different by 1/2 from
PLR with t1 = β, t2 = α [91]. The location of the critical
point agrees with the numerical and analytical results obtained
under OBC [91] indicating that BBC is satisfied when PLR

defined under PBC is considered. This is also confirmed in
another model as well [91].

Periodic boundary condition

(b)

(a)

FIG. 3: (Color Online) (a) Distribution of the particle densities
|ΨLR(i)|2 and |ΨRR(i)|2 at half-filling, for a non-Hermitian SSH
model with 14 sites under PBC. We use the model parameters
t1 = 2, t2 = 1, γ = 0.3 that corresponds to a trivial phase.
|ΨLR|2 is uniform whereas |ΨRR|2 has a saw-tooth shape. (b) Non-
Hermitian many-body polarization PLR as a function of t1 with
t2 = 1, γ = 0.3. When 0 < t1 < t2 (t1 > t2 > 0), PLR = 1/2
(PLR = 0). The critical point t1 = t2 is consistent with the nu-
merical study of the zero-modes under OBC. Thus, the BBC can be
described by using PLR. The black dotted vertical lines indicate
the locations of gap-closing points obtained by Bloch Hamiltonian,
which cannot explain the BBC.

Edge entanglement entropy.— Another way to determine
the topological property of many-body systems is to calculate
the edge entanglement entropy, which is known to be useful
in detecting the edge degeneracy [73, 95–97]. In particular,
when there are two zero-modes localized at the edges of a 1D
topological isulator, edge entanglement entropy is quantized
to ln 2 [95].

To define the entanglement entropy, we consider a system
that is divided into two subsystems A and B. In Hermitian
systems, the Rényi entropy Sα of order α is defined as

Sα =
1

1− α
ln Tr[(ρA)α], (11)

where ρA is the reduced density matrix for the subsystem A
and α ≥ 0, α 6= 1. Similar to the way of defining non-
Hermitian many-body polarization, we introduce Rényi en-
tropy Sα for non-Hermitian systems as

SLRα ≡ 1

1− α
ln Tr[(ρRLA )α], (12)

where ρRL = |ΨR〉〈ΨL|.
The edge entanglement entropy SLRα,edge is defined as

SLRα,edge ≡ SLRα,OBC −
1

2
SLRα,PBC, (13)

where SLRα,OBC(SLRα,PBC) is calculated under OBC (PBC). Since
the entanglement entropy follows the area law, the leading
term of the entanglement entropy SLRα,PBC is about twice larger
than that of SLRα,OBC. Thus, 1

2S
LR
α,PBC is subtracted to cancel

out the leading terms, and what remains in SLRα,edge is the sub-
leading term that detects degenerate edge states in OBC that
is quantized to 0 or ln 2 in thermodynamic limit.

As shown in Fig. 4(a), SLR2,edge is ln2 for a topological phase
and 0 for a trivial phase, where we choose α = 2 for the
convenience of calculation. Meanwhile, if we utilize the con-
ventional entanglement entropy S2,edge = S2,OBC − 1

2S2,PBC,
the entropy plummets as the asymmetric hopping amplitude
increases [See Fig. 4(b)]. Thus, the topological propertiy of
the non-Hermitian system cannot be correctly captured unless
we use the biorthogonal formalism.

Discussion.— Our theoretical approach based on many-
body wave functions suggests that careful consideration of
Fermi statistics leads to the recovery of the conventional BBC
even in non-Hermitian systems. Since the non-Hermitian skin
effect has been observed in various non-Hermitian Hamilto-
nians in different dimensions, and the resulting exponential
accumulation of charge densities always violates the Pauli
exclusion principle, we believe that our theoretical results
are valid in general non-Hermitian fermionic systems. Ex-
tending the many-body approach to higher dimensional non-
Hermitian systems is definitely one important direction for fu-
ture research.

Moreover, the identification of the non-Hermitian many-
body polarization that is quantized under generalized inver-
sion symmetry clearly shows the interplay between the crys-
talline symmetries and non-Hermitian topology. This indi-
cates the existence of symmetry-protected topological phases
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(a)

(b)

FIG. 4: (Color Online) (a) Non-Hermitian edge entanglement en-
tropy SLR

2,edge which detects edge degeneracy at two edges. A finite-
size non-Hermitian SSH chain with 14 sites is considered. SLR

2,edge =

ln 2 if the ground state is topological whereas SLR
2,edge = 0 if the

ground-state is trivial. The deviation from the quantized values at
large γ is due to the finite-size effect, which becomes smaller as the
length of the system increases. (b) The conventional edge entangle-
ment entropy calculated using only right eigenstates. The entropy of
the trivial phase is consistently zero, whereas the topological phase’s
entropy plummets as the asymmetric hopping amplitude increases.

even in non-Hermitian systems. We believe that this discovery
will open a new avenue to search topological non-Hermitian
systems protected by crystalline symmetries. Finally, since
the topological invariant is defined by using many-body for-
mulation, our work can be easily extended to interacting non-
Hermitian systems as well.
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[28] W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang,

Nature 548, 192 (2017).
[29] K. Ding, G. Ma, M. Xiao, Z. Q. Zhang, and C. T. Chan, Physical

Review X 6, 021007 (2016).
[30] C. A. Downing and G. Weick, Physical Review B 95, 125426

(2017).
[31] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu,

M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, et al.,
Reviews of Modern Physics 91, 015006 (2019).

[32] L. Lu, J. D. Joannopoulos, and M. Soljačić, Nature photonics 8,
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F. Libisch, T. J. Milburn, P. Rabl, N. Moiseyev, and S. Rotter,
Nature 537, 76 (2016).

[38] S. Lapp, F. A. An, B. Gadway, et al., New Journal of Physics
21, 045006 (2019).

[39] J. Y. Lee, J. Ahn, H. Zhou, and A. Vishwanath, arXiv preprint
arXiv:1906.08782 (2019).

[40] Y. Ashida and M. Ueda, Physical review letters 120, 185301
(2018).

[41] Z. Yang and J. Hu, Physical Review B 99, 081102(R) (2019).
[42] T. Yoshida, R. Peters, N. Kawakami, and Y. Hatsugai, Physical

Review B 99, 121101(R) (2019).
[43] J. C. Budich, J. Carlström, F. K. Kunst, and E. J. Bergholtz,

Physical Review B 99, 041406(R) (2019).
[44] R. Okugawa and T. Yokoyama, Physical Review B 99,

041202(R) (2019).
[45] K. Moors, A. A. Zyuzin, A. Y. Zyuzin, R. P. Tiwari, and T. L.

Schmidt, Physical Review B 99, 041116(R) (2019).
[46] J. Carlström and E. J. Bergholtz, Physical Review A 98, 042114

(2018).
[47] H. Zhou, J. Y. Lee, S. Liu, and B. Zhen, Optica 6, 190 (2019).
[48] W. Heiss, Journal of Physics A: Mathematical and Theoretical

45, 444016 (2012).
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