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Dirac-electronic tunneling and transport properties with both finite and zero energy bandgap are
investigated for graphene with an in-plane tilted potential barrier embedded with scatters. For a
tilted barrier, by using Wentzel-Kramers-Brillouin approximation, an analytical solution is obtained
first for transmission coefficient of Dirac electrons in gapped graphene in the absence of any scatters.
In the presence of either a single or a continuous distribution of scatters embedded within a tilted
barrier, however, a numerical scheme based on finite-difference approach is developed for accurately
calculating both transmission coefficient and tunneling resistance of Dirac electrons. Here, the
combination of a tilted barrier and a scatter potential can be viewed as an effective barrier-potential
profile facilitated by a proper gate structure. Meanwhile, a full analysis and detailed comparisons
are presented for the interplay between effects of both distributed scatters in a barrier and barrier
tilting on tunneling transport of Dirac electrons in graphene. The barrier-tilting field and scatter
position are found to play a key role in controlling a peak of tunneling resistance as well as in its
switching to a cusp by a mid-barrier-embedded scatter as the incident energy reaches the Dirac
point in a barrier. Different from a single scatter, a continuous distribution within a barrier can
enhance the unimpeded incoherent tunneling for head-on collision while greatly suppresses skew
ones with increasing barrier-tilting field. All these predicted attractive transport properties are
expected extremely useful for designing both novel electronic and optical graphene-based devices
and electronic lenses in ballistic-electron optics.

I. INTRODUCTION

Graphene, a one atom-thick allotrope of carbon, being a conductor with exceptionally large mobility at a large
range of ambient temperatures, makes a strong case for a number of ballistic transport nanodevices. It has unique
electronic properties due to its linear energy dispersion with zero bandgap, as well as a spinor two-component wave
function. These unique characteristics give rise to some highly unusual electronic and transport properties. 1–4

These peculiar properties result in a fact that a potential barrier becomes transparent to electrons arriving at
normal incidence regardless of its height or width. This effect, known as Klein tunneling, 1 restricts the switching-off
capability (i.e., complete pinch-off of electric current) for logical applications, and makes graphene difficult to achieve
logical functionalities without use of chemical modification or patterning. 5–8

On the other hand, such a situation also offers a unique possibility to fabricate various ballistic devices and circuits
in which electrons experience focusing (i.e., direction filtering) by one or several potential barriers. Practically, a
zero-bandgap two-dimensional material acquires an important advantage over metals in its capability to tune the
conductivity by means of either chemical doping or a gate voltage for creating an in-plane potential barrier with a
desired geometrical pattern. 9–11

Interestingly, the induced planar barrier structure within a grraphene sheet can be realized by applying a gate
voltage. This is quite different from the design of a high-electron-mobility transistor. For example, by using different
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inhomogeneous profiles of static bias voltage, various band alignments and junction structures, such as bipolar (p−n,
n − p, p − n − p, n − p − n, etc.) as well as unipolar junctions (n − n′, p − p′) can be facilitated 12–18 to achieve
desired gate-voltage (barrier-height) dependence of electrical conductance. In spite of the considered junction being
abrupt or smooth, its angular selectivity for carrier transport makes it a unique one in comparison with conventional
semiconductor junctions, e.g., metaloxidesilicon field-effect transistors.

Other significant roles played by our proposed tunable junctions include Veselago lens 19,20 by exploiting optics-like
behavior of ballistic Dirac electrons, Fabry-Perot interferometer, 13 subthermal switches, 5 and Andreev reflections 21.
Therefore, in order to design next-generation graphene-based electronics, it is crucial to gain a full understanding of
physics mechanism for ballistic transports across various types of potential barriers in graphene. Negative refractive
index with a single ballistic graphene junction, which is associated with electron-hole switching, has already been
observed experimentally, 5,15 and it strongly affects the operation of an electric switch. 5,22,23

In connection with related graphene studies, the works by Katsnelson, et al. 24,25 described the Klein paradox, i.e.,
unimpeded tunneling for a head-on collision through a square potential barrier in graphene, as one of the fundamental
properties of any Dirac-cone structure due to its relativistic energy dispersions. In bilayer graphene, however, there
exists a high impedance and a full reflection for such types of potential barriers. In addition, the paper by Zalipaev,
et al. represented the first attempt to evaluate electron wave function in semi-classical Wentzel-Kramers-Brillouin
(WKB) approximation for graphene with a finite energy gap. This results could be applied to studying electron
tunneling and finding transmission coefficient for potential barriers with various profiles. 26 Furthermore, the reported
research by Reijnders, et al. addressed the optical properties of graphene with an energy gap by using the semi-
classical model. 27 Finally, Choubabi, et al. considered a linear potential barrier which oscillates uniformly in time
and obtained a solution for the energy spectrum including several modes associated with oscillations. 28

An investigation on impurity-assisted electron tunneling conductance was reported for a very specific case of un-
doped, or intrinsic graphene, 29 in which a resonant-type conductance enhancement was found for the case with a single
impurity atom. In the presence of one-dimensional fluctuations of a disorder potential, its connection to Anderson
localization was further discussed. On the other hand, the defect effect on transport properties was also studied, in-
cluding one-parameter scaling with respect to sample size 30 and some critical phenomena induced by electron-electron
interactions in graphene and topological insulators 31.

Various theoretical models have been adopted aiming to obtain electron transport in graphene, including transfer
matrix, 32–34 non-equilibrium Green’s function, 6,35 tight-binding model, 36,37 as well as semi-classical WKB approxima-
tion 14,17,36. However, there are still few of studies on electronic transport properties using finite-difference approach 38

(FDA) in numerical calculation for an arbitrary potential profile. A crucial advantage of FDA is a possibility to take
into account of a single or multiple and even a continuous distribution of scatters embedded within a barrier. A
number of fabricated optical devices face such a situation, which detriments the device performance 8,23 while trying
to accomplish ballistic p− n junction characteristics experimentally. Alternatively, some smooth p− n and n− p− n
junctions in graphene were realized and analyzed theoretically (see Refs. [7,8,12,13,15,39,40] for details).

From the perspective of newly proposed methodology, the use of FDA introduced in this paper makes it possible
to accurately calculate tunneling of Dirac electrons in graphene through a tilted potential barrier in the presence of
either a single or a continuous distribution of scatters embedded within a barrier. From the viewpoint of introducing
new physics, on the other hand, applying FDA allows ones to exactly analyze effects of barrier tilting as well as of
scatters on tunneling of Dirac electrons. More importantly, by taking advantage of our newly developed methodology,
the FDA facilitates a direct comparison for the interplay between effects of distributed scatters in a barrier and barrier
tilting on tunneling transport of Dirac electrons in graphene, which becomes the main focus of the current paper.

The main goal of our paper is to develop a new technique for calculating wave functions anywhere in the barrier
region and beyond it, transmission and reflection coefficient based on the finite-difference numerical solution of the
Dirac scattering equation inside the barrier region. This method is extremely powerful and could be applied to any
types of potential profiles. Specifically, our method allows to consider electron tunneling in the presence of scatters
embedded within a tilted barrier, including single scatter or a continuously-distributed scatters. As an application of
this FDA, we have studied the competition between different effects from distributed scatters in a barrier and from
barrier tilting for tunneling transport of Dirac electrons in a graphene layer.

The remaining part of this paper is organized as follows. In Sec. II, we present analytical results within the
WKB approximation for both large and small tilting-field limits, accompanied by numerical results for transmission
coefficient as functions of both incident angles and electron energy. We introduce FDA in Sec. III for calculating
transmission coefficient of Dirac electrons in graphene in the presence of a tilted potential barrier embedded with
either a single or a continuous distribution of scatters, along with numerical results of transmission coefficient as
functions of incident angles, electron energy, scatter positions and strengths, as well as tunneling resistance as a



3

function incident incident energy, with various values of tilting field, scatter positions and strengths. Finally, our
concluding remarks are presented in Sec. IV.

II. TUNNELING THROUGH A TILTED BARRIER IN WKB APPROXIMATION

In this section, we would highlight the physics behind tunneling transport of ballistic Dirac electrons. For this
purpose, we will first introduce the Wentzel-Kramers-Brillouin (WKB) approximation so as to analyze explicitly the
dynamics of Dirac-electron tunneling.

Let us consider a tilted potential barrier, as shown in Fig. 1, with the potential VB(x) = V0 + αx, while VB(x) = 0
outside of the barrier region. For this case, the effective x−dependent wave number k(x) can be written as

k(x) =
ε− VB(x)

~vF
=
ε− V0

~vF
− ax , (1)

where ε is the kinetic energy of an incoming particle, which is conserved for an elastic scattering with the barrier,
and a ≡ α/(~vF ). For a square barrier, as considered in Ref. [2], we simply set a = 0 and will use it to build up our
perturbation theory for a weak tilting field.

For simplification we introduce a unitary transformation for a gapless Dirac Hamiltonian, i.e., a π/2-rotation

around the x−axis, as employed in Ref. [14]. This leads to the mixed eigen-function Φ(x | ky) = [φ+, φ−]
T

, where

φ± = (φB ± φA)/
√

2. If VB(x) ≡ V0 for a constant barrier, we find the eigen-function

Ψ0(x, y | ky) =

 φ+

φ−

 eikyy =
1

2

 eiθk + 1

eiθk − 1

 eik
(0)
x x+ikyy , (2)

where θk = tan−1(ky/k
(0)
x ) is the in-plane angle in the momentum space, k

(0)
x =

√
[(1/~vF )(ε− V0)]2 − k2

y , and the

wave-function amplitude is independent of x and y.

In the most general case, the wave-function amplitudes ψ±(x, y) satisfy the following equations 14

∓i ∂ψ±
∂x
∓ ∂ψ∓

∂y
= k(x)ψ± . (3)

Throughout our derivation, the translational symmetry in the y direction is kept always since our potential VB(x)
varies only along the x−axis. Correspondingly, we write down ψ±(x, y) = exp(ikyy)φ±(x). This simplify Eq. (3) into

∓i ∂xφ±(x)∓ iky φ∓(x) = k(x)φ±(x) , (4)

where ∂xφ(x) ≡ dφ(x)/dx. As a special case, one can easily verify that the solution Ψ0(x, y | ky) in Eq. (2) satisfies
Eq. (4) as VB(x) = V0 or a = 0 is taken in Eq. (1) for k(x).

A. WKB Semi-Classical Approach

The general form of semi-classical WKB expansion for a tunneling-electron wave function Ψ(x, y | ky) can be ex-
pressed as 26

Ψ(x, y | ky) = e(i/~)S∆(x)
∞∑
s=0

(−i~)s Ψs(x, y | ky) , (5)

where S∆(x) = ~
∫
x

dξ kx(ξ) represents an action. Here, we will only consider the leading s = 0 term in Eq. (5) and

obtain
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Ψ±(x, y | ky) =
1

2
C∆(x | ky)

(
eiΘ∆(x | ky) ± 1

)
exp

[
i

~
S∆(x)

]
eikyy , (6)

where kx(ξ) = (1/~vF )
√

[ε− VB(ξ)]2 − (~vF k∆)2 , k∆ = (1/~vF )
√

(~vF ky)2 + ∆2
G is independent of ξ, and 2∆G is

the bandgap between the valence and conduction bands. Furthermore, we have also introduced the following two
dimensionless quantities in Eq. (6), i.e.,

C∆(x | ky) =
1

kx(x)

{
k−(x) + i

∆G[ε−∆G − VB(x)]

(~vF )2 ky

}
, (7)

Θ∆(x | ky) = tan−1

[
~vF k+(x)

ε−∆G − VB(x)

]
,

where k±(x) = kx(x)± iky. It is straightforward to verify that the above solution reduces to that of gapless graphene
with ∆G = 0, yielding 14

Ψ±(x, y | ky) =
k+(x)± k(x)

2
√
|k(x)| kx(x)

exp

i x∫
dξ kx(ξ)

 eikyy . (8)

where k(x) has already been defined in Eq. (1).

As an electron moves uphill with increasing potential, the sum of its potential and kinetic energies remains to be
a constant. Therefore, the kinetic energy of the electron will decrease on its way. For this situation, we need define
a turning point for a semi-classical trajectory, at which kx(x) = 0 but the total kinetic energy is still positive due to
ky 6= 0. Setting k(x) = 0 in Eq. (1), we find the turning point x0 = (ε−V0)/α , where a Dirac electron changes into a
Dirac hole. Moreover, the range corresponding to |x− x0| < ξc becomes a classically forbidden region in which kx(x)
become imaginary, where ξc = ~vF ky/α for ∆G = 0. If this forbidden region lies entirely within the tilted-barrier
region, the transmission coefficient T (α | ky) is found to be 26

T (α | ky) v exp

−2

x0+ξc∫
x0−ξc

dξ
√
k2
y

 = exp

(
−

4k2
y

a

)
, (9)

which is a clear manifestation of the conservation of the Klein paradox for a tilted-barrier.

For the case with ∆G > 0, the result in Eq. (9) could be generalized to

T∆(α | ky) v exp

−2

x0+ξc∫
x0−ξc

dξ
√
k2

∆(ξ)

 = exp

{
−4

a

[
k2
y + (∆G/~vF )2

]]
, (10)

with ξc =
1

α

√
(~vF ky)2 + ∆2

G .

Therefore, Klein paradox will not exist for any α and ky values. In addition, an exact solution for the wave function
in this case could also be obtained by using the results in Ref. [14], as shown in Appendix A.

B. Perturbative Solution for Small Tilting

Here, we would like to emphasize that all the results obtained in previous subsection suffer a limitation, i.e., they
are valid only if the electron-to-hole switching occurs inside the barrier region. However, this becomes invalid if either
the slope α of a potential profile or the barrier width WB becomes very small.

To seek for a perturbative solution within a barrier, we first assume a very small slope α to ensure a = α/~vF �
k2(x). We further assume ε > VB(x) so that particle-hole switching will not occur. As a result, the wave function
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takes the form ψA,B(x, y) = φA,B(x) exp(ikyy) and Eq. (4) can be applied to find solution for φA,B(x). In this case,
however, a π/2-rotation for φ±(x) is not needed.

For VB(x) = V0 + αx, the electron momentum is k(x) = k0 − ax, where k0 = (ε− V0)/~vF and a = α/~vF . From
this, we find ∂xk(x) = −a, which becomes a small parameter in expansion. Based on these assumptions, we acquire
a second-order differential equation with respect to the first wave-function component φA(x), yielding

∂2
xφA(x) +

a

k0 − ax
∂xφA(x) +

[
(k0 − ax)2 − aky

k0 − ax
− k2

y

]
φA(x) = 0 . (11)

Considering the fact that |a| � 1, we approximate the above equation as

∂2
xφA(x) +

(
a

k0
+
a2x

k2
0

)
∂xφA(x) +

[
k2

0 − k2
y − a

(
ky
k0

+ 2k0x

)
+ a2

(
x2 − xky

k2
0

)]
φA(x) = 0 . (12)

Now, let us look for a perturbative solution of Eq. (12) in the form of φA(x) = φ
(0)
A (x) +aφ

(1)
A (x) +a2 φ

(2)
A (x) + · · · ,

and include only the terms up to the first non-vanishing linear correction to φA(x). Therefore, we get the 0th and 1st
order equations, respectively,

a0 : ∂2
xφ

(0)
A (x) +

(
k2

0 − k2
y

)
φ

(0)
A (x) = 0 , (13)

a1 : ∂2
xφ

(1)
A (x) +

(
k2

0 − k2
y

)
φ

(1)
A (x) +

1

k0
∂xφ

(0)
A (x)−

(
ky
k0

+ 2k0x

)
φ

(0)
A (x) = 0 . (14)

Moreover, making use of the relation in Eq. (4) for two components of the wave function, i.e.,

φB(x) =
∂xφA(x)− ky φA(x)

i(k0 − ax)
≡ φ(0)

B (x) + aφ
(1)
B (x) , (15)

we find

φ
(0)
B (x) =

−i
k0

[
∂xφ

(0)
A (x)− ky φ(0)

A (x)
]
, (16)

φ
(1)
B (x) =

−i
k2

0

{
k0

[
∂xφ

(1)
A (x)− ky φ(1)

A (x)
]

+ x
[
∂xφ

(0)
A (x)− kyφ(0)

A (x)
]}

. (17)

Consequently, for the 0th order solution, we are dealing with the tilting-free case having a = 0 or a square barrier
VB(x) = V0. From Eq. (13) we easily find its solution

φ
(0)
A (x) = c

(0)
1 eikxx + c

(0)
2 e−ikxx with kx =

√
k2

0 − k2
y , (18)

which is a superposition of the forward and backward plane waves. 2 In this case, from Eq. (16) the corresponding
solution for the second component of the wave function is given by

φ
(0)
B (x) = c

(0)
1

(
kx + iky
γ k0

)
eikxx + c

(0)
2

(
−kx + iky

γ k0

)
e−ikxx (19)

≡ γ
(
c
(0)
1 eiθk eikxx − c(0)

2 e−iθk e−ikxx
)
,

where γ = sign (ε− V0) = ±1 is the electron-hole index within the barrier region and θk = tan−1 (ky/kx) for Dirac
electrons inside the barrier region. Assuming ε > V0, we always have γ > 0 and no electron-hole switching will occur.

Two constants c
(0)
1 and c

(0)
2 in Eqs. (18) and (19) can be determined by boundary conditions at both sides of a barrier.
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Specifically, the incoming wave function is taken as 2,39,40

Φi(x) =
1√
2

 eiφk/2

e−iφk/2

 eik(0)
x x , (20)

where VB(x < 0) = 0, k
(0)
x =

√
(ε/~vF )2 − k2

y and φk = tan−1
(
ky/k

(0)
x

)
is the incident angle of Dirac electrons.

Here, the transversal electron wave number ky remains as a constant during the whole tunneling process.

Moreover, we notice that c
(0)
1 and c

(0)
2 in Eqs. (18) and (19) are not normalized, and they can be determined by the

continuity boundary condition at x = 0, leading to

c
(0)
1 =

[
γ + ei(φk+θk)

] (
1 + e2iφk

)
D(kx, φk | θk)

,

c
(0)
2 =

ei(2kxWB+θk)
(
1 + e2iφk

) (
γ eiθk − eiφk

)
D(kx, φk | θk)

,

D(kx, φk | θk) = γ + ei(φk+θk)
[
2 + γ ei(φk+θk)

]
+ 2 ei(2kxWB+φk+θk) [γ cos (θk − φk)− 1] . (21)

Here, c
(0)
1 and c

(0)
2 in Eq. (18) play the role of transmission and reflection amplitudes, respectively, within the barrier

region. Using the result in Eq. (21) and the continuity boundary condition at x = WB as well, we can further calculate
the transmission coefficient t(0) as

t(0) =
γ e−ikxWB cos θk cosφk

γ cos(kxWB) cos θk cosφk + i sin(kxWB) (γ sin θk sinφk − 1)
, (22)

which is identical to the corresponding results in Ref. [2] for a square barrier.

In a similar way, we can find the 1st order solution from Eq. (14) for φ
(1)
A (x), yielding

φ
(1)
A (x) = c

(1)
1 eikxx + c

(1)
2 e−ikxx + F(x | kx, θk) with

F(x | kx, θk) =
e−ikxx

4k3
x

{
c
(0)
2

(
− kxe−θk (2kxx− i) + k0 [2kxx (1 + ikxx)− i]

)
+ i c

(0)
1 e2ikxx

(
− ikxe+θk (2kxx+ i) + k0 [2kxx (kxx+ i)− 1]

)}
. (23)

Here, the two new undetermined constants c
(1)
1 and c

(1)
2 are completely different from the zero-order constants c

(0)
1

and c
(0)
2 in Eq. (21), and they physically represent the first-order corrections to transmission and reflection amplitudes

inside the barrier region. By using these computed first wave-function components φ
(0)
A (x) and φ

(1)
A (x) in Eqs. (18)

and (23), it is straightforward to find the second wave-function component φ
(1)
B (x) from Eq. (17) although its explicit

expression becomes too tedious to write out.

Now, we are able to determine the coefficients c
(1)
1 and c

(1)
2 in Eq. (23) and the correction t(1) to the transmission

coefficient t(0) in Eq. (22). Corresponding to the wave functions in Eqs. (17) and (23), we can express the transmission
and reflection coefficients as t = t(0) + a t(1) and r = r(0) + a r(1), respectively. Using the two boundary conditions at
x = 0 and x = WB , we arrive at two equations for r(1) and t(1), given by

r(1)

 1

−e−iφk

 =

 φ(1)
A (x = 0 | kx, θk)

φ
(1)
B (x = 0 | kx, θk)

 , and

t(1)

 1

eiφk

 eik(0)
x WB =

 φ(1)
A (x = WB | kx, θk)

φ
(1)
B (x = WB | kx, θk)

 eikxWB . (24)
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Finally, the transmission amplitude T (ε, φk |V0, α) can be simply found from T (ε, φk |V0, α) = |t(0) + at(1)|2, where
t(0) and t(1) are presented in Eqs. (22) and (24).

Mathematically, our obtained perturbative solution in subsection II B holds only for a small barrier tilting. However,
the expressions in Eqs. (9) and (10) represent the general solutions to Dirac-electron tunneling through a tilted barrier
in WKB approximation. We present the numerical results of Eqs. (9) and (10) for a large barrier tilting in panels (a)
and (b) of Fig. 2. Here, a large graphene gap ∆G significantly suppresses T (ε, φk |V0, α) for all values of a, as shown
in Fig. 2(a), while the increase of tilting parameter a enhances T (ε, φk |V0, α) for all values of ∆G, as seen in Fig. 2(b).
From Figs. 2(c) and 2(e), we further find that the full transmission for a head-on collision remains unchanged even
for a tilted barrier with a 6= 0. For small a values, the electron-hole transition does not take place within the barrier
region. In this case, a finite a only slightly modifies the resonances of oblique tunneling but not the Klein paradox
for the head-on collision.

III. EFFECT OF SCATTERS ON DIRAC-ELECTRON TUNNELING

In this Section, we would concentrate on studying effects of distributed scatters within a tilted barrier region on
the ballistic transport of Dirac electrons in gapped graphene. For this purpose, we first lay out the general formalism
based on a finite-difference approach (FDA) for any barrier potentials. As an example, we apply the FDA to reveal
scatter effects on Dirac-electron tunneling, including different scatter strengths and positions. The main advantage
of the FDA is its capability to determine exact electron wave functions for arbitrary potential profiles. 38

We will consider both cases with a zero or finite energy gap for graphene. Technically, an energy gap (∼ 200 meV)
could be introduced by placing a graphene sheet on top of either insulating silicon-based 41 or hexagonal boron-
nitride substrate. 42 It could also be realized by patterned hydrogen adsorption 43 or imposing a circularly-polarized
off-resonance laser field.44,45 This gap opening leads to substantial modifications of electronic states, electric transport
and collective properties of graphene, e.g., plasmon dispersions. 46–48

A. Electronic States of Gapped Graphene

For gapped graphene, there exists a finite energy bandgap EG = 2∆G between the valence and conduction bands
with energy dispersion εγ(k) = γ

√
(~vF k)2 + ∆2

G, where γ = ±1 correspond to electron and hole state, respec-

tively. The Hamiltonian matrix associated with this dispersion possesses an additional Σ̂z term on top of the Dirac
Hamiltonian for gapless graphene, 39,48 yielding

Ĥg(r) = −ivF Σ̂x,y ·∇r + VB(x) Σ̂0 + ∆G Σ̂z , (25)

where r = {x, y}, Σ̂x,y,z are two-dimensional Pauli matrices, Σ̂0 is a (2 × 2) unit matrix, and VB(x) represents an
arbitrary spatially-nonuniform barrier potential.

In general, the scattering-state solution for the Hamiltonian in Eq. (25) has a two-component (spinor) type of wave

function Ψγ(r) = exp(ikyy) Φγ(x) = exp(ikyy) [φγA(x), φγB(x)]
T

, where γ = sign[ε0(k)− VB(x)] = ±1 represents the
electron-hole index and ε0(k) is the given energy of an incident electron.

For the case with a constant barrier potential V0, however, the Hamiltonian in Eq. (25) can be greatly simplified as

Ĥ(0)
g (k | θk) =

 V0 + ∆G ~vF k−

~vF k+ V0 −∆G

 , (26)

where k = (k
(0)
x , ky) and k± = k

(0)
x ± iky. In this case, the scattering-state wave function related to the Hamiltonian

in Eq. (26) gains the explicit form 39,49

Ψ(0)
γ (r) =

1√
2γ δε0(k)

 √
|δε0(k) + ∆G|

γ
√
|δε0(k)−∆G| eiθk

 exp(ik(0)
x x+ ikyy) , (27)
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where θk = tan−1(ky/k
(0)
x ), δε0(k) ≡ ε0(k) − V0 ≥ ∆G for γ = +1, while δε0(k) ≤ −∆G for γ = −1. Here, two

components of the wave function in Eq. (27) are not the same but they are still interchangeable for electrons and holes
with γ = ±1.

B. Effects of Barrier-Distributed Scatters

For the Hamiltonian in Eq. (25), a pair of scattering-state equations within the barrier region are derived as

dφB(x)

dx
+ ky φB(x) =

i

~vF
[ε0(k)− VB(x) + Vs δ(x− xs)−∆G]φA(x) ,

dφA(x)

dx
− ky φA(x) =

i

~vF
[ε0(k)− VB(x) + Vs δ(x− xs) + ∆G]φB(x) . (28)

Here, we consider a barrier under a tilting field E0, which gives rise to VB(x) = V0− eE0 x in the barrier region, where
both V0 and E0 can be either positive or negative. Additionally, ky of electrons remains conserved during a tunneling
process along the x direction. Moreover, a single scatter at 0 < x = xs < WB is introduced within the barrier region
with its strength −Vs, which can be positive (attractive) or negative (repulsive).

Mathematically, we can divide the electron wave function corresponding to three separated regions. To the left of
the barrier x < 0, we acquire the wave function

Φ<(x) = s(ε0)

 1

eiφk

 exp(ik(0)
x x) + r(ε0)

 1

−eiφk

 exp(−ik(0)
x x) , (29)

where φk = tan−1(ky/k
(0)
x ), s(ε0) and r(ε0) represent incoming and reflected wave-function amplitudes. To the right

of the barrier x > WB , on the other hand, the wave function takes the form

Φ>(x) = t(ε′0)

 1

eiφk′

 exp(ik′xx) , (30)

where φk′ = tan−1(ky/k
′
x) and t(ε′0) is the transmitted wave-function amplitude.

Results in Eqs. (29) and (30) can be applied to construct boundary conditions on both sides of a barrier. For
the wave function within the barrier region, however, the FDA must be employed to seek for a numerical solution of
Eq. (28). Following the procedure adopted in Ref. [38] for a two-dimensional electron gas, we discrete the whole barrier
region 0 ≤ x ≤ WB into NB (odd integer) equally spaced slabs, and each slab has the same width ∆0 = WB/NB .
Consequently, two coupled differential equations in Eq. (28) can be solved simultaneously through a backward-iteration
procedure in combination with two continuity boundary conditions at x = WB and x = 0. Especially, as ∆G = 0 we
find the following backward iterative relation for 1 ≤ j ≤ NB + 1 and xj = (j − 1)∆0, i.e.,

 φA(xj−1)

φB(xj−1)

 =

 φA(xj)

φB(xj)

− ky∆0

 φA(xj)

−φB(xj)

+
i∆0

~vF
[
ε0(k)− V0 + eE0xj + Vs δ(xj − xs)

] φB(xj)

φA(xj)

 , (31)

where Vs = Vd ∆0 and Vd represents the point-scatter potential.

By using Eq. (30), the first continuity boundary condition at xNB+1 = WB = NB∆0 leads to

 φA(xNB+1)

φB(xNB+1)

 = t(ε′0(k′))

 1

eiφk′

 exp(ik′xNB∆0) exp

ky∆0

NB+1∑
j=2

Θ(−κ(xj))/
√
|κ(xj)|


xj 6=xD

, (32)

where κ(xj) = [(1/~vF ) (ε0(k)− V0 + eE0xj)]2−k2
y, ε′0(k′) = ~vF

√
k′2
x + k2

y = ε0(k)+eE0WB , and Θ(x) is a unit-step

function. Physically, the last exponential factor in Eq. (32) does not affect the transmission coefficient if κ(xj) > 0,
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corresponding to a semi-classical regime. However, this factor can significantly reduce the transmission coefficient,
but not the reflection coefficient, if κ(xj) < 0, connecting to a quantum-tunneling regime. The backward iteration in
Eq. (31) can be performed all the way down to x1 = 0.

In a similar way, using Eq. (29) and another continuity boundary condition at x1 = 0, we find

 |s(ε0)|2

|r(ε0)|2

 =
1

4

 |a|
2 + |b|2 + 2Re(ab∗eiφk)

|a|2 + |b|2 − 2Re(ab∗eiφk)

 , (33)

where we have defined the notations

 a

b

 ≡
 φA(x1)

φB(x1)

 = s(ε0)

 1

eiφk

+ r(ε0)

 1

−eiφk

 . (34)

The transmission coefficient T (k, φk | E0, Vd, xs), which is defined as the ratio of the transmitted to the incident
probability current densities, 1,2 is given by

T (k, φk | E0, Vd, xs) =
|t(ε′0)|2

|s(ε0)|2
, (35)

since electrons on both sides of the barrier have the same group velocity vF . Numerically, it is easy to set t(ε′0) ≡ 1,
then to find s(ε0) through Eq. (34) after having performed all the backward iterations, and finally obtain the ratio in
Eq. (35).

Using the calculated transmission coefficient in Eq. (35), we are able to compute the coherent-tunneling electric
current J0 per length, yielding

J0 =
4e

A
∑
k

T (k, φk | E0, Vd, xs) vF cosφk [f0(ε0(k))− f0(ε0(k) + eEdcWB)] , (36)

where Edc is a weak applied bias field between two electrodes, A is the graphene sheet area, f0(x) =

{1 + exp [(x− u0)/kBT ]}−1
is the Fermi function for thermal-equilibrium electrons at temperature T , and u0(T )

is the chemical potential of electrons. For a weak electric field, we have eEdcWB � ε0(k), which leads to

J0 ≈
4e2vFU0

A
∑
k

T (k, φk | E0, Vd, xs) cosφk

[
−∂f0(ε0(k))

∂ε0

]
, (37)

were U0 = EdcWB represents the voltage drop across the barrier and U0/(J0A) gives rise to tunneling resistance R. If
T is low, i.e., kBT � EF with EF = ~vF kF as the zero-temperature u0 or Fermi energy, we find

J0 ≈
4e2vFU0

A
∑
k

T (k, φk | E0, Vd, xs) cosφk δ(~vF k − EF )

=
U0

π

(
2e2

h

) ∞∫
0

dk k δ(k − kF )

π/2∫
−π/2

dφk T (k, φk | E0, Vd, xs) cosφk

= Edc kFWB

(
2e2

h

) 1

π

π/2∫
−π/2

dφk T (kF , φk | E0, Vd, xs) cosφk

 , (38)

where kF =
√
πn0 is the Fermi wave vector and n0 is the areal electron doping density. Finally, we obtain the

two-terminal sheet tunneling conductivity σ(kF , E0, Vd, xs) (in units of 2e2/h), given by 50
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σ(kF , E0, Vd, xs) =
J0

Edc
=
kFWB

π

π/2∫
−π/2

dφk T (kF , φk | E0, Vd, xs) cosφk . (39)

Specifically, for normal incidence of electrons with φk ≡ 0, we simply get σ0(kF , E0) = (kFWB)T (kF | E0, Vd, xs).

By going beyond a single scatter for the coherent tunneling, to simulate effects of barrier-distributed scatters on
the incoherent tunneling of Dirac electrons, we introduce a normal distribution function and replace the transmission
coefficient T (kF , φk | E0, Vd, xs) in Eqs. (35) and (39) by its average T (k, φk | E0, Vd), yielding

T (k, φk | E0, Vd) =
1

ND

WB∫
0

dxs T (kF , φk | E0, Vd, xs) ρ(xs | ξs) ≈
∆0

Ns

NB∑
s=2

T (kF , φk | E0, Vd, x∗s) ρ(x∗s | ξs) , (40)

where x∗s = (s− 1)∆0, the introduced scatter distribution function is assumed to be

ρ(x∗s | ξs) =
1√
2πξ2

s

exp

[
− (x∗s −WB/2)2

2ξ2
s

]
(41)

with the chosen standard deviation ξs = ∆0 and WB/2 = [(NB + 1)/2]∆0. In addition, the normalization factor in
Eq. (40) is given by

Ns =

WB∫
0

dxs ρ(xs | ξs) ≈ ∆0

NB∑
s=2

ρ(x∗s | ξs) . (42)

For convenience, in numerical calculations we further approximate the delta-function in Eq. (31) by

δ(xj − xs) ≡ δ(xj − x∗s) ≈
Γs/π

(xj − x∗s)2 + Γ2
s

(43)

with another chosen broadening parameter Γs = ∆0.

C. Numerical Results and Their Discussions

In Subsection III C, we will present numerical results for demonstrating effects of barrier tilting, single barrier-
embedded scatter and continuously-distributed scatters within a barrier, respectively. We also present comparisons
and detailed discussion of these results to reveal new physics and highlight the interplay between effects of distributed
scatters in a barrier and barrier tilting on tunneling transport of Dirac electrons in graphene.

1. Effect of barrier tilting

For a validation of our FDA, we first compare our numerical results in the absence of scatters (Vd = 0) with
those from an analytical solution 2 for a square barrier VB(x) = V0. Figure 3 displays a comparison for calculated
transmission coefficients T (ε, φk | E0 = 0) as a function of incident angle φk using either an analytical solution 2 (black
solid curves) or our FDA (red dashed curves). The results in this figure clearly indicate that our FDA is valid and
can be applied to arbitrary potential profiles VB(x) including a tilted barrier or barrier-distributed scatters.

As a starting point, using the FDA we will first explore the effects of barrier tilting on the ballistic transport of
Dirac electrons by neglecting barrier-distributed scatters. For this situation, the numerical results of T (ε, φk | E0) are
presented in Fig. 4 as a function of incident angle φk for various values of tilting field E0. Our results indicate that
the Klein paradox, i.e., T (ε, φk | E0) = 1 at φk = 0, persists for all considered tilting field E0 values, either positive
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or negative. From this figure we see very-large-angle resonant tunneling only occurs for |E0| ≈ 0. As |E0| becomes
large, however, resonant tunneling are squeezed into a very narrow angle region around φk = 0, promoting tunneling
collimation as predicted by WKB result in Eq. (9). Such variations observed in T (ε, φk | E0) can be attributed to the
tilting modification of a barrier potential profile VB(x) compared with a simple square barrier VB(x) = V0.

Figure 5 displays density plots of T (ε, φk | E0) as functions of both incident energy ε and incident angle φk with
six different values for tilting field E0. Here, we take the case with E0 = 0 as a starting point for our comparisons
and discussions, where the Klein paradox and collimation effect exist accompanied by many sharp resonances (i.e.,
branching and needling features). As E0 increases from zero to 25 kV/m in the upper row of panels for reduced
barriers, these resonant branching and needling features are greatly obscured although the Klein paradox persists. On
the other hand, as E0 decreases from zero to −35 kV/m in the low row of panels for enhanced barriers, both branching
and needling regions expand significantly to higher incident energies of electrons.

The calculated tunneling coefficient T (ε, φk | E0) can be put into Eq. (39) to find tunneling conductivity or resistivity
(its inverse) for coherent tunneling of Dirac electrons through a tilted barrier in graphene in the absence of scatters.
Here, the resistivity strongly depends on the tilting field E0 due to E0 dependence in T (ε, φk | E0). For ballistic Dirac
electrons in the absence of a barrier, their conductivity should be integer multiple of 2e2/h, as indicated by Eq. (39).
In the presence of scattering by impurities or phonons, the occurring resistive force will lead to a tilting-dependent
conductivity which is accompanied by joule heating of electrons 51,52. Here, however, a tilting-dependent conductivity
is induced by a tunneling barrier which only reflects incoming electrons elastically and coherently, leading to a
destructive interference. Such a behavior can be attributed to a strongly-modulated barrier tilting (E0 dependence)
in tunneling coefficient T (ε, φk | E0), as shown in Eq. (39).

In Fig. 6, we present the calculated resistance ratios R/R0 as functions of incident electron energy ε for different
decreasing (left panel) and increasing (right panel) tilted barriers. We find from this figure that the resistance peak
height decreases with increasing positive E0 and the peak position shifts down to lower incident energy ε at the same
time. For increasing negative E0, on the other hand, the peak position shifts upward with ε but the peak height
remains nearly unchanged. Furthermore, the resistance peak is broadened with increasing |E0|, and the broadening
effect becomes much stronger for negative E0 values. Such a resonant feature in ε dependence provides a unique
opportunity for controlling tunneling current of Dirac electrons by choosing different Fermi energies EF or doping
densities n0 in graphene.

As shown in Fig. 7, the transmission coefficient T (ε, φk | E0) at E0 = 5 kV/m (reduced barrier) is suppressed only for
large incident angles |φk| with increasing barrier width WB due to enlarged switching from a semi-classical regime to a
quantum-tunneling regime inside barrier region, as well as due to increased interference effect in reflections from both
barrier edges. Meanwhile, the major peak of T (ε, φk | E0) for |φk| around zero becomes sharper with more and more
suppressed side peaks, leading to enhanced collimation of Dirac-electron tunneling with increasing barrier width.

2. Effect of single barrier-embedded scatter

As a next step, using the same FDA we will further explore the effect from a single barrier-embedded scatter on
the coherent tunneling of Dirac electrons by neglecting first the barrier tilting or simply setting E0 = 0. As displayed
in Fig. 8, we learn from the left panel that the presence of a single scatter in the barrier region can dramatically
enhance the collimation of Dirac-electron tunneling with xs = WB/2, and such effect is weakened as we move the
scatter away from the barrier center. On the other hand, if we vary the scatter strength Vd from positive (attractive)
to negative (repulsive), we find from the right panel that an attractive scatter tends to collimate better the tunneling
of Dirac electrons in comparison with a repulsive scatter. All the features demonstrated in Fig. 8 imply a full control
over enhancement in collimating tunneling of Dirac electrons by using a single barrier-embedded scatter for a fixed
incident energy.

The left panel of Fig. 9 presents a density plot for T (ε, φk | E0, Vd, xs) as functions of both ε and φk for a single scatter
embedded in a square barrier at xs = WB/2, from which we observe a new strong and sharp resonance around ε ≈ V0

by comparing with the upper-left panel of Fig. 5 for E0 = 0 and no scatter. In the right panel of Fig. 9, we further
present a comparison of the tunneling-resistance ratios R/R0 as a function of incident energy ε for three different
positions of a barrier-embedded attractive scatter with Vd = 50 meV at xs = WB/2. In connection with a resistance
peak appearing around ε/V0 ≈ 1 for no scatter, the inclusion of an attractive scatter at xs = WB/2 turns this peak
into a very deep cusp surrounded by two asymmetric shoulders. Such an observation can be attributed to the effect
from a scatter-induced constructive interference around the Dirac point on the coherent tunneling process of Dirac
electrons in the system, as demonstrated by the left panel of this figure. As the scatter is moved away to xs = 3WB/4,
the cusp depth is greatly reduced while symmetrizing two shoulders at the same time. Surprisingly, this deep cusp
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changes back to a peak for xs = WB/4 due to switching to an opposite destructive interference around the Dirac point.
The occurrence of such a deep cusp in tunneling resistance in Fig. 9 reveals the effect from coherent superposition
of multiple reflections from a single mid-barrier-embedded attractive scatter on tunneling of Dirac electrons as the
incident energy approaches the top of a square barrier or the Dirac point within a barrier.

In Fig. 10, we further present a comparison of the tunneling-resistance ratios R/R0 as a function of ε for five
different strengths of a single scatter at xs = WB/2 in order to show the influence of scatter identity on the coherently
superposed multiple reflections from a single scatter at the middle of a barrier. From this figure, we first notice
that the cusp remains independent of values of Vd, i.e., either an attractive or a repulsive scatter. Moreover, two
shoulders around the cusp become weak with increasing |Vd| values. Interestingly, only the attractive scatter with
Vd = 100 meV can symmetrize these two shoulders, but not the repulsive scatter with Vd = −100 meV, in strong
contrast to incoherent scattering by randomly-distributed scatters 51,52. Meanwhile, the depth of a cusp also remains
largely unchanged with Vd since it results from a constructive interference around the Dirac point within a barrier due
to multiple coherent scatterings from a single scatter at xs = WB/2, and thus depends only on phase accumulation or
scatter position. In the presence of a single mid-barrier scatter, the unique tunneling selection by an incident energy
close to the square-barrier top for switching a resistance peak for no scatter to a cusp can be utilized for designing an
energy filter for incident Dirac electrons.

3. Effect of continuously-distributed scatters within a barrier

From Figs. 8−10, we have understood that both tunneling transmission coefficient and tunneling resistance can be
varied by selecting different positions or strengths for a single scatter embedded in a square barrier. To be more
realistic, as a final step, still using the FDA, we would investigate the interplay between continuously-distributed
scatters in a barrier and barrier tilting in electric transport of Dirac electrons within a graphene layer. For this
purpose, however, a summation over all positions of continuously-distributed scatters within a barrier should be
performed for averaging transmission coefficients corresponding to different scatter positions. To facilitate such a
summation, we introduce a Gaussian-type distribution function for all of scatters within a barrier, as presented
in Eq. (41). Consequently, the obtained average T (k, φk | E0, Vd) can be fed into Eq. (39) for calculating incoherent
tunneling resistance in the presence of continuously-distributed scatters within a tilted barrier.

We find from the left panel of Fig. 11 for ε = 80 meV that the dramatic changes in T (ε, φk | E0, Vd) only occur within
the angle region roughly bounded by |φk| = π/6, which are accompanied by enhanced collimation of incoherent tun-
neling through a square barrier containing scatters with strong strengths Vd = ±100 meV. Moreover, this enhancement
of collimated tunneling appears relatively larger for attractive scatters (blue curve) compared to that of repulsive scat-
ters (green curve). In the right panel of Fig. 11, on the other hand, we exhibit the φk dependence in T (ε, φk | E0, Vd)
for different values of E0 in order to uncover the physics for competition between continuously-distributed scatters
within a barrier and tilting field E0. By comparing with the blue curve for E0 = 0 in the left panel of this figure,
as E0 increases from zero in the right panel, the continuously-distributed scatters within a barrier gradually exclude
more and more high-φk contributions to T (ε, φk | E0, Vd) until all side peaks are completely quenched (purple curve)
for a fully collimated tunneling. This incoherent-tunneling result is quite different from that for coherent tunneling in
the left panel of Fig. 8 for a single scatter embedded in a square barrier or no scatters at all. The features in Fig. 11
demonstrate in details interplaying between effects of distributed scatters in a barrier and barrier tilting on incoherent
tunneling of Dirac electrons in graphene.

To acquire a full understanding about the competition between effects of distributed scatters and barrier tilting on
ballistic transport of Dirac electrons, we present in Fig. 12 the dependence of tunneling resistance R/R0 on the incident
energy ε of electrons for different scatter strengths Vd (left) or barrier tilting fields E0 (right). From the left panel of
Fig. 12, we first observe that the cusp as well as two shoulders, which result from a single mid-barrier scatter as seen
in Fig. 10 for a square barrier, disappear and are replaced by a single robust peak for |Vd| ≤ 50 meV. As Vd = 100 meV
for the attractive-scatter distribution, this tunneling-resistance peak shifts to lower energy in comparison with the
weakened upward-shifting peak for the repulsive-scatter distribution at Vd = −100 meV. Here, the effect from a mid-
barrier-scatter induced constructive interference around the Dirac point, as seen in Fig. 10 for a square barrier, has
been fully suppressed due to incoherent-tunneling nature for distributed scatters in a barrier. In the right panel of
Fig. 12, we further examine the role of barrier tilting played in incoherent tunneling transport of Dirac electrons in
the presence of continuously-distributed attractive scatters within a barrier. From this panel, we find the single peak
in the left panel for the square barrier shifts down in energy due to reduction of the effective barrier height with
increasing E0 from zero. Moreover, multiple side peaks appear only on the low-energy shoulder, while their strengths
decrease, as E0 goes up from zero.



13

IV. SUMMARY AND REMARKS

In summary, to gain insight about the tunneling mechanism of Dirac electrons in graphene, we have first employed
a WKB perturbation theory for studying electron transmission through a slanted barrier with a weak tilting field
compared to the inverse barrier width and characteristic electron momenta. Based on the WKB approximation, we
have derived a set of equations, corresponding to different orders of expansion parameter, and obtained analytical
solutions of these equations at the same time. From analysis of these explicit solutions, we have demonstrated how
the tunneling resonances of a square barrier are affected by applying a tilting field. Physically, we have extended a
previously developed WKB theory for electron transmission in the opposite limit for a large tilting field, in which
electron-to-hole switching occurs within the barrier region. Moreover, a finite energy gap in graphene is included
and we have shown that both head-on and skew transmissions will be suppressed exponentially in the presence of an
energy gap and a large transverse momentum.

Going beyond a slanted barrier, we have further developed a full numerical approach based on the finite-difference
approach for accurately calculating tunneling transport of Dirac electrons through an arbitrary barrier potential.
Here, the combination of a barrier tilting field and a local scatter potential can be viewed as an effective barrier
profile realized by a series of gate combinations. By using this finite-difference approach, Dirac-electronic tunneling
and transport properties have been investigated for graphene with an in-plane tilted potential barrier embedded with
distributed scatters. In the presence of either a single or a continuous distribution of scatters within a tilted barrier,
both transmission coefficient and tunneling resistance of Dirac electrons are calculated numerically. Based on these
numerical results, we have presented a full analysis as well as a detailed comparison for the interplay between effects
of distributed scatters in a barrier and barrier tilting on tunneling transport of Dirac electrons. We have found from
the comparison that the barrier-tilting field, also the scatter position, can play a key role in controlling the peak in
tunneling resistance and the peak switching to a cusp by a single mid-barrier scatter as the incident electron energy
approaches the Dirac point of a barrier. Importantly, from our calculations we predict that a continuous distribution
of scatters in a barrier can increase collimating incoherent tunneling under a high barrier-tilting field, and at the same
time, will greatly suppress large-angle skew tunneling. Meanwhile, the continuously-distributed scatters also suppress
the constructive interference around the Dirac point and turn a cusp into a peak in tunneling resistance as a function
of incident energy of electrons.

From the application perspective, our current study implies a tunable filtering of Dirac electrons by a barrier-tilting
field for nearly normal incidence, which could be utilized for designing electronic lenses. The uniqueness of this feature
is that we can specify a range for incident electron energies used for focusing. Moreover, the tunneling resistance
could be reduced and a conductance minimum can be shifted in energy just by controlling titling-field polarity and
strength, barrier height and thickness. Therefore, our model system can be employed to tune the refractive index of
such an energy barrier in ballistic-electron optics. Furthermore, as the electron incident energy approaches the top of
a square barrier, the switching from a peak in tunneling resistance to a cusp appears when a single scatter potential
is introduced at the center of a barrier, which is attributed to an induced constructive interference around the Dirac
point within a barrier for the coherent tunneling of Dirac electrons and can be used as either an energy blocker or an
energy filter simply by adjusting a barrier-potential profile. All these new revealed properties are expected extremely
valuable for the development of novel electronic and optical graphene-based devices.
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Appendix A: Exact Wave Function

In this Appendix, we seek for an exact solution for the electron/hole wave function in the finite-slope region of a
barrier, as seen in Fig. 1, with potential VB(x) = V0 + αx. If two boundaries of the barrier region stay far away from
the electron-to-hole crossing point x = x0, i.e., k(x0) ≈ 0, the wave function could be written as 14

Ψ(B)(x | ky) =

{
c1

[
F(η, ζ)
G(η, ζ)

]
+ c2

[
F?(η, ζ)
G?(η, ζ)

]}
eikyy , (A1)
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where η(x) = (x − x0)
√
a, ζ(ky) = ky/

√
a, the symbol ? means taking complex conjugation, and the two arbitrary

constants c1 and c2 will be fixed by the boundary conditions on each side of the barrier region. Moreover, two
functions F(η, ζ) and G(η, ζ) in Eq. (A1) can be expressed explicitly by a Kummer confluent hypergeometric function
M(a, b | z) as 14

F(η, ζ) = exp

(
− i

2
η2

)
M
(
− i

4
ζ2,

1

2

∣∣∣ iη2

)
, (A2)

G(η, ζ) = −ζη exp
(
− i

2
η2

)
M
(

1− i

4
ζ2,

3

2

∣∣∣ iη2

)
.

The wave functions outside of the barrier region are easily obtained for the incoming and reflected waves, yielding

Ψ(L)(x |k) =
1

2

[
eiφk

±1

]
eik

(0)
x x eikyy +

rk
2

[
−e−iφk

±1

]
e−ik

(0)
x x eikyy , (A3)

where φk = tan−1(ky/k
(0)
x ). Similarly, for the transmitted wave we have

Ψ(R)(x |k′) =
tk′

2

[
eiθk′

±1

]
eikxx eikyy , (A4)

where θk′ = tan−1(ky/kx). The transmission coefficient tk′ and the reflection coefficient rk can be obtained by

matching the wave functions at two boundaries at x = 0 and x = WB , i.e., Ψ(B)(x = 0 | ky) = Ψ(L)(x = 0 |k)

and Ψ(B)(x = WB | ky) = Ψ(R)(x = WB |k′). Therefore, we acquire four equations for these two-component wave
functions, which can be used to determine four unknowns c1, c2, rk and tk′ , and the calculated tk′ can be further
employed for evaluating the transmission Tk′ = |tk′ |2.

Here, we would like to emphasize that although the obtained solution in Eq. (A1) is exact, it holds true only for a
very thick barrier satisfying 0 � x0 � WB . Additionally, using this approach we can not address the limiting case
with a small slope a→ 0.

For the boundaries of a very thick barrier with a substantial slope α, we find vary large absolute value of η(x) =
(x− x0)

√
a, and the wave function reduces to

lim
η→∞

Ψ(B)(x, | ky) =

[
0
1

]
exp

[
− i

2
η2(x)

]
eikyy , (A5)

lim
η→−∞

Ψ(B)(x, | ky) = eikyy
{
exp

[
− π

2a
k2
y

] [
0
1

]
exp

[
− i

2
η2(x)

]
+ const

[
0
1

]
exp

[
i

2
η2(x)

]}
,

which leads to the transmission Tk′ = exp
(
−πk2

y/a
)
. This result is the same as that obtained from a semi-classical

theory.
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FIG. 1: (Color online) Schematics for the tilted barrier VB(x) = V0 + αx in the region of 0 ≤ x ≤ WB , as shown in the left
panel, and two classical turning points at x = x0 ± ξc in the right panel.
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FIG. 2: (Color online) Transmission amplitude T (ε, φk) in graphene for fixed V0/EF = 2 and various barrier tilting parameters
specified by different a values. Panels (a) and (b) display T (ε, φk) from Eq. (10) for gapped graphene as functions of ∆G and
ak2F , respectively, with fixed ky = 0.5 kF . Panels (c)-(e) present density plots for T (ε, φk) from Eqs. (22) and (24) for gapless
graphene ∆G = 0 as functions of ε/EF and φk in (c), (e) and functions of WBkF and φk in (d), (f) with ε/EF = 1 for a = 0
(middle row) and for a = 0.1 k−2

F (bottom row). Here, V0/EF = 2, EF = ~vF kF = 6.28 meV is taken for the energy unit and
kF is the unit for wave number of electrons.
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FIG. 3: (Color online) Comparison of calculated transmission coefficients T (ε, φk | E0 = 0) with Vd = 0 as a function of incident
angle φk based on either an analytical solution (black-solid curves) or FDA (red-dotted curves) for four different barrier thickness
WB = 1 nm (upper-left), 5 nm (upper-right), 50 nm (lower-left) and 110 nm (lower-right), where V0 = 285 meV, E0 = 0, and
ε = 80 meV are chosen for calculations.

FIG. 4: (Color online) Polar plots for transmission coefficient T (ε, φk | E0) as a function of incident angle φk for different tilting
fields E0, where both results for a reduced barrier E0 > 0 (left) and an enhanced barrier E0 < 0 (right) are shown in this figure
for a full comparison. Here, WB = 110 nm, V0 = 285 meV, ε = 80 meV (left) and 400 meV (right) are chosen.
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FIG. 5: (color online) Density plots of T (ε, φk | E0) as functions of both ε and φk, where WB = 110 nm, V0 = 285 meV and
different values of E0 are assumed in various panels.

FIG. 6: (Color online) The ε dependence of the resistance ratio R/R0 (inverse conductance) for coherent tunneling of Dirac
electrons in graphene, calculated from Eq. (39), through a tilted barrier with different values for tilting fields E0. Here, R0 is
the resistance for normal incidence with φk = 0 and results for both reduced (left) and enhanced (right) barriers are presented
for comparisons. Moreover, we set WB = 110 nm and V0 = 285 meV for calculations.
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FIG. 7: (Color online) Transmission coefficient T (ε, φk | E0) at E0 = 5 kV/m as a function of incident angle φk for various barrier
widths WB = 110 (black), 200 (orange), 300 (purple), 400 (green) and 500 nm (red), where V0 = 285 meV and ε = 80 meV.
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FIG. 8: (Color online) Polar plots for transmission coefficient T (ε, φk | E0, Vd, xs) with a single scatter as a function of incident
angle φk for different scattering positions xs (left) and strengths Vd (right), where WB = 110 nm, V0 = 285 meV, ε = 80 meV,
and E0 = 0 are chosen for calculations. Moreover, we also set Vd = 50 meV in the left panel, while xs = WB/2 in the right
panel.
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FIG. 9: (Color online) Density plots of T (ε, φk | E0, Vd, xs) as functions of both ε and φk (left), as well as the ε dependence of
the resistance ratio R/R0 (right), for coherent tunneling of Dirac electrons in graphene through a square barrier embedded with
a single scatter at different positions xs. Here, we set WB = 110 nm, V0 = 285 meV, E0 = 0, and Vd = 50 meV for calculations.
Moreover, we also set xs = WB/2 in the left panel.

FIG. 10: (Color online) The ε dependence of the resistance ratio R/R0 for coherent tunneling of Dirac electrons in graphene
through a square barrier embedded with a single scatter having different strengths Vd. Here, we setWB = 110 nm, V0 = 285 meV,
E0 = 0, and xs = WB/2 for calculations.
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FIG. 11: (Color online) Polar plots for average transmission coefficient T (ε, φk | E0, Vd) having continuously-distributed scatters
within a barrier as a function of incident angle φk, where WB = 110 nm, V0 = 285 meV and ε = 80 meV are chosen for
calculations. Moreover, in the left panel we assume E0 = 0 but set Vd = 100, 50, 0, −50 and −100 meV, as indicated, for
different scatter strengths. In the right panel, however, we have Vd = 100 meV while set E0 = 5, 10, 15 and 20 kV/m, as
indicated, for various reduced barriers.

FIG. 12: (Color online) The ε dependence of the resistance ratio R/R0 for incoherent tunneling of Dirac electrons in graphene
through continuously-distributed scatters within a barrier, where WB = 110 nm and V0 = 285 meV are chosen for calculations.
In the left panel, we have E0 = 0 while Vd = 100, 50, 0, −50 and −100 meV, as indicated, for different scatter strengths. In
the right panel, however, we set Vd = 100 meV but have E0 = 0, 5, 10, 15, 20, and 25 kV/m, as indicated, for various reduced
barriers.


