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Topological states of matter are, generally, quantum liquids of conserved topological defects. We
establish this by constructing and analyzing topological field theories which introduce gauge fields to
describe the dynamics of singularities in the original field configurations. Homotopy groups are uti-
lized to identify topologically protected singularities, and the conservation of their protected number
is captured by a topological action term that unambiguously obtains from the given set of symme-
tries. Stable phases of these theories include quantum liquids with emergent massless Abelian and
non-Abelian gauge fields, as well as topological orders with long-range quantum entanglement, frac-
tional excitations, boundary modes and unconventional responses to external perturbations. This
paper focuses on the derivation of topological field theories and basic phenomenological character-
ization of topological orders associated with homotopy groups πn(Sn), n ≥ 1. These homotopies
govern monopole and hedgehog topological defects in d = n + 1 dimensions, and enable the gen-
eralization of both weakly-interacting and fractional quantum Hall liquids of vortices to d > 2.
Hedgehogs have not been in the spotlight so far, but they are particularly important defects of mag-
netic moments because they can be stimulated in realistic systems with spin-orbit coupling, such
as chiral magnets and d = 3 topological materials. We predict novel topological orders in systems
with U(1)×Spin(d) symmetry in which fractional electric charge attaches to hedgehogs. Monopoles,
the analogous defects of charge or generic U(1) currents, may bind to hedgehogs via Zeeman effect,
or effectively emerge in purely magnetic systems. The latter can lead to spin liquids with different
topological orders than that of the RVB spin liquid. Charge fractionalization of quarks in atomic
nuclei is also seen as possibly arising from the charge-hedgehog attachment.

CONTENTS

I. Introduction 2
A. The summary of results and paper layout 3

II. Example: Quantum Hall liquids 5

III. The hierarchy of singularity gauge fields 6
A. Monopoles 7
B. Hedgehogs 8

IV. Effective field theory and dynamics 10
A. Abelian charge dynamics 10
B. Non-Abelian spin dynamics 12
C. Essential phase diagram 13

V. Topological Lagrangian term 16
A. Topological term preliminaries 16
B. Topological term from spinor fields 17
C. Designing topological terms to meet

symmetry requirements 20

VI. Topological order 22
A. Fractional quasiparticles 22
B. Topological ground state degeneracy on

non-simply connected manifolds 24
C. Quantum entanglement and braiding 27
D. Microscopic particle operators and

hierarchical states 30
E. Transverse response and boundary states 32

F. Electromagnetic response in three
dimensions 33

VII. Conclusions, possible physical realizations and
future directions 35
A. Charge fractionalization in quantum

chromodynamics (QCD) 37

VIII. Acknowledgements 38

A. Hedgehog gauge field 39

B. Non-Abelian Maxwell terms in the effective
Lagrangian 39

C. Singular gauge transformations and dynamical
generation of higher ranks in the non-Abelian
effective theory 42

D. Duality mapping of the Abelian compact gauge
theory at rank n 43

a. Phase diagram 44
b. Without gauge fields in the original

theory 44
c. Without matter fields in the original

theory 45

E. Canonical formalism of the multi-rank Abelian
gauge theory: energy-momentum tensor and
angular momentum 45



2

F. Braiding of multi-dimensional excitations 46

G. Fractional braiding statistics 48

H. The electromagnetic angular momentum of
charges and monopoles 49

I. Dyon braiding 50

References 52

I. INTRODUCTION

Our understanding of quantum matter rests upon uni-
versal behaviors of particles. We can sharply distinguish
the states of matter by symmetry, or by their qualitative
response to local perturbations. A more subtle distinc-
tion is based on non-local state properties, mathemat-
ically expressed through topological invariants – state
functions that are not affected by any smooth local trans-
formation. The list of known and envisioned topologi-
cal systems has been growing steadily since the earliest
proposals for spin liquids1 and the discovery of quan-
tum Hall states2,3. These original two-dimensional sys-
tems are in most cases shaped by strong interactions
between particles, and possess topological order4 – the
ground state spontaneously selects the value of a topo-
logical invariant (through a long-range quantum entan-
glement of many particles5,6) instead of an order param-
eter that breaks a symmetry. More recent discoveries of
topological materials based on spin-orbit coupling7–9, in-
cluding three-dimensional topological insulators10–12 and
(semi)metals13–17, have inspired explorations of electron
interaction effects18,19 that could potentially produce
topological order20–30. Promising candidates for three-
dimensional interacting topological systems include some
Kondo insulators31,32, topological magnetic semimetals
and quantum spin-ice materials33.

The purpose of this paper is to derive and analyze
topological field theories that describe both conventional
and topologically ordered phases of spinor fields. Our ul-
timate goal is to predict and characterize novel topologi-
cal orders which may be possible to realize in correlated
three dimensional materials. The spinor field ψ repre-
sents vector n̂(r) local degrees of freedom such as spins
or staggered moments, and carries a U(1) phase associ-
ated with charge currents or an emergent symmetry. The
vector field n̂ supports hedgehogs as topological defects
with a point singularity, shown in Fig.1. The U(1) phase
supports vortex singularities, which are topologically pro-
tected only in two dimensions. Vortex loops in three di-
mensions are not topologically protected since they can
continuously shrink to a point and vanish. Nevertheless,
the diffusion of vortex loops is captured by an emergent
U(1) gauge field Aµ, which can support its own quantized
point singularities – topologically protected monopoles.
Both monopoles and hedgehogs can be generalized to

higher dimensions d and enumerated by integer topolog-
ical invariants of the homotopy group πd−1(Sd−1). They
will be the main protagonists in this paper because topo-
logically ordered phases will be seen as quantum disor-
dered states in which the number of delocalized topolog-
ical defects is conserved by the mechanism of topological
protection.

To make progress, we first formulate a universal ap-
proach to topological orders. We apply singular gauge
transformations to derive emergent gauge fields from the
topological singularities of the physical fields. The flux
of such a gauge field is nothing but the invariant of
the homotopy group that classifies the singularities34–36.
Therefore, a localized singularity becomes the source of
a flux quantum in a symmetry-broken phase. Quan-
tum fluctuations that restore symmetries can diffuse this
flux and give the gauge field its own dynamics. If the
flux remains conserved despite the fluctuations, one ob-
tains topological orders whose hierarchy is uniquely de-
termined by the homotopy and symmetry. The emer-
gent gauge field is indistinguishable from a putative
fundamental gauge field of the same kind, raising the
possibility that a singularity extraction is the funda-
mental mechanism for the appearance of gauge fields
in nature (this echoes the elaborate demonstrations in
models37,38). Guided by the homotopy classification of
topological defects34, this approach naturally generalizes
electron fractionalization to any applicable degrees of
freedom in arbitrary dimensions. It transparently identi-
fies a real-space “magnetic” field behind any topological
state of matter (see Ref.39–41 for examples with spin-orbit
coupling), and stands as an alternative to the popular
slave boson method (which introduces by hand the par-
ton fields of a fractionalized electron and a gauge field to
suppress the enabled unphysical fluctuations).

We further extend the previous studies of topological
orders by applying the above approach to spinors in ar-
bitrary d dimensions. We predict the existence of new
topological orders in systems with U(1)×SU(2) or gen-
eral U(1)×Spin(d) symmetry, where a fractional amount
of U(1) charge becomes attached to a hedgehog defect of
an SU(2) or Spin(d) order parameter. We reveal various
interesting properties of these topological orders related
to quantum entanglement, and their notable survival at
finite temperatures (in contrast to fractional quantum
Hall states). Earlier studies have focused on the at-
tachment of charge to U(1) monopoles, giving rise to
dyons in high energy physics42–45 and magnetoelectric
effect in condensed matter physics20–30,46; we reproduce
some of their results here for completeness. However,
we stress that hedgehogs are more physically accessible
than monopoles since the spin-orbit coupling in topologi-
cal materials naturally tends to stimulate their existence.
Monopoles can be nucleated and bound to hedgehogs via
the same mechanism which binds vortices to skyrmions
in some chiral magnets and yields a “topological” Hall
effect47,48. Hedgehogs and skyrmions have been found
in various chiral magnets49,50, perhaps even in a chiral



3

(a) (b)

(c) (d)

FIG. 1. Examples of singular vector field configurations: (a)
vortex, (b) antivortex, (c) hedgehog, (d) antihedgehog. Only
the point defects like (c) and (d) are topologically protected
in d = 3 dimensions.

spin liquid state51. Hence, the topological orders based
on hedgehogs could exist at least in principle in the sys-
tems like chiral magnets and general three-dimensional
topological materials. Hedgehogs have been considered
in high-energy physics mainly in the context of Higgs
fields45.

A significant portion of our analysis is devoted to the
basic characterization of the phases captured by the field
theory. Apart from the conventional long-range ordered
and gapped disordered phases, we identify a hierarchy
of quantum disordered phases with Abelian and non-
Abelian massless gauge bosons, as well as topologically
ordered incompressible quantum liquids. The former in-
cludes the phases familiar from the literature on U(1)
spin liquids52,53, and their generalizations to non-Abelian
structures and higher dimensions. The topological orders
we find form a large hierarchy of fractionalized states in
higher dimensions, just like the fractional quantum Hall
states in two dimensions. The incompressible quantum
liquids of monopoles are more constrained than those
of hedgehogs due to the fact that charge attached to a
monopole nucleates a quantized angular momentum in
the surrounding electromagnetic field54. Nevertheless, we
are not restricted by time-reversal symmetry and hence
the monopole liquids we discuss are less constrained than
those considered in the recent literature30. If the U(1)
symmetry emerges at low energies in a purely magnetic
system, the obtained fractionalized states are chiral spin
liquids with different topological orders than the more
familiar resonant-valence-bond (RVB) spin liquids.

Topological quantum entanglement is always evident
in the ground state degeneracy, but need not show up in
braiding operations. We find that the hedgehog quan-
tum liquids scramble their topological order behind triv-
ial particle-loop braiding (unlike the monopole ones),
although more complicated linked-loop braiding27,55–58

should be explored further. We point out that braid-
ing operations between particles can also be interest-
ing. They are normally cast away because the only
topologically protected aspect of particle braiding in
higher dimensions is their bosonic or fermionic statistics.
However, the fractional quasiparticles with internal de-
grees of freedom (spin) necessarily live in a long-range
entangled state and hence admit non-trivial “dynami-
cally” protected braiding operations. Dynamical pro-
tection against local noise stems from the finite energy
cost of disturbances in an incompressible quantum liquid.
While the topologically protected particle-loop braiding
is Abelian in the theories we consider, a dynamically
protected braiding statistics specified by additional data
about the braiding operation can still be non-Abelian.

On the purely theoretical front, the topological field
theory we construct is a variant of the “background field”
(BF) theory20,29,30,46 with antisymmetric tensor gauge
fields. Here we emphasize a new ingredient of such theo-
ries, the “linking” Lagrangian terms. These terms arise
in the recursive extraction of the gauge fields from topo-
logical singularities, and play a crucial role in eliminating
unphysical gauge symmetries and shaping the phase di-
agram. They also enable a certain perspective on some
fundamental questions in field theory that we will stum-
ble upon: (i) why all fundamental fields carry the same
charge, (ii) can the charge coupled to a non-Abelian
gauge field be deconfined, and (iii) why the quarks have
fractional charge.

We will analyze the topological orders of hedgehogs
and monopoles in an arbitrary number d ≥ 2 of spatial
dimensions for two reasons. First, this generalization will
provide a valuable insight and confidence about many un-
usual results that we obtain (various phenomena occur
in all dimensions in qualitatively the same way). Second,
we wish to address the important open problem of topo-
logical order classification59–63. Our analysis identifies
homotopy as a universal parameter that classifies hierar-
chies of topological orders, and an obvious first case to
study is the well-known infinite sequence of non-trivial
homotopy groups πn(Sn) which pertain to the continu-
ous maps from an n-sphere to an n-sphere.

A. The summary of results and paper layout

We begin the technical discussion in Section II by illus-
trating the main ideas with the familiar example of two-
dimensional quantum Hall liquids. Then, we generalize
to d dimensions in Section III and show how antisymmet-
ric tensor gauge fields capture the singularities of charge
and spin currents. Point defects are represented by rank
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d − 1 gauge fields in d dimensions, line defects by rank
d − 2, etc, down to rank 1 gauge fields that minimally
couple to charge or spin currents. Monopoles and hedge-
hogs define two separate rank-hierarchies of gauge fields,
Abelian and non-Abelian respectively. The conventional
part of the effective field theory is formulated in Sec-
tion IV. After taking care to not allow unphysical gauge
symmetries, we identify the hierarchy of phases where the
switch from Coulomb-like to Higgs-like dynamics occurs
at some rank 1 ≤ n < d. The dynamics at the highest
rank also admits topologically ordered phases that are
protected according to the πd−1(Sd−1) homotopy group.
The Coulomb dynamics at rank k features deconfined
“topological” defects of the rank k − 1 gauge field. We
find that the asymptotically free “charge” coupled to a
non-Abelian or compact rank k − 1 gauge field also be-
comes deconfined in the rank k Coulomb state. This
promotion of asymptotic freedom to true freedom ulti-
mately enables the fractionalization of charge and spin, if
the homotopy provides an opportunity. In Section V, we
construct the topological Lagrangian density terms con-
sistent with symmetries in order to capture the topologi-
cal protection in incompressible quantum liquids. Then,
Section VI presents the basic analysis of the stable topo-
logical orders in the obtained theories.

We show in Section VI A that both monopoles and
hedgehogs can independently shape topological orders in
incompressible quantum liquids. A necessary stability
condition is the rational quantization of monopole and
hedgehog “filling factors”, in direct analogy to quantum
Hall liquids. These filling factors play a role in the charac-
ter of fractional quasiparticle excitations (Section VI A),
the topological ground state degeneracy on non-simply
connected manifolds (Section VI B), and various aspects
of quantum entanglement (Section VI C). The topolog-
ical ground state degeneracy is the defining property of
topological order by the virtue of being the only resilient
property against all possible perturbations that leave the
energy gap open. This degeneracy is found to have a
certain classical character in d ≥ 3 dimensions (Section
VI B): it can be infinite in some cases (with a topologi-
cal sector defined for each value of a classical topological
invariant), and it protects the topological order as a ther-
modynamic phase at finite temperatures in d ≥ 3.

Further restrictions of topological orders are obtained
in Section VI D from the requirement that electrons
or spin waves be the microscopic degrees of freedom.
This reduces the simple hedgehog topological orders to
a Laughlin-like sequence of fractional states, while more
complicated quantum liquids can arise only hierarchically
as in the case of quantum Hall states. Interestingly, the
topological orders of hedgehogs scramble their identity
in ordinary braiding operations. The fractionalization
by monopoles in d = 3 is more complicated due to the
emergent spin of charge-monopole pairs, but represents
a more natural generalization of quantum Hall states.
We discuss both topologically and dynamically protected
manifestations of quantum entanglement in braiding op-

erations. We point out that dynamically protected non-
Abelian braiding may be possible owing to the existence
of entangled internal degrees of freedom (spin), but leave
systematic calculations for future studies.

Topological order of spins without charge degrees of
freedom can arise in two forms. First, some mechanism
may reduce the full spin symmetry down to U(1). This
is a path to both U(1) and gapped spin liquids, here
seen to arise from the fluctuations of local spins that
remain well-defined at some coarse-grained length-scales
instead of being bound into short-range singlets. The en-
suing gapped spin liquids, which attach emergent U(1)
charge to monopoles, are different from the resonant-
valence-bond (RVB) spin liquids (Section VI D). The
second form obtains in slave-boson theories with spin-
orbit coupling64. A local constraint that controls the
fermion density in a Mott insulator introduces an emer-
gent gauge field, so a deconfined charge associated with
it can bind to spinon hedgehogs through the spin-orbit
coupling. We construct the ensuing topological orders in
Section VI D, assuming naively that the emergent gauge
symmetry is U(1).

We end the analysis with a basic argument supporting
the existence of protected soft boundary modes (Section
VI E), and a brief consideration of the interesting topo-
logical response – especially fractional magnetoelectric
and Kerr effects that can be expected in the cases of
fractionalization by monopoles (Section VI F). The con-
cluding Section VII explores the prospects for realizing
monopole and hedgehog topological orders in real sys-
tems. We explain why chiral magnets, correlated topo-
logical semimetals or insulators, and quantum spin-ice
materials are promising candidate materials, which in
some cases might be able to stabilize new topological
orders. We also speculate that a glimpse of a topological
order discussed here might have been already found in
nature – inside atomic nuclei.

Various properties of multi-dimensional theories with
tensor gauge fields are presented in appendices, includ-
ing the forms of non-Abelian Maxwell couplings, duality
mappings, canonical formalism and braiding operations.

We use the following conventions in this paper. All
discussions employ “natural” ~ = c = 1 units, except in
the parts of Section VI F where we switch to Gaussian
units. Space-time directions are labeled by Greek indices
µ, ν, λ . . . , and spatial directions are labeled by Latin in-
dices i, j, k . . . . Repeated indices are summed over, and
µ = 0 is temporal direction. We mostly work in imag-
inary time and do not distinguish between upper and
lower indices. The use of real time is announced when
needed, and further emphasized by separating lower and
upper indices. Indices pertaining to internal degrees of
freedom are labeled with a, b, c.
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II. EXAMPLE: QUANTUM HALL LIQUIDS

Consider a superfluid at zero temperature in d = 2
dimensions. The order parameter characterizing the
ground state is a complex scalar function ψ = |ψ|eiθ of
coordinates x ∈ R2; its phase θ is well-defined because
the ground state breaks the U(1) symmetry. If a single
quantized vortex is placed at the origin, then ψ becomes
singular at the origin and θ winds by 2π on any loop
that encloses the singularity. Let us define a “singularity
gauge field”:

Aj = −ie−iθ∂jeiθ , (1)

or alternatively:

Aj = ∂jθ (2)

with understanding that the gradient ∂j is smooth, i.e.
blind to 2π discontinuities of θ(x) ∈ [0, 2π). The 2π phase
winding is reflected in the following contour integral on
any spatial loop C that encloses the origin:∮

C

dxjAj = 2π (3)

Then, we can use Stokes’ theorem to reveal that Aj car-
ries a singular quantized flux:

εµνλ∂µAλ = 2πδµ0 δ(x) . (4)

Mathematically, Aj can be extracted from ψ by a singular
gauge transformation which keeps ∂jθ +Aj invariant. If
the particles have physical charge e, then Aj must be
combined with the fundamental electromagnetic gauge
field Aem

j in the gauge-invariant form ∂j θ +Aj − eAem
j .

We can describe many vortices using a “singularity
gauge field” Aj . This is redundant as long as vortices
are not moving, since the superfluid state is accurately
described by the order parameter ψ and its phase θ. But,
what happens if quantum fluctuations destroy the super-
fluid long range order by liberating and delocalizing the
vortices? The ensuing state with restored U(1) symme-
try can no longer be described by a finite complex or-
der parameter ψ because its phase θ is fluctuating too
much to be well-defined. Interestingly, the gauge field
Aj can continue to provide a useful description of the
state. The gauge flux that was originally singular and
associated with quantized vortices can now diffuse and
continuously spread in space, producing a smoothly vary-
ing “magnetic” field B:

εµνλ∂νAλ → δµ0B(x) . (5)

Suppose we find B = 0. The most typical disordered
state with B = 0 is an ordinary Mott insulator. Its
proper description requires a lattice, and then a duality
mapping65,66 portrays it as a “vortex condensate”. The
condensation of vortices implies that the number of vor-
tices is not conserved (in any condensate, a well-defined

phase will render its canonically conjugate observable,
the particle number, undetermined due to Heisenberg un-
certainty). This phenomenon can be very easily under-
stood on a lattice even without a detailed duality deriva-
tion. The only way to probe the instantaneous presence
of a vortex in some region is to analyze the winding of
the order parameter’s phase θ on a spatial loop that en-
closes that region. When fluctuations destroy the original
superfluid by generating many vortices and antivortices,
one is forced to use only very small probing loops whose
size does not exceed the average separation l between
vortices and antivortices. In fact, l must be of the or-
der of the lattice constant because no length scale other
than the ultra-violet cutoff is available to control the den-
sity of vortices and antivortices. Going from one site to
another around such a small loop, θ changes discontin-
uously and there is no way to distinguish configurations
with 0,±2π,±4π, . . . , etc. phase winding. Vorticity is
quantized in units of 2π, and hence we cannot consider
it conserved in a Mott insulator.

Another quantum disordered state is possible in two
dimensions: a quantum Hall liquid. It normally takes
applying an external magnetic field to stabilize it, so it
should be naturally characterized by B 6= 0 in (5). Most
quantum Hall liquids are fractional and possesses topo-
logical order, which means that some defining property
of their ground state cannot be disturbed by any smooth
and local rearrangement of its degrees of freedom. Go-
ing back to vortices in a superfluid, we can easily iden-
tify a candidate for one such property, the total vortex
charge (vorticity). A single uncompensated vortex in a
two-dimensional superfluid costs energy E ∝ ln(L) that
scales as the logarithm of the system size L. Introducing
an antivortex at distance r from the vortex will reduce
this energy cost down to a finite value E ∝ ln(r). The
infra-red divergent energy barrier to having uncompen-
sated vorticity allows only vortex-antivortex pairs to be
created or destroyed, and acts as a powerful agent that
conserves the total vortex charge in the system. This con-
clusion is based on the continuum-limit analysis, which
assumes that the order parameter phase θ is coherent on
finite and sufficiently large length-scales ξ in comparison
to the lattice constant a, and hence avoids the described
Mott insulator scenario for flux non-conservation. In ad-
dition to pure energy reasons, there is also an entropy
component to the conservation of vortex charge: nucleat-
ing a single vortex requires adjusting the local degrees of
freedom in a macroscopically large portion of the system
that extends at least in proportion to the system’s linear
size L. For example, one can smoothly deform a vortex
to completely consume its phase winding into a 2π phase
discontinuity across a semi-infinite string that terminates
at the singularity. However, the string itself cannot be
removed by any smooth transformation. This constitutes
a topological protection of the vortex charge. Now, we
can imagine a state in which vortices and antivortices
move and destroy long-range superfluid coherence, but
their total number remains conserved and topologically
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protected. Vortex world-lines are closed loops in 2+1 di-
mensional space-time. This state is clearly not a plain
Mott insulator, and it can be sharply distinguished from
a Mott insulator in the thermodynamic limit.

Let us construct an effective action for the quantum
liquid with conserved vortex charge in the L � ξ � a
limit. Note that ξ ∼ L is a superfluid, and ξ ∼ a is a
Mott insulator. Formally, the effective action obtains by
coarse-graining the microscopic action down to the phase
coherence length-scale ξ, which involves integrating out
all high-energy modes with wavevectors k > ξ−1 in the
path integral. We argued that the gauge field (2) is a
useful quantity to describe such a quantum liquid, and so
the dynamics may be captured by a certain Maxwell term
in the action. However, we should be more concerned
about conserving flux. The relevant dynamics for flux
conservation is defined at the lattice scale a� ξ which is
not accessible in the effective theory. Consequently, the
effective Lagrangian density must acquire a topological
term Lt that explicitly implements flux conservation. We
cannot microscopically derive Lt, but we can construct
it by following very stringent fundamental requirements:

1. Lt may not introduce new degrees of freedom;

2. Lt cannot have any physical effect in conventional
states;

3. Lt must not change any symmetries.

Using an independent Lagrange multiplier in the path in-
tegral to enforce flux conservation is not the best option
because it could violate the first requirement (the La-
grange multiplier would become a dynamical field after
an approximate treatment). Instead, we will show that

Lt ∼ i JµJµ (6)

satisfies all requirements in imaginary time, where Jµ and
Jµ are the physical particle and vortex currents respec-
tively:

Jµ ∝ ∂µθ +Aµ , Jµ = εµνλ∂νAλ . (7)

If the particles have charge e, then one should also in-
clude the fundamental electromagnetic gauge field Aem

µ

through the replacement Aµ → Aµ − eAem
µ in all formu-

las (required by gauge invariance). We have implicitly
carried out a singular gauge transformation (2) to trans-
fer vortex singularities from the phase θ to the gauge
field Aµ, while keeping the gauge-invariant current Jµ
unaltered. Vortex configurations are well-defined below
the coherence length-scale ξ and a related time-scale, so
the phase θ becomes smooth across distances ξ after the
singular gauge transformation. However, rapid vortex
motion causes abundant θ fluctuations at length-scales
larger than ξ, which are actually featured in the effective
field theory. These fluctuations promote θ into a natural
Lagrange multiplier that implements flux conservation
after an integration by parts in (6):

Lt ∼ i (∂µθ +Aµ)Jµ → −i θ ∂µJµ + iεµνλAµ∂νAλ . (8)

Integrating out θ suppresses the gradient ∂jJj of the
“electromagnetic flux”. A non-zero gradient corresponds
to “monopoles”, i.e. events in which the gauge flux
B = J0 is not conserved. The remaining part of Lt is the
familiar Chern-Simons coupling known to describe frac-
tional quantum Hall liquids59 and quantum Hall effect
in general through the prescribed inclusion of the phys-
ical gauge field Aem

µ . The effective Lagrangian density
for the dynamics of quantum Hall liquids also contains a
Maxwell term:

Leff =
1

2e2
(εµνλ∂νAλ)2 + Lt . (9)

The formula (6) shows the essential structure of all
topological terms we will construct in this paper. The
numerical coefficient to Lt is not yet of concern and needs
to be separately determined. The symmetric and simple
form of Lt guaranties that no symmetries are changed.
Specifically, charge conservation holds just as well as
flux conservation, and the explicitly broken time-reversal
symmetry is anyway violated by the external magnetic
field. Later in this paper we will elaborate the topologi-
cal term construction and derive it in a more robust form
which also manifestly satisfies the second requirement.

III. THE HIERARCHY OF SINGULARITY
GAUGE FIELDS

Here we generalize the vortex formalism of quantum
Hall liquids to topological defects in d spatial dimen-
sions (x ∈ Rd). We are interested in degrees of free-
dom given by vector fields n̂(x) of fixed magnitude. A
d-dimensional vector n̂ can label spin coherent states of
a spinor field ψ in the Spin(d) representation and natu-
rally describe magnetic moments. A 2-dimensional vec-
tor n̂ = x̂ cos θ + ŷ sin θ is equivalent to the overall U(1)
phase θ of the same complex spinor ψ and associated
with charge currents.

Homotopy groups enumerate the topologically inequiv-
alent classes (or sectors) of field configurations, and thus
classify topological defects. A well-known sequence of
homotopy groups πn(Sn) = Z, n = 1, 2, 3, . . . comes
with integer-valued topological invariants, while the ho-
motopy groups πk(Sn) = {0} for k < n are trivial35. A
d-dimensional vector field of fixed norm n̂ ∈ Sd−1 can
have only point-like topologically protected singularities
in d-dimensional space, because πk(Sd−1) = {0} when
k < d − 1. The protected singularity is a “hedgehog”
topological defect characterized by an integer winding
number N ∈ πd−1(Sd−1). In d = 2 dimensions, a hedge-
hog is equivalent to a vortex – the topologically protected
singularity of a complex scalar field that carries charge
currents. Interestingly, there is a generic mechanism to
extend the singularities of n dimensional vector fields to
higher dimensions d > n. We will analyze here only
one instance of this dimensional extension, which starts
from U(1) vortices and leads to point-like monopoles in
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d dimensions characterized by the πd−1(Sd−1) homotopy
group.

If a field f(x) belongs to a topological space X and
lives in d dimensions, then the total “topological charge”
N ∈ πd−1(X) of its point defects inside a sphere Sd−1 is
a topological invariant of the map f : X → Sd−1. We
can generally express this invariant as a gauge field flux
through Sd−1. In the case of πd−1(Sd−1),

N =
1

q

∮
Sd−1

A =
1

q

∮
Sd−1

(
d−1∧
i=1

dxji

)
Aj1···jd−1

≡ 1

q

∮
Sd−1

dd−1x εj1···jd−1
Aj1···jd−1

, (10)

where q is the topological charge quantum. The first no-
tation is the integral of a d − 1 form A on the oriented
manifold Sd−1 surrounding the singularity. The quan-
tity Aj1···jd−1

is a rank d− 1 antisymmetric tensor which
represents the “singularity gauge field”. Throughout this
paper, we will adopt the second notation based on a con-
ventional integral in flat space-time, where the antisym-
metrization and local projection of indices to the oriented
integration manifold is carried out by the antisymmetric
tensor εj1···jd−1

. Using Stokes-Cartan theorem, we can
convert (10) into an integral over the volume bounded
by Sd−1:

N =
1

q

∫
dA ≡ 1

q

∫
ddx εij1···jd−1

∂iAj1···jd−1
. (11)

The gauge flux

J0(x) = εij1···jd−1
∂iAj1···jd−1

= q
∑
i

Niδ(x− xi) (12)

has only quantized point singularities in any classical field
configuration. The goal in the remainder of this section
is to precisely define the singularity gauge field in the
context of charge and spin dynamics.

A. Monopoles

For our purposes, monopoles are point topological de-
fects arising from charge currents. The antisymmetric
tensor gauge field of rank n = d−1 is amenable to smooth
gauge transformations

Aj1···jn → Aj1···jn +
1

n

n∑
i=1

(−1)i−1∂jiAj1···ji−1ji+1···jn

(13)
that preserve the flux (12). The quantity that specifies
the gauge transformation in the sum on the right-hand
side is an antisymmetric tensor of rank n− 1. Using this
relationship, we can recursively introduce antisymmetric
tensors at all ranks, from 1 to d− 1, and regard them as

gauge fields. At rank n = 1, we find the familiar U(1)
gauge field that transforms as:

Aj → Aj + ∂jθ . (14)

A singular gauge transformation (1) can transfer quan-
tized vorticity from θ to Aj . In a coherent superfluid
state, the U(1) phase θ of the order parameter is well-
defined and we do not need any gauge field to specify the
state. But, if fluctuations destroy the long-range order,
the phase θ becomes ill-defined and we may be able to
describe a non-trivial state of diffused vortices only us-
ing a well-defined gauge field Aj . Such a state has its
own degree of coherence if the gauge flux of Aj is smooth
and static. However, Aj(x) can develop its own singu-
larities. These would be “magnetic” monopoles in d = 3
dimensions, but appear multi-dimensional if d > 3. It is
natural to describe them by a rank 2 gauge field, which
transforms as:

Aij → Aij +
1

2
(∂iAj − ∂jAi) (15)

according to the rule (13). Here we recognize the usual
electromagnetic field tensor Fij = ∂iAj − ∂jAi that can
easily describe an isolated monopole in d = 3 with mag-
netic field Bk given by:

Fij = εijkBk , ∂kBk(x) = 2πδ(x− x0) . (16)

We can transfer the singularities of Aj into Aij through a
singular version of the rank 2 gauge transformation (15).
This formally requires the appearance of Aj inside ex-
ponential functions, analogous to the placement of θ in
(1). A compact lattice gauge theory discussed in Section
IV C satisfies this requirement, but the continuum limit
used here will suffice for most of our purposes. Next, in
d > 3 dimensions we can imagine a state in which these
rank 2 singularities proliferate and move, rendering Aj
ill-defined. A new degree of coherence can be established
in a state where the flux of Aij remains static and con-
tinuously distributed in space. Clearly, we can repeat
this exercise by considering the singularities of Aij and
defining a rank 3 gauge field with transformations:

Aijk → Aijk +
1

3
(∂iAjk − ∂jAik + ∂kAij) . (17)

Proceeding recursively, we eventually reach the highest
rank d − 1 where the gauge field Aj1···jd−1

describes the
actual point-like monopole singularities in d dimensions.
Conversely, the rank n gauge field describes d − n − 1
dimensional singularities.

It naively seams that the entire hierarchy of gauge
fields can be ultimately derived from a single scalar func-
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tion θ(x) by singular gauge transformations:

Aj = ∂jθ (18)

Aij =
1

2
(∂iAj − ∂jAi)

...

Aj1···jn =
1

n

n∑
i=1

(−1)i−1∂jiAj1···ji−1ji+1···jn .

However, this leads to a familiar problem. Even though
Aj1···jn is perfectly capable of carrying finite rank n flux

J0k1···kd−n−1
(x) = εik1···kd−n−1j1···jn∂iAj1···jn , (19)

as the example (16) shows, it ends up carrying zero flux
when we derive it from an analytic lower-rank gauge field
according to (18). We can deal with this problem by
generalizing Dirac strings attached to monopoles.

Consider a point-like monopole at the origin. The in-
trinsic rank d−1 gauge field Aj1···jd−1

near the monopole
should carry flux J0(x) = q δ(x), but then it can’t have
the form produced by (18). In order to convert Aj1···jd−1

to the form mandated by (18), we must add to it the
gauge field of a semi-infinite Dirac string that terminates
at the monopole and feeds it the flux q. After this string
attachment, there are no more sources and drains of flux,
so we formally get J0(x) = 0. And, if the Dirac string is
physically unobservable, then we still have a proper iso-
lated monopole for all practical purposes. The monopole-
string combination allows us to represent Aj1···jd−1

solely
in terms of Aj1···jd−2

. Similarly, we must recursively de-
fine Dirac attachment at every other rank n in order to
relate Aj1···jn to Aj1···jn−1 .

Start with a Dirac string terminated at a monopole in
an n + 1 dimensional manifold Mn+1. Let us separate
the full gauge field into the intrinsic monopole A′j1···jn
and Dirac string A′′j1···jn parts. The monopole is a topo-
logical defect of the πn(Sn) homotopy group. We can
compute its topological charge I ′n = q from A′j1···jn by
integrating (10) on an n sphere Sn ⊂ Mn+1 that en-
closes the monopole:

I ′n =

∮
Sn

dnx εj1···jnA
′
j1···jn . (20)

Recall that ε always projects its spatial indices onto the
integration manifold. By Stokes-Cartan theorem,

I ′n =

∫
Mn+1

dn+1x ∂iΦ
′
i , Φ′i ≡ εij1···jnA

′
j1···jn . (21)

If we used the full gauge field A = A′ + A′′ to com-
pute (20), we would obtain zero because the monopole
and string together present no sources and drains of
flux. Consequently, we can alternatively compute the
monopole’s topological charge I ′′n = q by integrating the

string part A′′j1···jn on any “flat” n dimensional manifold
Mn that intersects the string at a single point:

I ′′n =

∫
Mn

dnx εj1···jnA
′′
j1···jn (22)

=

∫
Mn

dnx εj1···jn
1

n

n∑
k=1

(−1)k−1∂jkA
′′
j1···jk−1jk+1···jn

=

∫
Mn

dnx εij1···jn−1
∂iA

′′
j1···jn−1

.

We used (18) to express the rank n gauge field in terms of
the rank n− 1 gauge field, and obtained the expression:

I ′′n =

∫
Mn

dnx ∂iΦ
′′
i , Φ′′i ≡ εij1···jn−1

A′′j1···jn−1
(23)

analogous to (21) but defined in one lower dimension,
i.e. I ′′n = I ′n−1. This indicates that the projection of the
Dirac string ontoMn is a lower-dimensional πn−1(Sn−1)
monopole living in Mn. We can now recursively restart
this analysis fromMn, by attaching a Dirac string to the
projected monopole strictly withinMn. In fact, in order
to establish relationships (18) at lower ranks, we must
continuously stack many manifoldsMn that intersect the
original string at all possible places, and attach a reduced
rank string inside each Mn. When we reach the lowest
rank 1, we obtain the final integrals:

I ′1 =

∮
S1

dxA′j =

∮
S1

dx ∂jθ = 2πN (24)

that establish q = 2π. In conclusion, the monopole
charge quantum is q = 2π in all spatial dimensions d.

Physically observable Dirac attachments have tension
and lead to the confinement of monopoles into small neu-
tral clusters. Monopoles can exist as free topological de-
fects only in compact gauge theories where the quantized
Dirac attachments become unobservable.

B. Hedgehogs

Let n̂(x) be a field of d-dimensional unit-vectors with
components n̂a (a ∈ {1, . . . , d}). The topological defects
of spins are characterized by the gauge field

Aj1···jd−1
=

1

(d− 1)!
εa0a1···ad−1

n̂a0
d−1∏
i=1

∂ji n̂
ai . (25)

The integral (10) with this gauge field is quantized as an
integer if we choose q = Sd−1 to be the area of a unit
d− 1 sphere,

Sn =
2π(n+1)/2

Γ
(
n+1

2

) . (26)
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The corresponding hedgehog flux (12) is singular and
quantized in units of q = Sd−1 when the ground state
possesses long-range magnetic order.

We can parametrize the vector field n̂(x) using a set
of angles θj(x), j ∈ {1, . . . , d− 1}:

n̂0 = cos θ1 (27)

n̂1 = sin θ1 cos θ2

n̂2 = sin θ1 sin θ2 cos θ3

...

n̂d−2 = sin θ1 · · · sin θd−2 cos θd−1

n̂d−1 = sin θ1 · · · sin θd−2 sin θd−1

on the domain θj ∈ [0, π] for j < d−1 and θd−1 ∈ [0, 2π).
Then (see Appendix A):

Aj1···jd−1
=
εk1···kd−1

(d− 1)!

d−1∏
i=1

(sin θi)
d−1−i ∂jiθki . (28)

Specifically, in naturally accessible dimensions:

d = 2 · · · Ai = ∂iθ1 (29)

d = 3 · · · Aij =
1

2
sin θ1

[
(∂iθ1)(∂jθ2)− (∂iθ2)(∂jθ1)

]
We can also define:

Φi = εij1···jd−1
Aj1···jd−1

(30)

= εij1···jd−1

d−1∏
k=1

(sin θk)d−1−k ∂jkθk ,

and observe that identifying θj(x) with the spherical co-
ordinate system angles θ′j at x = (|x|, θ′1, . . . , θ′d−1) yields:

θj(x) = θ′j ⇒ Φi(x) =
xi
|x|d

. (31)

The topological charge (11) is extracted via a Gauss’ law
in terms of Φi:

N =
1

Sd−1

∫
ddx ∂iΦi = 1 , (32)

showing that the gauge flux ∂iΦi = Sd−1δ(x) is singular.
In order to obtain any other quantized topological charge
N 6= 1, we only need to tweak the relationship between
θd−1 and the corresponding spherical coordinate system
angle:

(∀j < d− 1) θj(x) = θ′j , θd−1(x) = Nθ′d−1

⇒ Φi(x) = N
xi
|x|d

. (33)

Note that only θd−1 can be modified this way because all
components of n̂ are periodic functions of it on the full
2π interval. N is required to be an integer in order for n̂
to be single-valued and smooth everywhere in space.

The structure and properties of the hedgehog gauge
field Aj1···jd−1

are completely analogous to those of the

monopole gauge field; only the flux quantum q is differ-
ent. Likewise, it is possible to define an entire hierar-
chy of spin-related gauge fields at different ranks, which
is analogous to the hierarchy of charge-related Abelian
gauge fields Aj1···jn . This will become useful when we
construct and analyze the effective field theory. The hi-
erarchy ends with Aj1···jd−1

and starts at rank 1 where the
gauge field is minimally coupled to currents. The expres-
sion for spin current can be obtained from the prototype
Lagrangian density of magnetic degrees of freedom

L =
K

2
(∂µn̂

a)(∂µn̂
a) , (34)

which has rotational symmetry. Infinitesimal rotations
n̂a → n̂a + δn̂a,

δn̂a = εabc1···cd−2
n̂bδωc1···cd−2 +O(δω2) (35)

are generated by an antisymmetric tensor δωc1···cd−2 , and
so by Noether’s theorem we find a conserved spin current:

jµ ∝ πaµδn̂a = K εabc1···cd−2
(∂µn̂

a)n̂bδωc1···cd−2 , (36)

where πaµ = δL/δ∂µn̂a = K∂µn̂
a is the canonical momen-

tum. The tensor δω has d(d − 1)/2 degrees of freedom
corresponding to choices of independent two-dimensional
rotation planes in d dimensional space (the two omitted
indices in δω specify the plane). Therefore, we identify
d(d−1)/2 different spin currents which take the following
form after normalization and symmetrization:

jc1···cd−2
µ =

1

2
εabc1···cd−2

[
n̂a(∂µn̂

b)− n̂b(∂µn̂a)
]

= εabc1···cd−2
n̂a(∂µn̂

b) . (37)

The rank 1 gauge field must be minimally coupled to
this, so it must carry the same internal spin indices.
The effective Lagrangian density must contain a gauge-
invariant combination j

c1···cd−2
µ +A

c1···cd−2
µ , so we can en-

vision a singular gauge transformation that preserves the
Lagrangian density:

Ac1···cd−2
µ → εabc1···cd−2

n̂a(∂µn̂
b) . (38)

The purpose of this transformation is again to transfer
the singularities of the matter field onto gauge fields, so
that we could keep track of their dynamics even when
quantum fluctuations diffuse them. As an example, con-
sider the configuration n̂ = x̂ cosφ + ŷ sinφ in d = 3 di-
mensions expressed in terms of the azimuthal angle φ. It
represents a “vortex” line stretching along the z-direction
with singularity at (x, y) = 0, shown in Fig.1(a). Specify-
ing the plane for n̂ near the singularity requires one inter-
nal spin index c1. Note that this singularity is not topo-
logically protected because the vortex can be smoothly
deformed into a uniform n̂ configuration, by tilting n̂ to-
ward ẑ without ever reshaping the singular line.

In order to build the hierarchy of gauge fields, we must
start from (38), carry out a rank-promotion procedure at
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every rank, and arrive at (25) at the highest rank d− 1.
Clearly, each rank promotion needs to consume one spin
index and introduce one spatial index. This leaves only
one option for generating gauge fields by singular gauge
transformations:

A
c2···cd−1

λ1
→ εc0···cd−1

n̂c0(∂λ1
n̂c1) (39)

A
c3···cd−1

λ1λ2
→ 1

2
εc0···cd−1

n̂c0(∂λ1
n̂c1)(∂λ2

n̂c2)

...

Aλ1···λd−1
→ 1

(d− 1)!
εc0···cd−1

n̂c0
d−1∏
i=1

∂λi n̂
ci

All gauge fields are antisymmetric both with respect to
their upper and lower indices, and the presence of upper
indices makes them non-Abelian. Apart from being rele-
vant to spin dynamics in the presence of spin-orbit cou-
pling, the rank 1 and 2 gauge fields have been of interest
in the context of non-Abelian monopoles in high-energy
physics45. The best we can do to relate a rank n gauge
field to the lower rank one is:

A
cn+1···cd−1

λ1···λn =
1

n
(∂λn n̂

cn)A
cncn+1···cd−1

λ1···λn−1
. (40)

This is a much more relaxed relationship than the one
for monopoles (18) due to the ∂λn n̂

cn factor. Quantum
fluctuations that destroy long-range order will effectively
uncorrelate the gauge fields at different ranks through
rapid changes of n̂cn . For this reason, hedgehogs do not
come with Dirac strings attached.

IV. EFFECTIVE FIELD THEORY AND
DYNAMICS

Our goal is to describe topologically non-trivial dy-
namics of strongly interacting particles represented by a
spinor field ψ. The appropriate field theory will have the
imaginary time Lagrangian density

L = Ld + Lt (41)

constrained by symmetries, where Ld governs conven-
tional dynamics and Lt is a topological term responsible
for conserving topological charge in incompressible quan-
tum liquids. In order to simplify discussion, we will as-
sume relativistic dynamics and work with a conventional
part of the Lagrangian density such as

Ld =
1

2

∣∣(∂µ + iAµ)ψ
∣∣2 − t|ψ|2 + u|ψ|4 + · · · . (42)

Since our main focus are insulating states, most of the
analysis will be applicable to non-relativistic dynamics
as well.

Charge and spin currents carried by the field ψ can
have singular configurations, which we now know how to
extract into gauge fields. The lowest-dimensional point

singularities are described by the highest rank gauge field
with d− 1 space-time indices. The gauge fields that cou-
ple minimally to currents have a single space-time index
and describe d− 2 dimensional singular domains. Lastly,
d− 1 dimensional domain walls that separate space into
disconnected regions are singularities of the matter field
itself (the corresponding rank 0 gauge field would not
carry any space-time indices). In order to capture possi-
ble quantum diffusion of these singularities, we need to
construct an effective theory in terms of the gauge fields,
which obtains from (41) upon coarse-graining to a certain
coherence length-scale ξ. We will postpone the discussion
of the topological term Lt to Section V, and focus here
on the effective theory derived from (42) and expressed
in terms of the gauge fields. We will initially rely on sym-
metries to separately construct the effective Lagrangian
densities for charge dynamics in Section IV A and spin
dynamics in Section IV B. Following each symmetry con-
struction, we will argue that quantum fluctuations indeed
dynamically generate the constructed Lagrangian terms
at higher ranks. The final segment of this discussion in
Section IV C is about the phase diagram of the effective
theory. There we address the very important issues of de-
fect and charge deconfinement, which are required for the
existence of topological order and critically dependent on
the field theory regularization.

A. Abelian charge dynamics

Lagrangian density can contain only gauge invariant
scalar combinations of fields. Generally, the Abelian
gauge fields introduced in Section III A can be involved
in two kinds of couplings at every rank n:

LCn =
κn
2

(
jλ1···λn +Aλ1···λn

)2
(43)

LMn =
1

2(d− n)! e2
n

(
εµ1···µd−nνλ1···λn∂νAλ1···λn

)2
.

The first term LCn minimally couples the gauge field to
a current, and the second Maxwell term LMn contains
only the gauge field and captures the energy density of
flux. The “conserved” current at rank n must have the
form of a pure gauge:

jλ1···λn =

n∑
i=1

(−1)i−1∂λiθλ1···λi−1λi+1···λn (44)

dictated by the rank n gauge transformations derived
from (13):

θλ1···λn−1
→ θλ1···λn−1

− δθλ1···λn−1
(45)

Aλ1···λn → Aλ1···λn +

n∑
i=1

(−1)i−1∂λiδθλ1···λi−1λi+1···λn .

If all currents were independent degrees of freedom, the
theory would have an independent gauge symmetry at
every rank. However, the gauge symmetries at n > 1
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ranks are unphysical. We must introduce additional rank
linking terms to remedy this problem:

LLn = Λn

(
θλ1···λn +

1

n
Aλ1···λn

)2

. (46)

The links LLn break the gauge transformations (45)
and remove the current independence at ranks n > 1.
The physical U(1) gauge symmetry residing at rank 1 is
spared, and the physical charge current jµ = ∂µθ remains
an independent degree of freedom because the matter
field θ never appears in (46). In that manner, we obtain
the full Lagrangian density

Ld =

d−1∑
n=1

(
LCn + LMn + LLn

)
(47)

with correct symmetries and degrees of freedom, featur-
ing the gauge fields that describe all possible kinds of
singularities. We may also integrate out all θλ1···λn fields
with n ≥ 1 and write:

Ld =

d−1∑
n=1

(
L′Cn + LMn

)
(48)

L′Cn=
κ′n
2

[
1

n

n∑
i=1

(−1)i−1∂λiAλ1···λi−1λi+1···λn−Aλ1···λn

]2

The effective field theory (48) has the necessary ingre-
dients to describe the phases with either confined or de-
confined monopoles – even if we regard it as being strictly
non-compact. When κ′n is large, the gauge fields at ranks
n − 1 and n become dynamically related according to
(18) and every rank n singularity must have a Dirac at-
tachment. This confines the singularities because Dirac
attachments have a finite tension expressed through the
Maxwell terms in a non-compact theory. In the oppo-
site limit of sufficiently small κ′n, the system gains more
free energy density from the entropy of fluctuations than
from the energy of linking the gauge fields across ranks.
Dirac attachments become unnecessary and the singular-
ities become deconfined. Specifically, consider substitut-
ing a vanishing rank n − 1 gauge field Aλ1···λn−1 = 0 in
L′Cn. Now we find by dimensional analysis that a singu-
lar configuration of Aλ1···λn at rank n, without a Dirac
attachment, costs at most

En =

∫
ddxL′Cn ∼ EUV + κ′nR

d−2n (49)

energy, where R is an infra-red cutoff length scale and
EUV is an ultra-violet contribution. The singularity of
rank n occupies a d− n− 1 dimensional manifold, so its
energy per unit manifold area scales as R1−n, plus a con-
stant that comes from EUV (we assume that the theory is
regularized in the ultra-violet limit). Therefore, the price
for having a singularity is paid only locally when n > 1,
and deconfined singularities without Dirac attachments
can be entropically stimulated with small κ′n.

The higher rank Lagrangian terms in (47) or (48) arise
dynamically from the lower rank terms in the process of
coarse-graining. Starting from the basic coupling of a
current to a gauge field

L =
κ

2
(jµ +Aµ)

2
+ · · · , (50)

we are free to separate the smooth matter field fluctua-
tions θ from singular vortex ones j′µ

jµ = ∂µθ + j′µ (51)

using some arbitrary convention for fixing the gauge of
j′µ (i.e. we use the same particular algorithm to calculate
a definite j′µ from any given configuration of vortices).
Integrating out the smooth θ in the path-integral would
result in an effective Lagrangian for j′µ +Aµ which must
have a Maxwell term due to gauge invariance. If we in-
tegrate only certain short wavelength modes of θ in (50),
we also preserve the coarse-grained coupling between the
current and the gauge field:

L′ =
κ′

2

(
∂µθ + j′µ +Aµ

)2
(52)

+K ′
[

1

2

(
∂µj
′
ν − ∂νj′µ

)
+

1

2
Fµν

]2

+ · · · .

We may complete a singular gauge transformation to ab-
sorb j′µ into Aµ, and finish the coarse-graining step by
integrating out the short-wavelength fluctuations of the
gauge field. The next rank in d ≥ 3 dimensions is gen-
erated by another round of a singular gauge transforma-
tion and coarse-graining. The rank 1 gauge field makes
a “matter” field at rank 2 (θµ ∼ Aµ), and the rank 1
Maxwell term has the form of a rank 2 current-gauge field
coupling. Separate the smooth θµ and singular monopole
j′µν fluctuations of rank 2 “matter”

jµν = ∂µθν − ∂νθµ + j′µν , (53)

mirroring (51), then integrate out the short-wavelength
fluctuations of θµ. This produces a rank 2 Maxwell term
in the effective Lagrangian density, with an emergent
gauge field Aµν ∼ j′µν . Repeating these steps recur-
sively generates analogous dynamics at all higher ranks.
However, the emergent “charge” quantization at all ranks
derives from the topological quantization of vorticity at
rank 1.

The derivation of gauge fields from the singularities of
matter fields can explain why all particles that couple
to the same gauge field have the same unit of charge
quantization (as is the case in the standard model of
particle physics). Consider several complex scalar fields
ψ1, . . . , ψn. Carry out singular gauge transformations
for every 1 ≤ j ≤ n in order to extract singulari-
ties from the matter field phases into gauge fields Aj
according to Ajµψj = −i∂µψj . The resulting current
terms in the Lagrangian density read κj |(∂µ+ iAµj)ψj |2.
Now assume that the dynamics has only one global
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U(1) symmetry. This locks all singularity gauge fields
Ajµ = Aµ + δAjµ to a single free gauge field Aµ, al-
lowing only small gapped fluctuations δAjµ. If we inte-
grate out δAjµ and also the short-length fluctuations of
ψj , we obtain a coarse-grained theory with current terms
κj |(∂µ + iAµ)ψj |2 involving only Aµ. Coarse-graining
also produces a Maxwell term (1/2e2)(εµνλ∂νAλ)2. By
renormalizing Aµ, we can bring e inside the current terms
κj |(∂µ+ieAµ)ψj |2 where it clearly plays the role of a sin-
gle quantized charge coupling for all matter fields. Par-
ticles with charge 2e, etc, are bound states of the ele-
mentary ones. Fractional quantization of charge is also
possible, but requires a special dynamical state of topo-
logical defects that we discuss later.

B. Non-Abelian spin dynamics

Here we construct the effective Lagrangian density

Ld =

d−1∑
n=1

(
LCn + LMn + LLn

)
(54)

for the dynamics of spin currents and their singularities
using the same symmetry principles as in the previous
section. We expect:

LCn =
kn
2

(
j
an+1···ad−1

λ1···λn +A
an+1···ad−1

λ1···λn

)2
(55)

LMn =
1

2g2
n

J an+1···ad−1
µ1···µd−n J an+1···ad−1

µ1···µd−n .

All non-Abelian gauge fields A
an+1···ad−1

λ1···λn are initially gen-

erated by singular gauge transformations (39) from the
same physical matter field n̂. However, when the sin-
gularities of n̂ diffuse by fluctuations, the gauge fields at
all ranks acquire independent dynamics that goes beyond
the limitations of (39). The residual smooth fluctuations
of n̂ are captured by currents j

an+1···ad−1

λ1···λn that minimally
couple to the gauge fields. We can regard the currents as
independent degrees of freedom, and include the linking
terms in the Lagrangian density

LLn = Λ′n

(
j
an+1···ad−1

λ1···λn +
A
n

(∂λn n̂
an)A

anan+1···ad−1

λ1···λn−1

)2

(56)
in order to have a single gauge symmetry at rank 1. We
formally define

Aa1···ad−1 = −εa0a1···ad−1
n̂a0 (57)

in consideration of the formula (37) for spin current, and
the operator A that antisymmetrizes the space-time in-
dices

Afλ1···λn =
1

n!

1···n∑
P

(−1)PfλP(1)···λP(n)
, (58)

where P is a permutation and (−1)P its parity. Note
that large values of km and Λ′m at ranks m ≤ n suppress
the diffusion of singularities and pin the currents to:

j
an+1···ad−1

λ1···λn → 1

n!
εa0···ad−1

n̂a0
n∏
i=1

(∂λi n̂
ai) . (59)

If we integrate out all currents in (54), we obtain a
more economic version of the effective theory:

Ld =

d−1∑
n=1

(
L′Cn + LMn

)
(60)

L′Cn=
k′n
2

[
A
n

(∂λn n̂
an)A

anan+1···ad−1

λ1···λn−1
−Aan+1···ad−1

λ1···λn

]2

.

The Maxwell terms LMn depend only on the gauge fields
through non-Abelian fluxes J an+1···ad−1

µ1···µd−n whose space-
time indices are compatible with (19) and internal in-
dices correspond to those of the gauge field. The gauge
field curl is still an essential component of flux. How-
ever, the non-Abelian gauge invariance of Maxwell terms
requires additional non-linear flux components, except at
the highest rank n = d − 1 where the flux is Abelian in
any number of dimensions d:

Jµ = εµνλ1···λd−1
∂νAλ1···λd−1

. (61)

We can determine the expressions for fluxes by working
exclusively with singular gauge fields (39) and consider-
ing their transformations under smooth deformations of
the vector field n̂. Such deformations amount to smooth
gauge transformations that cannot move or reshape the
singularities, and hence do not affect the Maxwell La-
grangian density. Detailed derivation of the fluxes is
shown in Appendix B. Here we only state the most useful
non-trivial result for rank n = 1 in d = 3:

J aµν = εµναβ
(
∂αA

a
β − εabcA

b
αA

c
β

)
. (62)

This form is familiar from the non-Abelian SU(2) gauge
theory:

J aµν =
1

2
εµναβF

a
αβ , F aαβ = ∂αA

a
β−∂βAaα−gεabcAbαAcβ

with gauge charge g = 2 corresponding to the choice
|n̂| = 1. The value of g is determined by the spin repre-
sentation generators, which also determine |n̂|: if we had
chosen to work with the minimal SU(2) representation
|n̂| = 1

2 , we would have obtained g = 1.
The fundamental microscopic Lagrangian describes

only the rank 1. All higher ranks of the effective theory
arise dynamically in a coarse-graining procedure. The
technical demonstration of this claim is postponed to Ap-
pendix C due to its complexity. There we also discuss in
more detail the singular gauge transformations of non-
Abelian gauge theories.

Classical vector field n̂ configurations can be topologi-
cally non-trivial even without singularities. Such config-
urations are generalized skyrmions. If a d+1 dimensional
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vector field lives in a d dimensional space, then we can
formally define a rank d gauge field

Aj1···jd =
1

d!
εc0···cd n̂

c0

d∏
i=1

∂ji n̂
ci (63)

and compute its skyrmion number with the following vol-
ume integral over entire space:

N =
1

Sd

∫
V

ddx εj1···jdAj1···jd . (64)

This is quantized if the space can be effectively compact-
ified, for example by the virtue of n̂ having the same con-
stant value at all points far away from the origin. How-
ever, skyrmions enjoy topological protection only in the
classical continuum limit. A skyrmion can be smoothly
deformed into a mostly uniform field configuration whose
spatial variations are confined to a finite volume. Then,
a quantum tunneling process, or instanton, can flip it
into a topologically trivial state. Formally, one does not
have enough space-time indices to construct a topologi-
cal current (61) from Aλ1···λd and a Lagrangian term that
conserves it. Instantons are governed by a remnant of the
Maxwell term in Lagrangian density:

Li =
Γ

2
(∂0Φ0)2 (65)

where Φ0 is the rank d “dual” gauge field (30):

Φ0 = ε0j1···jdAj1···jd . (66)

Instantons look like quantized “hedgehogs” ∂µΦµ 6= 0 in
space-time. They unavoidably proliferate, and then their
coarse-grained dynamics involves arbitrary local fluctua-
tions of the real scalar field Φ0, which spoils the quanti-
zation of skyrmion number N in the ground state.

C. Essential phase diagram

The effective field theories given by the Lagrangian
densities (47) and (54) have rich phase diagrams. We will
argue that a proper regularization enables a hierarchy of
phases featuring Higgs-like and Coulomb-like gauge field
dynamics at different ranks n, up to n = d−1 in d spatial
dimensions.

The plain continuum limit Lagrangians written in the
previous sections always penalize gauge flux through
Maxwell terms. This is a problem when we want to
describe topologically ordered phases with deconfined
monopoles. The solution to this problem is a compact
gauge theory. If we put a dimensionless gauge field
Aµ1···µn = anAµ1···µn on a lattice, where a is the lat-
tice constant, then a compact Abelian Maxwell term in
the action can be symbolically written as:

SMn = −βn
∑
{µ}

cos
(
εµ1···µd−nνλ1···λn∆νAλ1···λn

)
. (67)

The summation runs over all oriented n+ 1 dimensional
“plaquettes” of the space-time lattice (with discretized
time). It takes d − n ordered indices µ to specify a
“plaquette” orientation. The symbol inside the cosine is
a placeholder for the sum over the oriented n dimensional
“edges” of the given “plaquette”, where ∆µfi = fi+µ−fi
is the discrete lattice derivative of f in the direction µ
computed at the lattice site i. The lattice gauge field
A is an angle variable that lives on the oriented “edge”
specified by its indices. For example, the cubic 2+1D
space-time lattice has square plaquettes with four cor-
ners 1, 2, 3, 4 whose orientation is specified by a single
index µ (perpendicular to the plaquette); the lattice curl
inside the cosine is A12+A23+A34+A41 if we relabel the
gauge fields living on the oriented plaquette’s edges by
the initial and final site of the edge. The continuum limit
a → 0 of (67) with a proper choice of the dimensionless
coupling βn is the non-compact Abelian Maxwell term.
Taking the continuum limit, i.e. expanding the cosine to
quadratic order, is permissible only if βn is large so that
the fluctuating values of A are small.

The benefit of the compact Maxwell term is that a
2π flux quantum on a “plaquette” is physically unob-
servable and constitutes a pure-gauge configuration (see
Fig.2). This gives freedom to monopoles. Consider a
d = 3 dimensional system. We can insert a monopole
by generating an appropriate rank 2 field configuration
Aµν 6= 0. This monopole can interact with charge cur-
rents only if its presence affects the rank 1 gauge field
Aµ through rank linking. However, the induced rank 1
gauge field of a monopole necessarily comes with a Dirac
string. If the gauge dynamics is non-compact, then the
string costs a finite energy per unit length and confines
the monopoles to small topologically neutral clusters. In
contrast, a compact theory makes the Dirac string in-
visible by collecting all of its quantized flux through a
single column of plaquettes – monopoles can be free and
charged particles can experience them.

A byproduct of monopole proliferation in pure
rank 1 compact gauge theories is charge confinement.
Monopoles are abundant when β1 is small and the plain
continuum limit of (67) cannot be justified. Then, the
lattice dynamics features an angle-valued gauge field
A whose canonically conjugate electric field E must be
integer-valued. This field lives on the lattice links, so
electric flux comes in the form of quantized strings that
terminate at the locations of charged particles according
to Gauss’ law. One could say that monopole fluctua-
tions gap out the electric field – electric flux lines cost
energy in proportion to their length, so charged parti-
cles are confined67. This phenomenon does not occur in
the disordered phase of a system as simple as our refer-
ence model of neutral bosons hopping on a lattice. So,
how can we avoid it despite introducing gauge fields by
singular gauge transformations? The key new feature of
the present theory is the presence of multiple gauge field
ranks and links between them. The confinement of rank
1 charge is avoided because the rank-linking term in the
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FIG. 2. An unobservable Dirac string on the cubic lattice.
The gauge field Aij = −Aji lives on lattice bonds between
neighboring sites i, j and equals zero everywhere except on
the thick ponds, where it is 2π. The lattice curl of the gauge
field is defined on lattice plaquettes as εµνλ∂νAλ ≡ A12 +
A23 +A34 +A41 if the sites of a square plaquette are labeled
1, 2, 3, 4 in the counter-clockwise sense. Magnetic flux is zero
on all plaquettes except the shaded one and the ones parallel
to it on the same vertical column. The flux value of 2π lives in
the compact Maxwell term (67) and has no physical impact.

action modifies Gauss’ law. Charged particles can in-
teract directly with the deconfined rank 2 gauge field in
the disordered phase, and not act as sources of the costly
rank 1 electric flux. We elaborate this mechanism later in
this section, in the context of a non-Abelian gauge theory.
Another possible deconfinement mechanism is tied to the
frustrated compact gauge theories that naturally describe
certain frustrated magnets52,68–70. Here, entropy effects
keep charges free even in the strong coupling regime with
small β1, as seen in solvable theoretical models38,52,71,72

and numerical calculations73,74.

The goal of this paper is to explore topologically or-
dered phases, and the practical feasibility of this task
currently relies on the continuum limit. Therefore, we
will not emphasize any further the compact formulation
of the theory. Instead, it will be understood that the
continuum limit theory requires an ultra-violet regular-
ization that renders quantized Dirac attachments unob-
servable, and such a lattice regularization is indeed avail-
able. Note, however, that a regularization lattice is not
necessarily the microscopic lattice of the system.

Constructing non-compact Maxwell terms with non-
Abelian gauge fields is a more challenging task. One
could define dimensionless non-Abelian gauge fields that
operate on particle spinors, and construct the Maxwell
terms from the traces of the products of Peierls fac-
tors W = exp(iεµ1···µd−nνλ1···λn∆νAλ1···λn). This works
fine on two-dimensional plaquettes because their oriented
boundary is one-dimensional and uniquely represented by
the order of W factors under the trace. However, it is
unclear how to unambiguously generalize this to higher
dimensions and accommodate rank n > 1 fields. Fortu-
nately, a compact regularization is not needed for non-
Abelian gauge fields: hedgehogs do not come with Dirac
strings attached.

Now that we have defined a regularization where it is
needed, we can proceed with the phase diagram analy-
sis. Let us characterize the dynamics of the rank n gauge
field as Higgs-like if its fluctuations are suppressed, and
Coulomb-like if its fluctuations are abundant. We will
shortly make this characterization precise, with a pro-
vision which is not emphasized in the plain continuum
formulations of the effective theory. When we introduce
a gauge field at rank n by a singular gauge transfor-
mation, this gauge field must have a strictly quantized
and localized flux in the Higgs n state at every position.
The formal agent of flux quantization is either an explicit
constraint in the path integral measure, or βn → ∞ in
the compact gauge theory. Without this modification of
the effective theory, the artificially introduced gauge field
would gap out the gapless modes of the “matter” field as
a part of the Anderson-Higgs mechanism. The explicit
constraints on the gauge fields are not needed only in the
topologically ordered phases which we ultimately pursue.
Also, we will not tackle the important and difficult ques-
tion of what stabilizes the phases with Higgs dynamics at
intermediate ranks. Such phases feature emergent gauge
boson excitations and definitely require significant and
perhaps intricate interactions37,38 between simple micro-
scopic degrees of freedom (the phase transitions involving
scalars and emergent gauge fields can be first order75 and
hence beyond reach of the basic renormalization group
treatment in scalar theories). Our goal will be merely to
identify and characterize these phases from the perspec-
tive of singularity dynamics.

A Higgs state at rank m implies a Higgs state at all
higher ranks n > m. In a generalization of the usual
Higgs mechanism, the rank n gauge field A(n) is sup-
pressed into a Higgs state by the condensation of the cur-
rent j(n) it minimally couples to. Moreover, A(n) is sup-
pressed if any current j(m) at a lower rank m ≤ n con-
denses. This is a consequence of the origin of gauge fields
in the matter field singularities. A condensation of j(m)
either expels or localizes all of its singularities, making
them costly and preventing their diffusion which could
give rise to soft gauge modes at higher ranks. Formally,
the simplified effective theories (48) and (60) replace cur-
rents j(n) with constructs involving linked gauge fields
A(n − 1), so suppressed fluctuations of A(n − 1) in a
Higgs n−1 state amount to matter condensation at rank
n. The Higgs mechanism then propagates recursively to
all higher ranks where it gaps out the gauge fields.

Similarly, a Coulomb state at rank n implies a
Coulomb state at all lower ranks m < n. When the rank
n gauge field A(n) fluctuates abundantly in its Coulomb
n state, then the singularities of the lower rank current
j(n − 1) have necessarily proliferated and diffused. The
gauge field A(n − 1) is gapped out by Coulomb mech-
anism (deconfinement of defects), and its Coulomb dy-
namics recursively propagates down the ranks in the La-
grangian densities (48) and (60). Note that the absence
of a gauge symmetry at rank n does not automatically
induce a Higgs n state because the lower rank Coulomb
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dynamics provides no bias for an “order parameter” at
rank n.

As a consequence of these relationships between ranks,
each conventional phase of the effective theory corre-
sponds to a sequence Gn = C1C2 · · ·CnHn+1 · · ·Hd−1 of
Coulomb Cn and Higgs Hn types of dynamics at consecu-
tive ranks, with a switch from Coulomb to Higgs dynam-
ics at one particular rank n. These phases are sharply
defined in the thermodynamic limit. Only the gauge field
at the last Coulomb-like rank n is spared from both Higgs
and Coulomb mechanisms, and remains massless with an
infinite penetration depth. There is one exception to this
rule in the compact gauge theory. We show in Appendix
D that the rank d − 1 gauge field is gapped in the all-
Coulomb phase Gd−1 = C1 · · ·Cd−1. In the non-Abelian
case, we naively expect that the matter coupled to the
massless gauge field at rank n is confined and free only
asymptotically. However, matter at lower ranks m < n
is truly free, as we discuss at the end.

This distinction between phases can also be character-
ized by the confinement of singularity defects. A rank n
defect in d dimensions is a d−n−1 dimensional excitation
characterized by the πn(Sn) homotopy group (with un-
derstanding that only point-defects at rank d−1 are topo-
logically protected). Confined defects are closed neutral
manifolds of finite size, typically small due to their high
energy cost per unit manifold area. A Higgs n state fea-
tures gapped fluctuations of confined defects, and in that
sense conserves the defect charge. A deconfined state at
rank n is characterized by abundant, arbitrarily large and
possibly open manifolds of d−n− 1 dimensional defects,
and in that sense can be a defect condensate.

As a physically relevant example, consider neutral
spinless bosons in d = 3 dimensions. G0 = H1H2 is
a superfluid phase with Goldstone modes and confined
vortices. The phase G2 = C1C2 is a fully gapped con-
ventional Mott insulator with uncorrelated fluctuations.
The phase G1 = C1H2 is unconventional: the rank 1
matter field is gapped and coupled to an emergent U(1)
electrodynamics with deconfined vortices and confined
monopoles. This is identified with the U(1) spin liquid
in magnetic systems52. In the analogous case of spin dy-
namics, G0 is a magnet, G2 a gapped paramagnet, and G1

a paramagnet with an emergent non-Abelian gauge field
and asymptotic freedom for particles. The phases with
prominent gauge field dynamics are obviously realized in
our world, as described by the standard model of particle
physics.

Special phases C1 · · ·Td−1 with topological order can
be stabilized by topological protection: any change of the
total topological charge of point defects requires crossing
an infinite free energy barrier in infinite systems. Such
phases are incompressible quantum liquids of abundant
but non-condensed monopoles and hedgehogs. The rank
d− 1 gauge field remains gapped as if it lived in a Higgs
state, and keeps the lower rank gauge field gapped via
the Coulomb mechanism, thus propagating the gapped
dynamics recursively down to the rank 1. We will dis-

cuss these kinds of phases in Section VI and show that
they have deconfined fractional quasiparticles in which a
rationally quantized amount of charge or spin is bound
to a topological defect.

We have already established the possibility of topolog-
ical defect deconfinement. We now show that this also
leads to particles’ “charge” (spin) deconfinement at lower
ranks even in the non-Abelian gauge theory. An ordinary
non-Abelian theory in d = 3

L =
1

2

∣∣(∂µ + igγaAaµ)ψ
∣∣2 − 1

4
F aµνF

µν,a (68)

featuring a field tensor

F aµν = ∂µA
a
ν − ∂νAaµ − g fabcAbµAcν (69)

has the stationary-action field equation

Jµ,a = ∂νF
µν,a − gfabcAbνFµν,c (70)

that identifies a particle with charge g (spin) as a source
of the gauge flux. Charge is confined at least in the
strong-coupling limit. In contrast, the non-Abelian effec-
tive theory (60) in d = 3 yields the following stationary
condition by variations of the rank 1 gauge field:

Jaµ = ∂νF
a
µν − gεabcAbνF cµν + k′2(∂ν n̂

a)jµν (71)

where g = 2 and

jµν =
1

2
(Aaµ∂ν n̂

a −Aaν∂µn̂a)−Aµν . (72)

Now, we can avoid attaching the rank 1 gauge flux to a
particle and instead attach a rank 2 flux:

Jaµ → k′2(∂ν n̂
a)jµν , F aµν → 0 . (73)

This is an option only if the gauge field Aµν is not
dynamically suppressed by the confinement of its flux.
Very roughly, we get a Gauss law type of relationship
〈n̂a〉∂iA0i ∼ Ja0 ∼ δ(x) for a static point source Ja0 , and
an infra-red convergent energy cost through the Abelian
Aµν Maxwell term. Note that inserting a definite spin
Ja0 necessarily creates a region with a non-zero average
〈n̂a〉 despite large fluctuations of n̂a in an incompressible
quantum liquid. Effectively, the rank 2 flux can screen
charge from the rank 1 flux and preempt charge confine-
ment.

The above argument can be readily generalized to
compact Abelian gauge theories and higher dimensions.
However, a compact gauge theory in d = 2 dimensions
does not have a rank 2 gauge field that could decon-
fine charges. Instanton events67, identified as space-time
“monopoles” in the literature on spin liquids76–78, con-
fine the particles at rank 1, including any fractional par-
tons of an electron. A weaker logarithmic charge confine-
ment “by vortices” occurs even in the continuum-limit
situations, through the unbounded Coulomb potential
V (r) ∼ ln(r) between static charges a distance r apart.



16

It seems naively that charge deconfinement in d = 2 is
possible only if topological defects are suppressed by a
Higgs mechanism. Of course, the truth is more compli-
cated and interesting. Two-dimensional deconfinement
without a Higgs mechanism is experimentally evident in
fractional quantum Hall states, and it has been theoret-
ically established in certain U(1) spin liquids of Dirac
spinons78,79.

V. TOPOLOGICAL LAGRANGIAN TERM

Here we construct the topological Lagrangian density
term Lt of the effective field theory. Its role is to imple-
ment the topological πd−1(Sd−1) charge conservation in
the continuum limit description of incompressible quan-
tum liquids. This is necessary only at the highest gauge
theory rank n = d−1 in d dimensions, because a Maxwell
term, which normally controls defect confinement, is ab-
sent from the Lagrangian density at rank d.

The total topological charge N of point defects con-
tained in a certain volume is given by (11). N is con-
served if

∂0N =
1

q

∫
ddx εij1···jd−1

∂0∂iAj1···jd−1
= 0 , (74)

or equivalently ∂0J0 = 0 expressed using the topological
current

Jµ = εµνλ1···λd−1
∂νAλ1···λd−1

(75)

However, this still allows instantaneous creation and an-
nihilation of arbitrarily separated defect-antidefect pairs.
In order to be consistent with local dynamics, we must
promote the condition for topological charge conservation
into:

∂µJµ = 0 . (76)

One way to implement the topological charge conser-
vation involves introducing an auxiliary Lagrange multi-
plier field Λ into the path integral and writing the topo-
logical Lagrangian term as:

Lt ∼ iΛ ∂µJµ . (77)

Any world-lines that violate (76) will destructively inter-
fere and cancel their contributions to the path integral.
However, this is not adequate because the topological
charge is forcefully conserved regardless of the underly-
ing dynamics, even if the particles are localized. The only
remedy for this problem is to use an existing degree of
freedom as a Lagrange multiplier. The next section will
describe the main construction principles for a topologi-
cal term that:

1. does not introduce new degrees of freedom;

2. has no physical effect in conventional states;

3. respects all symmetries.

Section V B then derives the topological term directly
from a spinor field that represents a vector field n̂ in
d dimensions using the Spin(d) group. Finally, we con-
sider symmetry properties and restrictions for topological
terms in Section V C.

A. Topological term preliminaries

Section II has already hinted the following topological
term in the Lagrangian density:

Lt = iKd JµJµ , (78)

where Kd is a coupling constant that we will determine
later. The particles’ gauge-invariant charge current Jµ is
an existing degree of freedom, so Lt satisfies the above
criterion 1. The conventional states for the criterion 2 are
typically superfluids and Mott insulators. A topological
defect in a superfluid phase always has a well defined
core from which the particles are expelled. Therefore, the
presence of a static defect with density J0 6= 0 at some
location implies the absence of particles J0 = 0 at that
location, leading to Lt = 0 in a superfluid. Similarly,
if we reverse the roles played by the canonical particle
number operator n and its conjugate phase θ, we find that
the presence of a particle with density J0 6= 0 at some
location in a Mott insulator implies a local expulsion of
topological defects J0 = 0, again leading to Lt = 0. In
this sense, the topological term (78) satisfies the criterion
2. For now, we will assume that the dynamical part Ld

of the Lagrangian density has the same symmetries as
(78). If that is not the case, we will have to modify the
topological term in order to fix its symmetries and satisfy
the criterion 3. We will discuss how this can be done in
Section V C.

The Lagrange multiplier that implements topological
charge conservation ∂µJµ = 0 is hidden within the charge
current, as revealed in Section II. It works only in uncon-
ventional incompressible quantum liquids where abun-
dant quantum fluctuations allow point-defects and parti-
cles to occupy the same location (with resolution deter-
mined by the coarse-grained length scale ξ). Note that
incompressibility of both particle and defect densities is
crucial – if either can adjust, it will adjust to avoid a
costly overlap between particles and defects. The symme-
try (duality) between particle and defect currents in (78)
simultaneously reaffirms the particle charge conservation
∂µJµ = 0. We can extract the currents from appropriate
spinor fields ψ for particles and Ψ for point-defects

Jµ = − i
2

[
ψ†(∂µψ)− (∂µψ

†)ψ
]

+Aµ|ψ|2 (79)

Jµ = − i
2

[
Ψ†(∂µΨ)− (∂µΨ†)Ψ

]
+Aµ|Ψ|2 .

to show the charge conservation mechanism. Incompress-
ibility implies frozen amplitudes of ψ and Ψ, so that only
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the phases φ,Φ in ψ = |ψ|eiφ and Ψ = |Ψ|eiΦ are free to
fluctuate, producing effectively:

Jµ = |ψ|2(∂µφ+Aµ) , Jµ = |Ψ|2(∂µΦ +Aµ) . (80)

Substituting in (78) yields

Lt = iKd|ψ|2 (∂µφ+Aµ)Jµ (81)

→ −iKd|ψ|2 φ ∂µJµ + iKd|ψ|2AµJµ

Lt = iKd|Ψ|2 (∂µΦ +Aµ)Jµ

→ −iKd|Ψ|2 Φ ∂µJµ + iKd|Ψ|2AµJµ

after an integration by parts, so φ and Φ can act as
Lagrange multipliers that implement the conservation of
topological and particle charge respectively.

Let us scrutinize the conservation mechanism more
carefully. Both φ and Φ are angles. Integrating out
φ ∈ [0, 2π) in (81) gives us:

2π∫
0

Dφ exp

{∫
dd+1x iKd|ψ|2φ∂µJµ

}
(82)

∝
∏
x

sin(πKd|ψ|2dd+1x ∂µJµ)

Kd|ψ|2dd+1x ∂µJµ
→
∏
x

δ(∂µJµ)

in the following qualitative sense. The final Dirac
delta function of ∂µJµ is formally obtained from the
integral over φ only when the dimensionless number
Kd|ψ|2dd+1x ∂µJµ is an integer. This condition is indeed
satisfied by the microscopic quantization of topological
charge, as we will now show by discretizing the integral.
Let ddx be the volume that contains a single particle, and
ld be the volume that contains a single topological defect.
Consider a state with n topological defects per particle,
i.e. with the “filling factor” ν = 1/n. Since ddx = nld,
we can interpret

Kd|ψ|2dd+1x ∂µJµ ∼ Kd|ψ|2 nld ∆µJµ (83)

= Kd|ψ|2 nq∆µJ ′µ
with ∆µ = dx∂µ being a discrete derivative on the scale
dx, and q the unit of topological charge (flux quantum).
We defined an integer-valued defect current J ′µ = ldJµ/q
based on the fact that the flux density J0 makes J0/q
the number density of topological defects. The quantized
topological current has no divergence if Kd|ψ|2nq ∈ Z,
i.e. Kd|ψ|2 = (ν/q) × integer. Later, when we consider
topological orders, we will reproduce this relationship in
a proper field-theoretical manner.

B. Topological term from spinor fields

The goal of this section is to construct the topologi-
cal Lagrangian term (78) directly from a spinor field ψ
of particles. Such a construction is possible because the
particle field contains all information about the currents
and topological defects. We will develop the basic idea

here, and analyze symmetry restrictions and extensions
in the next Section V C. To begin with, the spinor ψ
has to represent a U(1) phase θ for charge dynamics and
a vector field n̂ for spin dynamics. The vector n̂ must
be d dimensional with fixed magnitude in order to have
topologically protected hedgehog defects in d spatial di-
mensions. Therefore, we will use a coherent state com-
plex spinor representation of the Spin(d) group, which
generalizes spin to d dimensions.

The generators γa of the Spin(d) group are d Dirac
matrices that obey the Clifford anticommutator algebra:

{γa, γb} = 2δab . (84)

The angular momentum operators that generate rota-
tions in ab planes:

Jab = − i
4

[γa, γb] (85)

can be used to rotate a fixed reference spinor ψ0 into a co-
herent state whose spin points along n̂ = (θ1, . . . , θd−1):

ψ(n̂) = e−iJd−1,dθd−1 · · · e−iJ2,3θ2e−iJ1,2θ1eiφ ψ0 . (86)

The spherical coordinate system angles θi and n̂ are re-
lated according to (27). The last angle φ is not associated
with any generator and defines a U(1) phase for charge
currents.

The main ingredient of the topological Lagrangian
term Lt is the topological current (75) that involves the
rank d−1 gauge field. How can we extract this gauge field
from the spinor ψ? For example, if we use the Abelian
singular gauge transformations (18) recursively from the
rank d− 1 down to rank 1, we naively obtain the follow-
ing relationship between the Abelian gauge field and the
spinor’s U(1) phase φ:

Aµ1···µd−1
=

1

(d− 1)!

(
εa1···ad−1

n∏
i=1

∂µai

)
φ . (87)

This expression applies an antisymmetrized product of
derivatives on φ. Any analytic function φ(x) automat-
ically yields Aµ1···µd−1

= 0, so this expression can have
meaning only if we define a rigorous rule for applying
the derivatives on singular functions. We will define such
a rule by generalizing the familiar two-dimensional case.
When we extract a vortex ψ(r, φ) = eiφ expressed using
the polar angle φ into a gauge field Ai = ∂iφ, then the
magnetic flux B = ∂ij∂iAj ∼ ∂ij∂i∂jφ = 2πδ(x) inte-
grates as:

2π =

∫
B2

d2xB =

∫
B2

d2x ∂ij∂i∂jφ ≡
∮
S1

dxiAi =

∮
S1

dxi ∂iφ .

The first integral is defined on a disc, or a 2-ball B2 that
contains the vortex singularity, and we formally rewrite
it using the double derivative notation. In order to cal-
culate this integral, we apply Stokes theorem on the loop
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(1-sphere S1) that bounds B2. The ensuing loop integral
with one less derivative is well-defined.

Now consider general expressions

Fn = ψ†εµ1···µn∂µ1 · · · ∂µnψ (88)

for 1 ≤ n ≤ d involving the spinor (86), and integrals

Ik,n =

∫
Bn(k)

dnxFn (89)

defined on n dimensional ball domains Bn(k) indexed
by k. The integrals Ik,n can be sensitive only to the
πn−1(Sn−1) singularities of Fn(θ1, . . . , θd−1, φ), which
are point-like in an n dimensional domain. Let us start
from the highest rank in d dimensions. Consider one
πd−1(Sd−1) point-singularity embedded inside a small
ball Bd(1) ∈ Rd with a sphere boundary Sd−1(1). We
anticipate that Fd is proportional to the Dirac function
δd(x) at the singularity, and hence properly characterized
by I1,d. All singularities that we integrate are formally
characterized by appropriate distributions like δd(x). Let
us define

I ′1,d =

∫
Bd(1)

ddx (∂µ1
ψ†)εµ1···µd∂µ2

· · · ∂µdψ (90)

and apply Stokes-Cartan theorem:

I1,d =

∫
Bd(1)

ddx ∂µ1(ψ†εµ1···µd∂µ2 · · · ∂µdψ)− I ′1,d (91)

=

∮
Sd−1(1)

dd−1xψ†εµ1···µd−1
∂µ1
· · · ∂µd−1

ψ − I ′1,d .

The displayed integral over Sd−1(1) contains the function
Fd−1 which is singular by construction and zero away
from the singularities. Thus, we can focus on the finite
patches Bd−1(k) ⊂ Sd−1(1) that contain one singularity
of Fd−1 each:

I1,d + I ′1,d =
∑
k

∫
Bd−1(k)

dd−1xFd−1 =
∑
k

Ik,d−1 . (92)

The original πd−1(Sd−1) point-singularity of Fd does not
reside on Sd−1(1), yet it is detected in lower-dimensional
singular integrals over Bd−1(k). This is possible only
if singular strings of Fd−1 emanate from the point sin-
gularity and intersect Sd−1(1). Note that Sd−1(1) is of
arbitrary size, and multiple strings lead to multiple in-
tersection points embedded inside the balls Bd−1(k).

Now we can show that the residual d dimensional in-
tegral I ′1,d does not contribute to the topological La-

grangian term. The integral (90) contains the same anti-
symmetrized derivatives that are applied on ψ in Fd−1, so
its value can build up only from the points on the strings
where Fd−1 is singular. We will work in the continuum

limit for simplicity, assuming that some regularization
procedure is available to rescue the usual rules of calcu-
lus when needed. Let us change the integration variables
x ∈ Bd(1) into a “radius” s that scans a singular string
S and y1, . . . , yd−1 that span a shell Sd−1 locally perpen-
dicular to the string at s. Since ∂s commutes with all ∂yi ,
integrating out y1, . . . , yd−1 has a chance to produce a fi-
nite spinor Ψ(s) from the antisymmetrized ∂µ2 · · · ∂µdψ
in (90) only if all directions µ2, . . . , µd are tangential to
Sd−1. Hence, we need

∂µ1
ψ† ≡ ∂sψ† = iψ†

[
d−1∑
i=1

(∂sθi)Γi − (∂sφ)

]
(93)

in the immediate vicinity of the strings, where each op-
erator

Γi =
(
eiJi+1,i+2θi+1 · · · eiJd−1,dθd−1

)†
Ji,i+1

×
(
eiJi+1,i+2θi+1 · · · eiJd−1,dθd−1

)
(94)

is independent of θi. In the presence of multiple strings
Sk we get:

I ′1,d = i
∑
k

∫
Sk

ds

[
d−1∑
i=1

(∂sθi)Ī
(i)
k,d−1 − (∂sφ)Īk,d−1

]
.

(95)
The scalar factors

Īk,d−1 =

∫
Bd−1(k)

dd−1y ψ†εsµ2···µd∂µ2
· · · ∂µdψ (96)

Ī
(i)
k,d−1 =

∫
Bd−1(k)

dd−1y ψ†Γiεsµ2···µd∂µ2
· · · ∂µdψ

involve singular integrands and hence cannot possibly de-
pend on the values of φ(x) and θi(x) respectively away
from the strings, x /∈ Sk. These scalars are not even arbi-
trary complex numbers, so their invariance under global
U(1) and Spin(d) rotations also prohibits a dependence
on φ(x) and θi(x) on the local string, x ∈ Sk. Therefore,
we can treat them as constants:

I ′1,d = i
∑
k

∫
Sk

[
d−1∑
i=1

(dθi)Ī
(i)
k,d−1 − (dφ)Īk,d−1

]
(97)

= i
∑
k

[
d−1∑
i=1

(∆θi)Ī
(i)
k,d−1 − (∆φ)Īk,d−1

]
.

Here, ∆θi and ∆φ are the respective angle differences be-
tween the opposite ends of the string segments inside the
integration domain. If θi or φ varied slowly, we would
need to deal with the consequences of I ′1,d being possibly
finite. However, we need a topological Lagrangian term
only in the effective theory that describes the coarse-
grained dynamics of an incompressible quantum liquid.
The spatial and temporal variations of θi, φ average out
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to zero on the coarse-graining scale ξ (which is larger
than the average spatial separation between mobile sin-
gularities), causing I ′1,d to effectively vanish.

Given that I ′1,d → 0 is irrelevant upon coarse-graining

in incompressible quantum liquids, the relationship (92)
directly connects a d dimensional integral I1,d on a ball
Bd ⊂ Rd to integrals Ik,d−1 defined on d− 1 dimensional
balls (discs) Bd−1 ⊂ Sd−1 that live on the boundary Sd−1

of the original Bd. Such a connection separately holds for
every point-like topological defect in d dimensional space.
We can carry out identical analysis starting from each
Ik,d−1 on its own Bd−1, and relate it to similar Ik,d−2.
Clearly, we can proceed recursively down to the lowest
rank, by constructing a tree-graph in which a node at
any rank 2 < n ≤ d represents an integral Ii,n equal to
the sum of Ij,n−1 at lower ranks:

Ii,n =
∑
j

Ij,n−1 . (98)

If we explicitly calculate the well-defined integrals

Ij,2 =

∫
B2(j)

d2xF2 =

∮
S1(j)

dx εµψ
†∂µψ (99)

on loops that bound B2(j), we can recover the highest
rank integrals Id which are related to (10) and extract
the topological charge of monopoles and hedgehogs.

Charge currents contribute (99) through the U(1)
phase φ:

Ij,2
charge−−−−→ i|ψ|2

∮
S1(j)

dx εµ∂µφ = i|ψ|2
∮

S1(j)

dφ = 2πi|ψ|2Nj ,

where Nj ∈ Z is the winding number of φ on the loop.
We assumed that |ψ|2 is finite, incompressible and con-
stant on the loop length scales. The formula (98) recur-
sively collects all such winding numbers into Id, which
is designed to detect the topological charge of a point-
like monopole in d dimensions. The collection pattern is
identical to that of Dirac attachments discussed in Sec-
tion III A. If the spin structure of ψ is smooth, we find

Id
charge−−−−→

∫
Bd

ddx εµ1···µdψ
†∂µ1 · · · ∂µdψ = 2πi|ψ|2N

(100)
for a uniform |ψ|2 6= 0, where N is the total monopole
charge contained within Bd.

Spin degrees of freedom n̂(θ1 · · · θd−1) can contribute
to (99) only through the angle θd−1 ∈ [0, 2π), since
the other angles θj ∈ [0, π] are topologically inert on
loops. A vortex singularity of θd−1 can exist only at
positions where θd−2 = 0 or θd−2 = π, because n̂
given by (27) must be single-valued. At such positions,
the value of θd−1 does not distinguish different vectors
n̂ = x̂a(ψ†γaψ). Hence, the spin coherent state ψ
can only acquire a U(1) phase factor eiθ under rotation

exp(−iJd−1,dθd−1). In other words, ψ is an eigenspinor of
Jd−1,d at the vortex singularities of θd−1, with an eigen-
value S cos(θd−2) = ±S that depends on the Spin(d) rep-
resentation. The integral (99) is most easily calculated
on an infinitesimal loop around the vortex singularity,
starting from (86) and ∂µψ = −i(∂µθd−1)Jd−1,dψ + · · ·
where we ignore the topologically trivial angle variations:

Ij,2
spin−−→ −i(ψ†Jd−1,dψ)

∮
S1(j)

dx εµ∂µθd−1

= −2πi|ψ|2S cos(θd−2)Nj . (101)

The winding number Nj of θd−1 is related to the topolog-
ical charge of a hedgehog defect in the n̂ configuration, as
naively indicated in the formula (33) and the surround-
ing discussion. When we go one rank up, the integral
Ii,3 is defined on the S2 sphere which contains multi-
ple loops indexed by j. The total vorticity

∑
j Nj = 0

of θd−1 must vanish on that closed manifold S2. How-
ever, vortices and antivortices are necessarily attached
to the opposite “poles” θd−2 = 0 and θd−2 = π respec-
tively. One could visualize this situation by imagining
vortex lines of θd−1 that stretch in a three-dimensional
space and go through the S2 sphere. In this manner,
the factor cos(θd−2) in the above formula constructively
adds the opposite vortex charges on S2, and effectively
translates into a factor of 2 if we collect the numbers
Nj only from the “north” poles. Analogous factors of 2
appear each time we move one rank up in the hierarchy
because every n dimensional hedgehog configuration on
an n sphere always has at least one “north” θn = 0 and
“south” θn = π pole where the lower-rank angles θi, i < n
form an n− 1 dimensional hedgehog of their own (living
on a lower-dimensional sphere Sn−1 ⊂ Sn centered at
the pole). The formula (27) illustrates this mathemati-
cally. Most generally, every point singularity of Fn in an
n dimensional domain terminates a number of south-pole
and north-pole singular strings of Fn−1 in the same do-
main, which together carry a vanishing πn−1(Sn−1) and
a non-vanishing πn(Sn) topological charge. The latter
is equal to twice the πn−1(Sn−1) charge collected from
north poles only, and both are immune to smooth field
transformations. In the end, we find:

Id
spin−−→

∫
Bd

ddx εµ1···µdψ
†∂µ1

· · · ∂µdψ = −2d−1πi|ψ|2SN

(102)
for a uniform |ψ|2 6= 0, where S is a representation-
dependent eigenvalue of the rotation generators Jab and
N is the total hedgehog charge contained within Bd.

Finally we are well positioned to explore the following
form of the topological Lagrangian term:

Lt ∝ i εµνλ1···λd−1
ψ†∂µ∂ν∂λ1 · · · ∂λd−1

ψ . (103)

The structure of derivatives is compatible with (78). The
rank d − 1 gauge field should clearly emerge by coarse-
graining the antisymmetrized (A) expression

Aλ1···λd−1
∝ Aψ†∂λ1

· · · ∂λd−1
ψ (104)
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because its quantized integral (10) extracts the topologi-
cal charge enclosed within a sphere Sd−1 in the same fash-
ion as the integral Id treated to Stokes-Cartan theorem
in (91). The topological current (75) similarly emerges
by coarse-graining

Jµ = εµνλ1···λd−1
∂νAλ1···λd−1

(105)

∝ εµνλ1···λd−1
ψ†∂ν∂λ1

· · · ∂λd−1
ψ .

Note that the derivative ∂ν is initially applied on (104)
externally, but it can be pulled inside, between ψ† and
ψ, since Jµ always lives in space-time integrals and we
found that the integrals I ′n such as (90) can be ignored.
Lastly, the topological Lagrangian term (78) is:

Lt = iKd JµJµ ∝
1

2

[
ψ†(∂µψ)− (∂µψ

†)ψ
]
Jµ

=
1

2

[
ψ†(∂µJµψ)− (∂µψ

†Jµ)ψ
]

= ψ†(∂µJµψ)− 1

2
∂µ(ψ†Jµψ)− 1

2
ψ†(∂µJµ)ψ

→ ψ†(∂µJµψ) . (106)

The absence of a U(1) gauge field Aµ in the charge cur-
rent Jµ is deliberate and in the spirit of extracting defect
fluctuations from matter fields; Aµ can be generated by a
singular gauge transformation. Behind the arrow, we re-
moved a total derivative and the vanishing contribution
of ∂µJµ → 0 in incompressible quantum liquids. The last
remaining piece amounts to (103) after observing that the
omitted proportionality constant in (105) must include a
factor of |ψ|−2. Jµ is intrinsically composed from the
angles θi and φ that ψ depends on, and does not scale in
proportion to |ψ|2.

The precise proportionality constant in (103) can be
determined using (100) and (102). We know that the
topological charges featured in these formulas obtain
from the same gauge fields that live in the topological La-
grangian term. However, we have clearly identified two
independent topological charges, one for monopoles and
one for hedgehogs. We must relate them to two different
gauge fields at rank d− 1, according to (10):

monopoles: Nm =
1

2π

∮
Sd−1

dd−1x εj1···jd−1
Am
j1···jd−1

hedgehogs: Nh =
1

Sd−1

∮
Sd−1

dd−1x εj1···jd−1
Ah
j1···jd−1

Here, Am and Ah are the final members of the Abelian
and non-Abelian gauge field hierarchies respectively.
Since (103) renders Lt ∝ Id, but extracts both topo-
logical charges from the same spinor field, we can write:

Lt =
iKdSd−1

2d−1πS
ψ†εµ1···µd+1

∂µ1 · · · ∂µd+1
ψ

→ iKd Jµ

(
J h
µ −

Sd−1

2d−1πS
Jm
µ

)
(107)

with hedgehog and monopole currents:

J h
µ = εµνλ1···λd−1

∂νA
h
λ1···λd−1

(108)

Jm
µ = εµνλ1···λd−1

∂νA
m
λ1···λd−1

.

It is interesting to note that the topological charges of
any additional vector fields m̂ embedded into the spinor
ψ would also be automatically governed by the topolog-
ical term (107). If such a vector field spans a vector
space with fewer dimensions than d, its topological de-
fects would need to be enriched by Dirac attachments
similar to those of the U(1) monopoles.

C. Designing topological terms to meet symmetry
requirements

The topological Lagrangian term (78) is manifestly in-
variant under translations and rotations in space and
time. Its other important symmetry properties are trans-
formations under time reversal x0 → −x0 and mirror re-
flection xi → −xi. We will analyze them in real rather
than imaginary time. The fields transform as:

ψ(x0,x)
x0→−x0−−−−−→ CI0ψ(−x0,x) (109)

ψ(x0,x)
xi→−xi−−−−−→ Iiψ(x0, x1, . . . ,−xi, . . . , xd) ,

where C performs complex conjugation of numerical fac-
tors (CwC† = w∗), and Iµ carries out µ-inversion on the
spinor degrees of freedom. This leads to the following
transformations

J0
x0→−x0−−−−−→ J0 , J0

xi→−xi−−−−−→ J0 (110)

Jj
x0→−x0−−−−−→ −Jj , Jj

xi→−xi−−−−−→ (−1)δijJj

of the charge current (79), and applies to both relativistic
and non-relativistic cases. The Abelian rank 1 gauge field
must transform the same way by gauge invariance. For
all higher ranks, we can use relationships (18) to deduce:

Aµ1···µn
x0→−x0−−−−−→ −

[
n∏
k=1

(−1)δµk,0

]
Aµ1···µn (111)

Aµ1···µn
xi→−xi−−−−−→ +

[
n∏
k=1

(−1)δµk,i

]
Aµ1···µn .

Hence, the monopole current extracted from (75) trans-
forms as:

J0
x0→−x0−−−−−→ −J0 , J0

xi→−xi−−−−−→ −J0 (112)

Jj
x0→−x0−−−−−→ +Jj , Jj

xi→−xi−−−−−→ −(−1)δijJj .

Combining (110) and (112) yields non-trivial transforma-
tions of the monopole topological term (78), which takes
form Lt = −KdJµJ µ (without a factor of i) in the real
time path integral:

Lt
x0→−x0−−−−−→ −Lt , Lt

xi→−xi−−−−−→ −Lt . (113)
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The topological term breaks time reversal and mirror
symmetries. This is the behavior of a Chern-Simons cou-
pling in d = 2, and it generalizes to higher dimensions.
We will show later that the coupling constantKd depends
on the scalar gauge flux at rank d− 1, which generalizes
the magnetic field of d = 2.

The topological Lagrangian Lt governs the dynamics
of hedgehogs as well, so we should also analyze the time
reversal and mirror reflections of the spin currents (37)
and non-Abelian gauge fields. The latter must transform
the same as generalized currents (59), which in turn de-
pends on how the vector field n̂ transforms. There are
two characteristic transformation rules for n̂, pseudovec-
tor (P) and vector (V), which are consistent with the
expected rank 2 tensor transformations of the angular
momentum (85):

P: n̂a
x0→−x0−−−−−→ −n̂a , n̂a

xi→−xi−−−−−→ −(−1)δia n̂a

V: n̂a
x0→−x0−−−−−→ n̂a , n̂a

xi→−xi−−−−−→ (−1)δia n̂a .

The rank n non-Abelian gauge field transforms as:

P: A
an+1···ad−1
µ1···µn

x0→−x0−−−−−→ (114)

(−1)n−1

[
n∏
k=1

(−1)δµk,0

]
A
an+1···ad−1
µ1···µn

A
an+1···ad−1
µ1···µn

xi→−xi−−−−−→

(−1)n

[
d−1∏

k=n+1

(−1)δak,i

][
n∏
k=1

(−1)δµk,i

]
A
an+1···ad−1
µ1···µn

V: A
an+1···ad−1
µ1···µn

x0→−x0−−−−−→[
n∏
k=1

(−1)δµk,0

]
A
an+1···ad−1
µ1···µn

A
an+1···ad−1
µ1···µn (x0, x1, . . . , xi, . . . , xd)

xi→−xi−−−−−→

−

[
d−1∏

k=n+1

(−1)δak,i

][
n∏
k=1

(−1)δµk,i

]
A
an+1···ad−1
µ1···µn .

Then, the hedgehog current transforms as:

P: J0
x0→−x0−−−−−→ (−1)dJ0 , J0

xi→−xi−−−−−→ (−1)dJ0

Jj
x0→−x0−−−−−→ −(−1)dJj , Jj

xi→−xi−−−−−→ (−1)d+δijJj
V: J0

x0→−x0−−−−−→ J0 , J0
xi→−xi−−−−−→ J0

Jj
x0→−x0−−−−−→ −Jj , Jj

xi→−xi−−−−−→ (−1)δijJj , (115)

and the topological Lagrangian density Lt = −KdJµJ µ
in real time behaves according to:

P: Lt
x0→−x0−−−−−→ (−1)dLt , Lt

xi→−xi−−−−−→ (−1)dLt

V: Lt
x0→−x0−−−−−→ Lt , Lt

xi→−xi−−−−−→ Lt . (116)

We immediately observe that this is consistent with the
behavior of monopoles (113) only in odd-dimensional d
spaces when the spin is a pseudovector.

One might be concerned whether the symmetry prop-
erties of the topological Lagrangian expressed using
spinors are the same as the properties deduced above. In
the real time path integral, this topological Lagrangian
transforms as:

Lt ∝ εµνλ1···λd−1ψ†∂µ∂ν∂λ1
· · · ∂λd−1

ψ (117)

x0→−x0−−−−−→ εµνλ1···λd−1(ψ†T †)∂µ∂ν∂λ1 · · · ∂λd−1
(T ψ)

= εµνλ1···λd−1ψ†(T †∂µ∂ν∂λ1
· · · ∂λd−1

T )ψ

under time reversal T . Here we interpret the transforma-
tion either in the Schrodinger or Heisenberg picture. In
the Schrodinger picture, a simple scalar field transforms
as T ψ(x0,x) = ψ(−x0,x), so that Lt → −Lt as previ-
ously found for monopoles. Interpreted in the Heisenberg
picture, this implies the transformation T †τT = −τ of
the singular operator

τ = εµνλ1···λd−1
∂µ∂ν∂λ1 · · · ∂λd−1

. (118)

For spinors that represent a vector field n̂, we apply the
time reversal T on (86). In the Schrodinger picture,

T ψ = T e−iJd−1,dθd−1T † · · · T e−iJ2,3θ2T † . (119)

Since both the angular momentum operators Jab and
the factors of i change sign under time reversal, all ro-
tation operators e−iJi,i+1θi stay the same apart from
θi(x0) → θi(−x0). However, the reference spinor
ψ0 = ψ(0, θ2, θ3, . . . , θd−1) transforms as T ψ(0, · · · ) =
ψ(π, · · · ) in the case of pseudovectors (P), and T ψ0 = ψ0

in the case of vectors (V). Pseudovector transformations
require T γaT † = −γa, while vector transformations are
T γaT † = +γa; neither one of them affects the rank 2
tensor transformations of the angular momentum (85).
After all manipulations, one finds for pseudovectors:

P: T ψ(θ1 · · · , θd−2, θd−1) (120)

= ψ(π − θ1 · · · , π − θd−2, π + θd−1) .

Applying the derivatives from Lt on T ψ has the same
effect under time reversal as the transformations we de-
duced for the hedgehog Lt. So, generally, the transforma-
tions of Lt expressed in terms of currents and spinors are
always the same. However, this is unusual because the
Heisenberg picture now implies that there is no unique
symmetry transformation for the singular operator (118).
T τT † depends on the dimensionality d and the type of
spinor singularities that this operator is applied to. We
conclude that the singular operator τ does not necessar-
ily have a definite parity under time reversal and mirror
reflections, i.e. it can have different parities in distinct
Fock subspaces.

The intrinsic dynamics of the system need not feature
the same reduced or broken symmetries as the above
topological term. Then, the topological order, if stable,
must be described by a different topological term L′t with
compatible symmetries. We will consider one example
of an alternative topological term L′t that can be con-
structed from the spinor fields. The degrees of freedom
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and their topological defects are the same as before, so
we may only couple different currents to the topological
defect current Jµ in L′t. Consider spin currents (37) and
a pure spin-related topological Lagrangian:

L′t = −Ka2···ad−1

d ja2···ad−1
µ J µ (121)

in real time, whose coupling K
a2···ad−1

d necessarily breaks
spin rotation symmetry. Obviously, this can be useful
only if the spin dynamics actually has reduced symme-
try, with two unbiased spin directions equivalent to U(1).
The time reversal and mirror reflections of L′t for pseu-
dovectors (P) and vectors (V) are found to be:

P: L′t
x0→−x0−−−−−→ −(−1)dL′t

L′t
xi→−xi−−−−−→ −(−1)d

[
d−1∏
k=2

(−1)δak,i

]
L′t

V: L′t
x0→−x0−−−−−→ −L′t

L′t
xi→−xi−−−−−→ −

[
d−1∏
k=2

(−1)δak,i

]
L′t .

We see, for example, that L′t could be appropriate for
topological orders in d = 3 with time-reversal symmetry,
which is absent in the original construction. A similar
idea was used in a two-dimensional setting41 to describe
spin-orbit-coupled fractional topological insulators. In
terms of the spinor fields, we would write in real time:

L′t ∝ −K
a2···ad−1

d εa0a1a2···ad−1
εµνλ1···λd−1 (122)

×ψ†γa0γa1∂µ∂ν∂λ1
· · · ∂λd−1

ψ .

Obviously, the symmetries of the possible topological
terms have certain restrictions determined by the na-
ture of fields and their topological defects. These are
reflected on the possible symmetries of topologically or-
dered ground states.

VI. TOPOLOGICAL ORDER

The following sections explore the physical properties
of incompressible quantum liquids in which πd−1(Sd−1)
topological defects are abundant and mobile. Section
VI A introduces fractionalization of the intrinsic parti-
cles’ quantum numbers. We will show that the topologi-
cal Lagrangian term tends to bind a rationally quantized
amount of elementary charge or spin to a mobile topolog-
ical defect, and analyze how this fractionalization holds
up to perturbations that spoil the conservation laws. We
will find that stable topological orders can be character-
ized by “filling factors” associated with monopoles and
hedgehogs, in analogy to fractional quantum Hall states.
Section VI B presents a calculation of the topological
ground state degeneracy on non simply connected mani-
folds. Section VI C contains a basic discussion of braiding
operations, and Section VI D considers restrictions im-
posed on topological orders by microscopic properties of

electrons. Section VI E discusses soft boundary modes,
and Section VI F analyzes response to certain external
perturbations.

A. Fractional quasiparticles

Here we consider fractionalization in an incompress-
ible quantum liquid whose effective imaginary time La-
grangian contains the topological term (78). Fractional-
ization is revealed by the kinematic relationship between
the currents of charge and topological defects. We will
find this relationship by converting the effective theory
to real time and deriving the stationary action condition
from the variations of the Abelian gauge field Aµ. Apart
from the topological term, the relevant parts of the real
time Lagrangian density that contain Aµ are collected
from (43) and (48), with a substitution κ1 = |ψ|2 to fix
the units:

L =
|ψ|2

2
(jµ +Aµ)(jµ +Aµ)− 1

4e2
1

FµνF
µν

−κ
′
2

2

(
Fµν

2
−Aµν

)(
Fµν

2
−Aµν

)
−Kd|ψ|2(jµ +Aµ)J µ + · · · . (123)

Jµ = |ψ|2(jµ + Aµ) is the gauge invariant charge cur-
rent density, Fµν = ∂µAν − ∂νAµ is the electromagnetic
field tensor, and Jµ is the current density of topologi-
cal defects. This is similar to the recently proposed BF
theory20,29,30,46 in d = 3, without the linking term. Sta-
tionary variations δL = 0 with respect to Aµ produce the
following field equation

Jµ =
1

e2
1

∂νF
µν+κ′2∂ν

(
Fµν

2
−Aµν

)
+Kd|ψ|2J µ (124)

if Jµ is just the current of hedgehogs and hence indepen-
dent of Aµ. The case of monopoles is more complicated
and we will revisit it later, even though much of this dis-
cussion applies to monopoles as well. Let us focus on the
purely kinematic effect:

Jµ → Kd|ψ|2J µ . (125)

This describes the binding between particle charge and
topological charge. Excitations must include the compos-
ites of particles and defects. Particle charge is microscop-
ically quantized as an integer in the present formalism,
and topological charge is quantized in the units of q by
the integral (10). In order for both particles and defects
to be mobile in a uniform incompressible quantum liq-
uid, they cannot propagate independently of each other –
the Heisenberg uncertainty principle necessarily localizes
one or the other when they move relative to each other
in the same space. These facts imply that a composite
quasiparticle must be a bundle of an integer number n of
particles and an integer number m of topological defects.
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Also, the composite quasiparticles must have hard-core
repulsive interactions. Let us define a “filling factor”

ν =
n

m
, n,m ∈ Z (126)

whose rational quantization is a necessary condition for
the stability of an incompressible quantum liquid. If we
define a scalar “magnetic field”

B = J 0 = ε0νλ1···λd−1∂νAλ1···λd−1
, (127)

then we can express the number density of topological
defects as B/q according to (11). Since |ψ|2 is the number
density of particles, we can alternatively write the filling
factor as

ν =
|ψ|2

B/q
=

J0

J 0/q
. (128)

Note that we use the non-relativistic charge current be-
cause the particle-hole symmetry is broken. Comparing
with (125), we find Kd = B−1, and hence:

Jµ → ν

q
J µ . (129)

The topological Lagrangian for hedgehogs (q = Sd−1)
can now be rewritten in real time as:

Lt = −(jµ +Aµ)× ν

q
J µ . (130)

A composite bundle of n particles and m topological
defects is not an elementary excitation of the incompress-
ible quantum liquid. Since the topological defect number
is conserved and quantized, one can apply an external
field to trap a single topological defect in a small vol-
ume of the system. This perturbation does not by itself
localize the particle charge. However, the charge fluid
will dynamically redistribute to supply the amount ν of
charge to the region where the defect is localized. This
is described by the above field equation. The resulting
charge-defect composite object is an elementary excita-
tion, which can be also set to free motion. Charge frac-
tionalization occurs at least when ν < 1. Similarly, one
can localize a quantized conserved particle charge using
an external field. It is evident even without an explicit
derivation that the dynamics of particle and topological
charges is self-dual: both charges are point-like and gov-
erned by the same symmetries and the duality-invariant
topological term. In the dual description, a localized par-
ticle charge is quantized topologically. It attracts to itself
a fractional amount ν−1 of fluid topological charge, form-
ing a fractional quasiparticle. We would consider it an
elementary excitation if ν > 1.

When particles and defects carry additional internal
degrees of freedom (e.g. spin), these become fractional-
ized too. However, it is up to symmetries to conserve or
not conserve these degrees of freedom. The precise con-
servation laws may look different in the two dual descrip-
tions. For example, the topological charge conservation

is guarantied by topological protection in any local the-
ory, while the particles’ spin conservation is a matter of
symmetry. Perturbations that break the relevant gauge
symmetry of the theory can modify the field equation
(124) and ruin the observable fractionalization condition
(129) even when the gap of the topologically ordered state
remains open. If such a perturbation is random (e.g. dis-
order), then the quantized fractionalization may still be
asymptotically recovered in the long-wavelength limit –
for the fractional quasiparticles that experience the per-
turbation only on average.

Let us now analyze the relationship between charge
and monopole currents, made complicated by an implicit
dependence of the monopole current Jµ on the gauge
field Aµ. To reveal this dependence, we must integrate
out all gauge fields at ranks n > 1. Substituting

Aλ1···λn =
1

n

n∑
i=1

(−1)i−1∂λiAλ1···λi−1λi+1···λn + δAλ1···λn

(131)
for all n > 1 in (48), (78) and integrating out the gapped
fluctuations of δAλ1···λn leads to a renormalization of the
rank 1 Maxwell term and an effective substitution of Aµ
in

J µ = εµνλ1···λd−1∂ν∂λ1
· · · ∂λd−2

Aλd−1
(132)

consistent with the recursive inter-rank linking (18). As
discussed before, the antisymmetrized derivatives have
an effect only on singular functions. The full monopole
topological part of the stationary action condition for
(123) becomes:

∂Lt
∂Aµ

∝ −J µ −Aα
∂J α

∂Aµ
(133)

→ −J µ − (−1)d−1εανλ1···λd−2µ∂λd−2
· · · ∂λ1∂νAα

= −J µ + (−1)d−1εµνλ1···λd−2λd−1∂λd−2
· · · ∂λ1

∂νAλd−1

= −
(

1 + (−1)σ+d
)
J µ = −2fdJ µ (134)

We substituted (132) and then carried out integration
by parts (indicated by the arrow) to transfer all space-
time derivatives onto Aα. The index α was subsequently
relabeled into λd−1. At the end, we reordered the indices
λd−1, . . . , λ1, ν to reconstruct J µ given by (132), and this
produced the sign (−1)σ:

σ = (d−2)+(d−3)+· · ·+2+1 =
(d− 2)(d− 1)

2
. (135)

The ensuing kinematic field equation that relates charge
and monopole currents

Jµ → Kd|ψ|22fdJ µ (136)

is modified by the constant

fd =
1

2

(
1 + (−1)σ+d

)
=

{
1 ,

[
d
2

]
is odd

0 ,
[
d
2

]
is even

, (137)
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where [x] is the integer part of x. This is merely a
renormalization of the coupling Kd in spatial dimensions
d ∈ {2, 3, 6, 7, 10, 11, . . . }, so we can repeat the previous
analysis to write

Jµ → ν

q
J µ , Lt = −(jµ +Aµ)× ν

2q
J µ (138)

with q = 2π for monopoles. Charge-monopole attach-
ment in d = 3 is often called Witten effect42. However,
if d ∈ {4, 5, . . . } then Jµ → 0 does not mirror monopole
currents and there is no binding of fractional charge to
monopoles even though the ground state can be topolog-
ically ordered. This unusual pattern of dimensionality
affecting response functions has been also found in80.

The full topological Lagrangian density of a generic
system can govern both monopoles and hedgehogs with
topological current densities Jm

µ and J h
µ respectively. An

incompressible quantum liquid is characterized by two in-
dependent “filling factors”, νm for monopoles and νh for
hedgehogs. Consider the topological Lagrangian density
(107) derived from a single spinor field ψ. In dimensions
d ∈ {2, 3, 6, 7, 10, 11, . . . }, the coupling constant Kd is
related to the filling factors by:

J0 = Kd|ψ|2
(
J h0 − Sd−1

2d−2πS
Jm0

)
(139)

= Kd|ψ|2
(
Sd−1

νh
− Sd−1

2d−2πS

2π

νm

)
J0 ,

from which we conclude:

Kd|ψ|2 =

[
Sd−1

(
1

νh
− 1

2d−3S

1

νm

)]−1

. (140)

Therefore, the real time topological Lagrangian is

Lt = − jµ +Aµ

Sd−1

(
1
νh − 1

2d−3S
1
νm

) (J hµ − Sd−1

2d−1πS
Jmµ

)
,

(141)
and its complete kinematic field equation is:

Jµ =
1

Sd−1

(
1
νh − 1

2d−3S
1
νm

) (J hµ − Sd−1

2d−2πS
Jmµ

)
.

(142)
Note that νm → ∞ or νh → ∞ correspond to confined
monopoles or hedgehogs respectively. Additional degrees
of freedom that support topologically protected defects
could give rise to more filling factors.

The independence of monopole and hedgehog filling
factors can be reduced by interactions that tend to bind
monopoles to hedgehogs:

LZ ∝
(
J h
µJ h

µ − αJm
µ Jm

µ

)2

. (143)

The physical origin of such interactions is the Zeeman
coupling of magnetic moments to magnetic field. The
number of monopoles bound to hedgehogs, and hence
the ratio νm/νh, is determined dynamically through the

strength α of the spin-orbit coupling. A linear coupling
between the monopole and hedgehog currents is harder to
justify – it would enable a direct conversion of hedgehogs
to monopoles, which is forbidden at least in d = 3 by
angular momentum conservation.

The coupling of spin currents to topological defects
(121) is another route to incompressible quantum liquids,
when symmetries allow. The ensuing field equation

Jµ,a2···ad−1 =
νa2···ad−1

q
J µ (144)

describes fractionalization of spin degrees of freedom.
The value of the spin-related filling factor can be finite
only if the Spin(d) symmetry is broken and reduced to
U(1). The residual symmetry still conserves one spin
degree of freedom and enables its fractional quantization
(assuming that no other perturbation spoils the spin con-
servation law). However, this symmetry reduction sup-
presses ordinary hedgehogs. Spin currents can still couple
either to charge monopoles, or to the monopoles of the
surviving spin U(1) degree of freedom in purely magnetic
systems (q = 2π). The latter gives rise to spin liquids.

B. Topological ground state degeneracy on
non-simply connected manifolds

Topological order in d ≥ 2 can be identified by the
ground state degeneracy on a non-simply connected man-
ifold M = Sd−1 × S1 consisting of a d− 1 sphere swept
along an orthogonal loop direction. For simplicity, the
sphere and the loop have the same large radius L. Con-
sider a vector field configuration n̂(x1, . . . xd) where the
coordinates (x1, · · · , xd−1) ∈ Sd−1 live on the sphere
and xd ∈ S1 lives on the loop. Since the possible lo-
cal states of n̂ ∈ Sd−1 span a sphere themselves, we can
represent the field n̂(x1, . . . , xd) by the spherical angles
(θ1, . . . , θd−1) that depend on (x1, . . . , xd). The topolog-
ical invariant N of the vector field is:

N =
1

Sd−1

∮
Sd−1

d−1∏
i=1

dxi εj1···jd−1
Aj1···jd−1

, (145)

where

Aj1···jd−1
=
εk1···kd−1

(d− 1)!

d−1∏
i=1

(sin θi)
d−1−i ∂jiθki . (146)

is given by (28). For any finite N , the angles θi vary
at most by ∆θi ∼ 2πN on any closed loop of perimeter
∆x ∼ L around the sphere, so Aµ1···µd−1

∝ Ld−1.
The procedure for finding the ground state degeneracy

onM starts with identifying “fundamental” field config-
urations characterized by topological invariants. These
are classical configurations that all cost vanishing energy
in the thermodynamic limit. If quantum processes cause
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tunneling between these configurations, their classical in-
finite degeneracy is lifted down to a finite quantum de-
generacy. Smooth local deformations of a fundamental
configuration are gapped in an incompressible topological
quantum liquid, and readily integrated out only to renor-
malize the Maxwell coupling constant. In that sense,
we just need to study the spectrum that arises from the
quantum dynamics of the lowest energy fundamental con-
figurations. We can even introduce weak perturbations
that adjust the form of the fundamental configurations
to our liking, as long as the topological gap is not closed.

So, let the fundamental configurations n̂(x1, . . . , xd)
be undistorted hedgehogs given by (27), with
(θ1, . . . , θd−2, θd−1) = (θ′1, . . . , θ

′
d−2, Nθ

′
d−1) determined

only by the spherical angles θ′i of the points on Sd−1.
The resulting gauge field is constant:

Aj1···jd−1
(x1, . . . , xd) =

N

(d− 1)!Ld−1
εj1···jd−1

. (147)

We now extend the definition of the gauge field to allow
its indices µi to represent all space-time directions:

Aµ1···µd−1
(x0, x1, . . . , xd) ≡

N

(d− 1)!Ld−1
ε0µ1···µd−1d .

(148)
This is the correct extension because it implements flux
conservation by satisfying a Faraday law:

∂µJµ = 0 , (149)

where Jµ = εµνλ1···λd−1
∂νAλ1···λd−1

is the topological de-
fect current density (i.e. flux). Local quantum processes
on M are not able to change the protected topological
invariant N , but global tunneling (instantons) will intro-
duce some quantum dynamics for N .

Next, let us similarly set up the U(1) gauge field of
charge currents to:

Aµ(x0, x1, . . . , xd) ≡
N ′

L
δµ,d . (150)

This threads a U(1) flux 2πN ′ through the opening of the
S1 loop. N ′ is quantized as an integer because Aµ = ∂µφ
was obtained in a singular gauge transformation from
the single-valued U(1) phase φ. No local processes can
change N ′ if the flux of Aµ is conserved. However, if the
Abelian rank 1 flux is not conserved, then there are local
processes shown in Fig.3 that can change N ′. This possi-
bility in incompressible d > 2 quantum liquids, e.g. with
deconfined monopoles, was discussed in Section IV C.
We will first construct a Hamiltonian that describes only
global flux tunneling, and eventually patch it to take into
account any locally-caused N ′ fluctuations.

In d > 2, the topological Lagrangian term (78) takes

the form:

Lt = iKd|ψ|2(∂µθ +Aµ)εµνλ1···λd−1
∂νAλ1···λd−1

→ iKd|ψ|2εµνλ1···λd−1
Aµ∂νAλ1···λd−1

=
iKd|ψ|2

Ld(d− 1)!
(−1)dενλ1···λd−1dε0λ1···λd−1dN

′∂νN

=
iKd|ψ|2

Ld
(−1)dN ′∂0N (151)

after integrating out the residual phase θ. At this point,
taking the time derivative of an integer N is sensible
because the actual quantization N/Ld vanishes in the
thermodynamic limit L→∞. If we substitute the gauge
fields in the rest of the Lagrangian density

L =
1

(d− 1)!

1

2e2
1

(
εµ1···µd−1νλ∂νAλ

)2

(152)

+
1

2e2
d−1

[
εµνλ1···λd−1

∂νAλ1···λd−1

]2
+ Lt ,

and integrate out the spatial coordinates on M, we ob-
tain the Lagrangian in which N and N ′ are canonical
coordinates:

L =

∫
ddxL = 2πSd−1

[
Ld−2 1

2e2
1

(∂0N
′)2 (153)

+
1

Ld−2

1

2e2
d−1

(∂0N)2 + i(−1)dKd|ψ|2N ′∂0N

]
.

Here, the quantization of N,N ′ becomes a significant fea-
ture. This theory can be understood only as the “contin-
uum limit” of a more accurate compact theory that we
will construct in the end. From the corresponding real
time Lagrangian:

L = 2πSd−1

[
Ld−2 1

2e2
1

(∂0N
′)2 +

1

Ld−2

1

2e2
d−1

(∂0N)2

−(−1)dKd|ψ|2N ′∂0N

]
we can obtain the canonical momenta:

P =
δL

δ∂0N
= 2πSd−1

[
∂0N

Ld−2e2
d−1

− (−1)dKd|ψ|2N ′
]

P ′ =
δL

δ∂0N ′
= 2πSd−1

Ld−2

e2
1

(∂0N
′) , (154)

and the Hamiltonian

H = P (∂0N) + P ′(∂0N
′)− L =

(P − αN ′)2

2M
+

P ′2

2M ′
,

where the “masses” are:

M =
2πSd−1

e2
d−1

1

Ld−2

L→∞−−−−→
d>2

0 (155)

M ′ =
2πSd−1

e2
1

Ld−2 L→∞−−−−→
d>2

∞ .

The canonical momentum shift coefficient

α = −(−1)d2πSd−1Kd|ψ|2 (156)
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(a)

(b)

FIG. 3. Processes that change the Abelian rank 1 flux 2πN ′ on a 2-torus representation of space. (a) Conserved flux:
instantaneously create a vortex-antivortex pair, drag the vortex around the torus (non-local), then annihilate it with the
antivortex. (b) Non-conserved flux – a flux line can tear and terminate with a monopole: create a vortex, afterwards create an
antivortex, then annihilate the pair (all local). The transformations of the shown fictitious flux line (thick blue) that do not
take place on the torus manifold are not physical processes that need to involve some energy or time.

is determined by the hedgehog filling factor:

α

2π
= −(−1)dSd−1

ν

q
= −(−1)dν (157)

based on the discussion in Section VI A. We inter-
pret the Hamiltonian H as a quantum-mechanical oper-
ator whose spectrum determines the topological ground
state degeneracy of incompressible quantum liquids on
M. The canonical coordinate operators have eigenvalues
N,N ′ ∈ Z, so their canonical conjugate operators have
eigenvalues P, P ′ ∈ (−π, π). This means that the Hamil-
tonian must be properly regularized at high energies into
a compact form, to treat P and P +2π as the same state:

H = t+ t′ − t cos(P − αN ′)− t′ cos(P ′) . (158)

A vortex “line” N ′ 6= 0 threaded through the S1 opening
of M = Sd−1 × S1 can occasionally drift through S1.
Such instanton events connect different classical ground
states and affect the kinetic energy E ∼ P ′2 in the Hamil-
tonian H. Since the Maxwell coupling constants en are
not allowed to depend on the system size, the “masses”
for d > 2 have extreme behaviors t ∼ M−1 → ∞ and
t′ ∼ M ′−1 → 0 in the thermodynamic limit L → ∞.
However, this picture includes only the global instanton
processes. If the Abelian rank 1 flux is not conserved in
the incompressible quantum liquid, then local tunneling
processes introduce N ′ fluctuations. It is clear from the
symmetries that such processes merely renormalize t′ to
a finite value. Still, t � t′ allows us to diagonalize H
perturbatively.

First consider the unperturbed problem t′ = 0, which
is also physically relevant when the Abelian rank 1 flux
is conserved. The unperturbed ground state energy does
not depend on the eigenvalue of P ′. Any superposition of

P ′ eigenstates is a Hamiltonian eigenstate, including the
eigenstates of N ′. Fixing N ′ also completely determines
the eigenvalue of P in the ground state because t → ∞.
The ground state degeneracy is infinite given that the
smallest possible ground state energy E0 = 0 is obtained
with P = αN ′ (mod 2π) for every N ′ ∈ Z. If α is
quantized as:

α

2π
= ±ν =

p

q
, p ∈ Z , q ∈ Z/{0} , (159)

then P takes one of the q possible discrete values in
any degenerate ground state. Otherwise, if α/2π is irra-
tional, the values of P span the entire continuous inter-
val (−π, π) across all ground states. The latter indicates
frustration, which can be illustrated in a quantum phase
transition from a Mott insulator (with non-conserved
topological charges) to an incompressible quantum liquid
characterized by quantum numbers P and N ′. The sys-
tem must pick some values of P and N ′ at the transition.
If the system enters a state with an arbitrary eigenvalue
of P , it also needs to find the matching N ′ in order to
not pay energy that scales as Ld−2 with the system size
L. The matching N ′ for an irrational α/2π is generally
infinite and arbitrarily far away from the established N ′

in the system’s original state. Fine-tuning P is equally
difficult. Without a dynamics that can make either P or
N ′ fluctuate (t′ → 0), the system is stuck in a metastable
state with high energy. There is probably a better con-
ventional state that resolves metastability and has lower
energy. On the other hand, a rational α/2π = p/q leaves
behind only a finite set of P eigenvalues in the degenerate
ground states, each of which corresponds to an infinite
set of matching N ′ values spaced by q. This is much less
frustration, especially if q is small, and gives the system a
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good chance to enter a topologically ordered state across
the quantum phase transition.

Now consider a perturbation 0 < t′ � t in the absence
of the Abelian rank 1 flux conservation. Its main effect
is to lift the macroscopic degeneracy of states labeled by
N ′. The instanton Hamiltonian turns into a Hofstadter
problem, with a finite q-fold ground state degeneracy for
α/2π = p/q. The Hofstadter gaps are of the order of
t′, and the bandwidths are dominated by t. Note that
the instanton spectrum is completely discrete in d > 2:
the upper cutoff for N is of the order of L/a, where a is
the lattice spacing of the microscopic crystal, so that the
quantization of P is of the order of 2πa/L and the quanti-
zation of instanton energy levels inside a Hofstadter band
is roughly t× 2πa/L ∼ Ld−3.

Certain aspects of this topological order have classi-
cal character. First of all, the Abelian flux conserva-
tion with t′ = 0 produces infinite ground state degener-
acy – a separate topological sector is defined for every
classical configuration of vortices threaded through the
manifold opening. Even if t′ > 0 in the absence of flux
conservation, the scaling t ∼ Ld−2 creates macroscopic
energy barriers in the instanton spectrum E(P ) between
the remaining q-fold degenerate ground states. Instanton
and local fluctuations at finite temperatures have energy
δE ∼ T � t that is not sufficient to change a topological
sector. Therefore, the d > 2 topological order survives at
finite temperatures, until the rank d−1 flux conservation
fails.

It is instructive to compare the classical topological
order for α/2π = p/q in d > 2 with the d = 2 topological
order of quantum Hall states. When the latter is analyzed
on a S1×S1 = T 2 torus, one finds two integer canonical
variables N ≡ N1 and N ′ ≡ N2 of the same type, having
the same finite mass M . The corresponding canonical
momenta are similarly shifted in the Hamiltonian:

H =
(P − αN ′)2

2M
+

(P ′ + αN)2

2M
(160)

→ t− t
∑
i=1,2

cos(Pi − αεijNj) ,

but, since there is only one finite mass, the Hamilto-
nian always describes motion of a particle on a lattice in
the presence of an external magnetic flux α. The ensu-
ing Hofstadter problem produces a finite q-fold ground
state degeneracy, with finite energy barriers between the
ground states. Therefore, the d = 2 topological order
is fundamentally shaped by quantum processes and does
not survive at any finite temperature.

Monopoles can establish the same πd−1(Sd−1) topolog-
ical orders as hedgehogs on the manifoldM = Sd−1×S1,
but their deconfinement implies the Abelian flux non-
conservation at rank 1. If the monopole gauge field
configuration Aµ1···µd−1

carries a non-trivial topological

charge inside the opening of Sd−1

N =
1

2π

∮
Sd−1

d−1∏
i=1

dxi εµ1···µd−1
Aµ1···µd−1

, (161)

then the field configuration onM cannot be smoothly de-
formed to change N . Any attempt to smoothly change
N would have to start with a local deformation of the
fields at some x ∈ S1 that creates a non-zero flux diver-
gence ∂µJµ 6= 0 across the Sd−1 submanifold at x. This
monopole front at x would need to be gradually swept
across the entire S1 subspace (by changing x) in order to
bring the desired monopole charge difference δN from in-
finity into the interior opening of Sd−1 where the existing
charge N sits. The entire procedure is prohibited because
the dynamics of incompressible quantum liquid maintains
∂µJµ = 0 and the monopole front would cost infinite en-
ergy. Nevertheless, N is quantized because the monopole
must bring its unobservable Dirac string through M.

The dynamics of monopole topological sectors is anal-
ogous to that of hedgehogs. Repeating the above
derivation in d ∈ {2, 3, 6, 7, 10, 11, . . . } dimensions for
monopoles and hedgehogs combined leads to the instan-
ton Hamiltonian on M = Sd−1 × S1 up to a constant:

H = −th cos(P h−αhN ′)−tm cos(Pm−αmN ′)−t′ cos(P ′)

with:

αh

2π
= −(−1)dνh ,

αm

π
= −(−1)dνm . (162)

Both νh and νm must be quantized as rational numbers
in stable topologically ordered phases.

The topological degeneracy of the ground states on a
torus T d = (S1)d can be obtained similarly because the
topological invariants of monopoles and hedgehogs are
protected on (S1)d−1 just as well as on Sd−1. Instanton
dynamics is captured by the Hamiltonian:

H = −
∑
µ

[
th cos(P h

µ − αhN ′µ) + tm cos(Pm
µ − αmN ′µ)

+t′ cos(P ′µ)
]
,

where a set of canonical coordinates N ′µ, N
h
µ , N

m ∈ Z
and the corresponding canonical momenta P ′µ, P

h
µ , P

m ∈
(−π, π) is defined for every torus direction µ ∈ {1, . . . , d}.

Finally, we comment on the topological ground state
degeneracy in pure spin systems without charge degrees
of freedom. The spin current and the non-Abelian gauge
field coupled to it cannot be topologically quantized in
d > 2 because every n̂ configuration of the vector field
on S1 is smoothly deformable to any other configuration
(the integer quantization of N ′ in the instanton Hamil-
tonian is lost). The spin-only topological Lagrangian
density (121) “knows” this, and anticipates dynamics in
which the spin symmetry is reduced to U(1) – hence en-
abling the topological quantization of the remaining con-
served current, and monopole-like topological orders.

C. Quantum entanglement and braiding

A defining feature of topological order is long-range
quantum entanglement that makes it impossible to
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smoothly deform the ground state into an unentangled
product state. Here we discuss a few aspects of entangle-
ment in the πd−1(Sd−1) topological orders of monopoles
and hedgehogs, mostly focusing on d = 3 dimensions.
Some entanglement manifestations are topologically pro-
tected and thus immune to all smooth gap-preserving de-
formations of the Hamiltonian. They sharply character-
ize the topological order in all circumstances. Other en-
tanglement manifestations may be only dynamically pro-
tected by the finite energy gap of the topologically or-
dered state. They can depend on the symmetries and
Hamiltonian details, can be altered by the presence of
gapped excitations, and may be prone to having non-
quantized read-out values. Nevertheless, they still char-
acterize topological order under certain conditions.

Ground state degeneracy on non-simply connected
manifolds, unrelated to symmetry breaking, is the basic
manifestation of entanglement in every topologically or-
dered phase. A Hamiltonian with a gapped topologically
degenerate spectrum cannot be smoothly transformed
(without crossing a quantum phase transition) into a
topologically trivial Hamiltonian H0 = H1 + H2 + · · ·
whose ground state |0〉 = |1〉 ⊗ |2〉 ⊗ · · · is unentangled
in terms of microscopic degrees of freedom 1, 2, . . . and
hence non-degenerate (every factor |n〉 can independently
minimize its corresponding Hamiltonian’s Hn energy).
The basic characterization of topological entanglement
is a map N(M) which evaluates to the ground state de-
generacy on any given manifold M.

A topological quantum computer can implement
qubits with isolated topologically ordered systems whose
ground state degeneracy is N . The established topologi-
cal sector q ∈ {1, 2, . . . , N} of a qubit’s quantum state or
thermal ensemble in d ≥ 3 is the stored quantum infor-
mation that enjoys topological protection. The state of a
qubit can be changed externally by global braiding pro-
cesses of the kind shown in Fig.3. Multiple qubits can be
entangled on purpose by performing correlated braiding
operations on them.

Beyond these basics, a topological order may be
characterized by additional topologically protected fea-
tures. Quantum Hall liquids in d = 2 dimensions are
sharply characterized by the “exchange statistics” of frac-
tional quasiparticles (anyons), or more accurately by the
U(1) or higher internal-symmetry-group rotations of the
many-body quantum state in braiding operations that
exchange quasiparticles’ positions. Exchanging identical
particles in d > 2 dimensions is topologically protected
only within two homotopy classes of braiding trajectories,
allowing a sharp distinction between only bosonic and
fermionic exchange statistics59. We will show later that
various aspects of d > 2 braiding are still dynamically
protected and possibly interesting for quantum comput-
ing. But first we wish to identify the topologically pro-
tected braiding.

Generally, a braiding of excitations in a quantum state
|Ψ(v)〉 is generated by some external time-dependent per-
turbation G(t) to the Hamiltonian H. The excitations

may have some internal degrees of freedom specified by
a finite complex vector v. We can express the effect of
braiding using the matrix W (t) acting on v for which

v′ = Wv (163)

〈Ψ(v′)|U |Ψ(v)〉 ≡ 〈Ψ|W̄ †U |Ψ〉 = 1

holds, where U =
∏
t e
−i(H+G)dt is the time evolution

operator. In the case of Abelian braiding W̄ = eiϕ, we
have:

〈Ψ|U |Ψ〉 = eiϕ . (164)

The calculation of ϕ, or W in general, proceeds by the
standard construction of a path integral where the time
parameter t is broken up into infinitesimal increments
dt. Any aspect of the action of G that involves many
degrees of freedom can be evaluated classically using the
saddle-point approximation. The simplest braiding in-
volves pushing the point quasiparticles on paths x(t) with
G(t) = p dx(t)/dt, where the canonical momentum op-
erator p generates movement. In the adiabatic limit,
only the gauge field part of p matters and produces the
Aharonov-Bohm phase Adx in every braiding step. Sim-
ilar movement of multi-dimensional excitations gives rise
to generalized Aharonov-Bohm phases at higher ranks of
the gauge theory. The formalism for this is derived in
Appendix F.

The generalization of anyon braiding to d > 2 is the
topologically protected braiding of point quasiparticles p
with d− 2 dimensional excitations (“loops”) l. All varia-
tions of such braiding are topologically equivalent to the
enclosure of p inside the closed d−1 dimensional braiding
trajectory Sd−1 of l relative to p. The many-body quan-
tum state collects the entire quantized Aharonov-Bohm
phase at rank d − 1 from the quantized defect bound
to p. However, it turns out that only monopoles can
produce non-trivial Aharonov-Bohm effects that charac-
terize topological order. The topological orders of hedge-
hogs are scrambled, and possibly characterized by some
other data.

How do the hedgehogs scramble their topological or-
ders? The πd−1(Sd−1) topological orders studied in this
paper attach the rank 1 charge to the gauge flux at a
different rank d− 1 in d > 2 dimensions. Therefore, non-
trivial Aharonov-Bohm effect is possible only if the gauge
fields at different ranks are coherently linked. Indeed,
rigid linking (46) is established within the Abelian gauge
field hierarchy that describes monopoles. For example,
Aµ in d = 3 is coerced into 1

2 (∂µAν − ∂νAµ) = Aµν by
linking, and couples the charge current to the monopole
Aµν 6= 0 via a jµAµ Lagrangian density term. In con-
trast, inter-rank links within the non-Abelian hedgehog
hierarchy (56) involve an additional field n̂ of spins.
Abundant spin fluctuations in incompressible quantum
liquids spoil the correlations between the gauge fields
at different ranks (assuming the full spin symmetry).
Specifically, Aaµ in d = 3 does not have extended cor-
relations on any large loop. Therefore, hedgehogs do
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(a) (b) (c)

FIG. 4. Braiding of elementary excitations in d = 3 dimen-
sions: (a) particle-particle, (b) particle-loop, (c) loop-loop.
Only (b) is topologically protected. One excitation (red) is
kept fixed, while the other one sweeps a closed trajectory.
Simulated exchange of two particles is a half of the process
depicted in (a).

not produce a coherent spin Aharonov-Bohm effect,
and similarly they lack an intrinsic correlation with the
Abelian gauge fields for the charge Aharonov-Bohm ef-
fect. Hedgehogs can still experience non-trivial braiding
indirectly if they bind monopoles.

At least, we can make progress by characterizing braid-
ing in monopole quantum liquids. In d = 3 dimensions,
the elementary excitations amenable to braiding are par-
ticles and loops. The former are tied to rank 1 currents jµ
and arise from Witten effect42, while the latter are tied to
rank 2 currents jµν and shaped by magnetoelectric effect
(see Section VI F). Braiding is Abelian, and the braiding
phase (164) for the particle-particle, particle-loop and
loop-loop braiding shown in Fig.4 is calculated in Ap-
pendix G, assuming monopole filling factors ν = 1/n:

particle-particle “exchange” · · · ϕ
∗
=

1

2
πν

particle-loop braiding · · · ϕ = 2πν

loop-loop braiding · · · ϕ
∗
= 0 .

A star above equality sign indicates the absence of topo-
logical protection. Only the particle-loop braiding is
topologically protected with ϕ = 2πν. Generalizing to hi-
erarchical states at other filling factors is straight-forward
within theK-matrix formalism discussed in Section VI D.
One would hope that non-Abelian particle-loop braiding
is also possible in appropriately modified effective theo-
ries, since the monopole quantum liquids have much in
common with quantum Hall liquids and the latter have
non-Abelian varieties81. Non-trivial topologically pro-
tected braiding of two and three loops has been explored
in various models27,55–58, and some discussions of non-
Abelian quasiparticle braiding have also appeared in the
literature82,83.

The remainder of this section analyzes the dynamically
protected braiding. One can simulate an exchange of two
identical fractional quasiparticles by driving them in a
plane on semi-circular paths about their center of mass.
In the simplest case, the braiding phase is ϕ = 1

2πν for
d = 3 monopole liquids with ν = 1/n. It is calculated
from the “field-induced” corrections (caused by the topo-
logical Lagrangian term) to the total rank 1 Aharonov-

Bohm phase πν of the two particles. This comes with
a problem – the rank 1 Aharonov-Bohm phase due to a
monopole is affected by the attached Dirac string, and
hence gauge dependent. This issue is resolved by the
emergent spin of fractional quasiparticles, which we dis-
cuss later. Identifying ϕ with an exchange statistical
phase does not make sense for multiple reasons. Mainly,
ϕ is not topologically protected (topological protection
is hidden only in the amount of gauge flux attached to a
particle). Modifications of the braiding particle trajecto-
ries can change the value of ϕ, even smoothly.

But, let us assume that we can put the particles on
“fixed rails” and drive them on accurate rigid trajec-
tories. Now ϕ appears topologically quantized, unless
some perturbations or excitations cause bending of the
gauge field-lines created by the braided particle’s charges
and monopoles. This can alter the gauge fluxes through
the loops formed by particle trajectories and modify the
Aharonov-Bohm phase. Nevertheless, there is a dynam-
ical protection mechanism against this: if the Hamilto-
nian is perfectly symmetric, then the field-line bending
costs finite energy – all excitations are gapped. Ran-
dom disorder and neutral fluctuations will average out
and have a hard time spoiling the braiding phase if the
braiding trajectories are large enough.

Braiding operations are also not unique, and can be
state-dependent. Different braiding operations generated
by Gi, i = 1, 2, . . . in (164) can transform a given ini-
tial state of two identical quasiparticles into the same
final state (up to a braiding phase), but generally pro-
duce different final states from an arbitrary initial one.
Consider π-rotations of two quasiparticles generated by∫
dtG = πLn̂, where L is the total angular momentum

operator. Rotations about the center of mass always ex-
change the locations of two quasiparticles, but produce
different final states depending on the rotation axis n̂
if the quasiparticles have spin. Specifically in this case,
one can limit the π-rotation to unentangled angular mo-
mentum eigenstates of two identical particles: the lack of
entanglement makes the particles independent, and the
restriction to an eigenstate of Ln̂ is guarantied to mod-
ify the state only by a phase. Since the unentangled
state of two spins has the maximum possible eigenvalue
of Ln̂, it is easy to see that the braiding (164) by such
a π-rotation reproduces the statistical phase ϕ of micro-
scopic particles according to the spin-statistics theorem.
In the case of fractional quasiparticles, the π rotation will
also pick the field-corrected Aharonov-Bohm phase due
to attached monopoles.

Differences between exchange-simulating braiding op-
erations are another reason to not identify braiding with
exchange. However, these differences, and dynamically
protected braiding in general, can characterize topologi-
cal order in a given fixed set of dynamical conditions. For
example, if one ensures certain symmetries, a tempera-
ture well below the gap scale, good isolation from the
environment, etc, then it is possible to probe topologi-
cal order by dynamically protected braiding. Hedgehog
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and monopole quantum liquids have different “exchange”
braiding due to different Aharonov-Bohm effects. The
difference between rotational and irrotational braiding
can reveal the role of spin in the quantum entanglement.

A charge-monopole bound state, or a dyon, has emer-
gent spin. The spin angular momentum is stored in
the electromagnetic field of the charge-monopole pair,
as we review in Appendix H. The quantum dynamics
of this spin resolves the naive gauge dependence of the
monopole-induced Aharonov-Bohm effect – the spin fixes
the gauge. We show in Appendix I that one must calcu-
late the braiding Aharonov-Bohm phase using the rank
1 gauge field that obtains when the monopole’s Dirac
string is oriented in the same/opposite direction as its
spin – so that the charge currents that try to screen-out
the string generate a magnetic dipole moment consistent
with the spin. This directly applies to unfractionalized
dyons, which contain one unit of electric and magnetic
charge, and carry the elementary unit S = 1

2 of spin. In
the case of fractional dyons, one needs to solve a difficult
Schrodinger equation for an entire set of entangled dyon
partons in order to determine how their internal degrees
of freedom form the total properly quantized angular mo-
mentum.

Can the hedgehog quasiparticles experience fractional
braiding given that they lack an Aharonov-Bohm phase?
While we do not have a rigorous answer here, we cannot
find obvious obstacles to fractional and even non-Abelian
braiding. A necessary ingredient are internal degrees of
freedom. Suppose we inject an electron into a topologi-
cally ordered liquid. When this electron breaks up into n
fractional quasiparticles, the partons must remain entan-
gled in the total angular momentum state identical to the
original electron’s spin, even as they fly far apart. Clearly
the partons must have some internal degrees of freedom.
The long-range entanglement is necessarily protected be-
cause the physical dynamics can change the total charge
and spin of the system only locally in integer amounts.
The outcome of braiding operations (164) can depend on
the joint state of all quasiparticles that the braided ones
are entangled with, and a state-dependent braiding can
be non-Abelian. Everything said so far applies equally
to fractional dyons because they have emergent spin.

How can this enable fractional braiding? Suppose that
the ground state breaks time reversal but respects ro-
tational symmetry. If the π-rotation about an axis n̂
induces a braiding phase ϕ(n̂), then the effect of time
reversal is ϕ′ = −ϕ(n̂). The latter is equivalent to the
rotation about −n̂, i.e. ϕ′ = ϕ(−n̂). Broken time re-
versal allows −ϕ(n̂) 6= ϕ(n̂) (mod 2π), but the ensuing
ϕ(−n̂) 6= ϕ(n̂) (mod 2π) is inconsistent with rotational
symmetry for generic fractional phases ϕ. The rotational
bias needed for fractional braiding can exist in the entan-
gled (spin) state of excited quasiparticles.

D. Microscopic particle operators and hierarchical
states

The effective theory L of an incompressible quantum
liquid must be able to produce an excitation with the
characteristics of an electron. This introduces additional
restrictions on the hedgehog νh and monopole νm filling
factors, beyond their rational quantization that enables
stable topological orders. It also constrains long-range
quantum entanglement and correlation among fractional
quasiparticles.

In the absence of monopoles, a fractional quasiparticle
attaches charge νh to a hedgehog quantum. A Laughlin-
like fractionalization νh = 1/n with n ∈ Z reproduces
a physical particle as a composite of n fractional quasi-
particles. The gauge fields of hedgehogs carry no angu-
lar momentum and do not generate any Aharonov-Bohm
phases. Therefore, the simplest composite particle of
charge e = 1 is a spinless boson. In order to recon-
struct spin S = 1

2 , we must have two flavors ↑ and ↓
of fractional quasiparticles. The causality of the micro-
scopic Lorentz-invariant dynamics requires that the par-
ticles with spin S = (2n + 1)/2 be fermions and those
with S = n bosons. Since we cannot obtain fermionic
statistics from Aharonov-Bohm phases, we must impose
it at the operator level – the current operators

Jµ = − i
2

[
ψ†(∂µψ)− (∂µψ

†)ψ
]

+Aµψ
†ψ (165)

in the effective theory must be constructed using com-
plex fields ψ in the case of bosons, and Grassmann fields
in the case of fermions. The fractional quasiparticles can
themselves be fermions whose composites become phys-
ical fermionic particles. Then, νh = 1/n is restricted to
odd n in the case of fermions, and even n in the case
of bosons (at least when the fractional quasiparticles are
represented as fermions). Other rationally-quantized val-
ues of νh must be obtained by hierarchical constructions.

The field theory of incompressible quantum liquids ad-
mits hierarchical states with multiple flavors of fractional
quasiparticles. We can express the dynamics of such
states using the formalism developed for quantum Hall
liquids. Let us introduce the fractional quasiparticle field
operators ψn and charge currents

jn,µ = − i
2

[
ψ†n(∂µψn)− (∂µψ

†
n)ψn

]
(166)

for each flavor n = 1, . . . , Nf. The operators ψ†n, ψn,
which create and annihilate a fractional quasiparticle,
must be either complex or Grassmann as required by
their compatibility with the exchange statistics of mi-
croscopic particles. They can exist only in local combi-
nations that protect the quantization of charge and spin.
The currents jn,µ are minimally coupled to emergent rank
1 gauge fields an,µ. Every flavor has its own hierarchy
of singular configurations, ultimately leading to a gauge
field an,λ1···λd−1

of monopoles or hedgehogs at rank d−1.
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The effective Lagrangian density of fractional quasipar-
ticles contains Maxwell and linking terms for the flavor
gauge fields at all ranks, and a generalized topological
term that takes the following real-time form in the case
of hedgehogs (replace Sd−1 with 4π for monopoles):

L′t =
1

Sd−1
εµνλ1···λd−1

[∑
n,m

Knman,µ∂νam,λ1···λd−1

+
∑
m

qmAµ∂νam,λ1···λd−1
+
∑
n

qnan,µ∂νAλ1···λd−1

]
−
∑
n

jn,µan,µ . (167)

Integrating out all flavor gauge fields reproduces the La-
grangian density (130) with an emphasized gauge cou-
pling of the physical charge current:

Lt = − ν

Sd−1
εµνλ1···λd−1Aµ∂νAλ1···λd−1

+AµJµ . (168)

If we collect all coefficients Knm ∈ Z into a matrix K,
qn ∈ Z into a vector q and jn,µ ∈ Z into a vector jµ, then
the filling factor ν and physical charge current are

ν = qTK−1q , Jµ = qTK−1jµ . (169)

The K matrix and “charge” vector q specify a hierarchi-
cal incompressible quantum liquid. Elementary quasipar-
ticles correspond to integer quanta of the flavor currents.
Setting jn,0 to a combination of integers and calculating
J0 reveals the fractional charges carried by quasiparticles.

Capturing the electron’s spin in an effective theory re-
quires a basic hierarchical construction. The simplest
fractionalization of a spin S = 1/2 electron via hedge-
hogs is represented by:

K =

(
m 0
0 m

)
, q =

(
1
1

)
(170)

with an odd m and fermionic fractional quasiparticles.
All operators are allowed to change charge and spin only
by an integer (multiple of e and ~ respectively), so that a
group of m fractional quasiparticles created from a single
electron retains long-range entanglement. We can specify
the nature of spin entanglement with an additional “spin”
vector s that defines the spin of fractional quasiparticles:

S =
1

2
sTK−1j0 . (171)

For example, consider

s =

(
m
−m

)
, s′ =

(
1
−1

)
. (172)

The first case s describes fractional quasiparticles that
individually carry spin S = 1/2 and keep a group entan-
gled state with total spin S = 1/2. This is compatible
with a fermionic quasiparticle statistics. The second case
s′ corresponds to a fractionalized spin – still permissible

since the usual spin-statistics theorem, deduced from lo-
cal causality, cannot be justified for non-locally entan-
gled fractional quasiparticles. The description of braid-
ing statistics involving internal degrees of freedom will be
postponed for future study. This will require additional
data to specify the braiding operation details, because
such statistics is not topologically protected. The gen-
eral structure of braiding operations discussed in Section
VI C admits a non-Abelian statistics.

The fractionalization by monopoles in d = 3 dimen-
sions is more complicated than the fractionalization by
hedgehogs. When point-like dyons with electric and mag-
netic charges (ei,mi), i = 1, . . . , N are treated classically
(Appendix H), the quantization of electromagnetic an-
gular momentum reduces to Schwinger-Zwanziger condi-
tion:

(∀i, j) eimj − ejmi ∈ Z . (173)

Incompressible quantum liquids with Laughlin-like
monopole filling factors νm = 1/n, n ∈ Z are consis-
tent with (173). These liquids break time-reversal sym-
metry. An electron-like object made from n fractional
dyons is itself a dyon that carries a unit-charge and n
monopoles. For odd n, the total angular momentum of
the composite dyon and its electromagnetic field can be
L = 1/2, depending on its internal state. It has been ar-
gued that such dyons behave as fermions under exchange
in agreement with the spin-statistics theorem43,44, al-
though the presence of monopoles makes them non-local
objects and complicates the causality-based relationship
between their spin and exchange statistics.

A different possible electron fractionalization involves
fractional quasiparticles with electric and monopole
charges (e,m) ∈ {( 1

2 , 1), ( 1
2 ,−1), (− 1

2 , 1), (− 1
2 ,−1)}.

This obtains from

K =

(
2 0
0 2

)
, q =

(
1
−1

)
(174)

at νm = 1, and satisfies (173). Consider a composite
particle ( 1

2 , 1) + ( 1
2 ,−1) made from a flavor-1 quasiparti-

cle and flavor-2 quasihole. This is a charge e = 1 object
with no net monopole charge that could produce uncon-
ventional Aharonov-Bohm phases. The monopole and
antimonopole can form a magnetic dipole that carries
a non-zero magnetic moment. Furthermore, if the elec-
tric charge is displaced from the monopoles, the com-
posite will carry a quantized spin angular momentum.
A composite particle ( 1

2 , 1) + ( 1
2 ,−1) has two charges

e1 = e2 = 1
2 and two monopoles m1 = −m2 = 1. If

we arrange e1,m1 to sit at the position r/2 and e2,m2

to sit at −r/2, then the total angular momentum is:

L =
1

2
r̂ .

This follows from the classical derivation in Appendix H,
but we shall assume that it holds quantum-mechanically
as well. The composite particle effectively carries spin
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S = 1
2 , and hence behaves as a fermion under any π-

rotation exchange. The composite particle is also a mag-
netic dipole, with dipole moment m = 2πr obtained from
the total magnetic field of the two monopoles:

B(x) = 2π

(
x− r

2∣∣x− r
2

∣∣3 − x + r
2∣∣x + r
2

∣∣3
)
≈ 2π

3x̂(x̂r)− r

|x|3

(175)
for |r| � |x|. A relativistic fermion of mass me has
magnetic moment |m| = 1/2me according to the Dirac
equation. This sets the average distance |r| = 1/4πme

between the two monopoles of the composite to roughly
a half of the Compton length. A physical electron in
vacuum cannot be modeled this way because its Comp-
ton length λC ∼ 10−12 m is much larger than its size.
However, an effective electron in a correlated solid state
material has renormalized properties in addition to be-
ing localized and sized with uncertainty of at least one
lattice constant a > 10−10 m. Therefore, this model can
provide an adequate construction of an electron operator
in the effective theory.

The states like (174) with S = 1
2 dipoles can be frac-

tionalized into even smaller partons. One approach in-
volves monopole clustering. Consider

K =

(
2n2 0
0 2n2

)
, q =

(
1
−1

)
(176)

with n ∈ Z and νm = 1/n2. This state breaks time-
reversal symmetry, unless monopoles are strictly bound
into n-tuplets by some force30. A generally time-reversal-
invariant variation with νm = 0 is:

K =

(
2n2 0
0 −2n2

)
, q =

(
1
1

)
. (177)

Schwinger-Zwanziger condition (173) imposes restric-
tions on the actual elementary dyons that could make up
an electron. Assume the existence of a composite frac-
tional quasiparticle (e,m) = (1/n, 0) in the spectrum.
Then, an elementary dyon must be a bound state of n
fundamental quasiparticles, i.e. (e,m) = (1/2n, n). All
elementary dyons are compatible with one another, but
must not be fractionalized into fundamental quasiparti-
cles. The quasiparticle (e,m) = (1/n, 0) = (1/2n, n) +
(1/2n,−n) is a bound state dipole of two elementary
dyons, and hence is compatible with them. Combin-
ing n such dipoles together, with odd n, can reconsti-
tute an electron-like particle with total electric charge 1,
spin S = 1

2 and finite dipole moment. As explained ear-
lier, this object has fermionic statistics under exchange.
Similarly, even n describes best the fractionalization of
bosonic spin-singlets or magnons into fermionic spinons.
Note that the electromagnetic response captured by the
axion term θ = 2π

(
νm + 1

2

)
with νm = 1/n2 (the 1/2

shift comes from a quantum anomaly, see Section VI F)
is equivalent to θ = π/n2 for odd n, and θ = 0 for even
n, within the periodicity ∆θ = 2π/n2 due to monopole
clustering30.

An interesting and probably more stable fractionaliza-
tion of (174) into smaller partons is:

K =

(
2n2 0
0 2n2

)
, q =

(
n
−n

)
(178)

with n ∈ Z and νm = 1. There is no need for a separate
mechanism to bind the fundamental fractional partons –
the microscopic particles are bound into n-tuplets prior
to fractionalization. The elementary quasiparticle charge
is ±1/2n just like in the monopole clustered states (176).

Spin systems without charge degrees of freedom can
host topologically ordered phases if the Spin(d) symme-
try is reduced to U(1). This precludes the formation of
hedgehogs, but allows the formation of spin-monopoles in
the residual U(1) order parameter. The dynamics of the
low-energy spin U(1) degree of freedom and its monopoles
is necessarily controlled by the same type of effective the-
ory that we analyzed in the context of charge dynam-
ics. Therefore, we can apply the same constructions of
monopole topological orders to gapped spin liquids.

The simplest gapped spin liquid is the resonant-
valence-bond (RVB) state with Z2 topological order84. It
obtains when electrons localized on a lattice form spin-
singlets with their neighbors, and the singlets fail to crys-
tallize due to quantum fluctuations. Breaking a singlet
creates a particle-antiparticle pair of two neutral S = 1

2
spinons, which can drift far apart at a finite energy cost.
None of the topological orders considered so far, applied
to quantum paramagnets, reproduce exactly these exci-
tations. The states (176) and (178) contain elementary
dyons with a fraction of the S = 1

2 angular momentum
unit for every n, and reproduce spinons only as mag-
netic dipole bound states of multiple dyons. Also, they
have two independent flavors of spinons and their an-
tiparticles instead of one (multi-flavored spinons occur
in some frustrated magnets, e.g. on the pyrochlore lat-
tice). We can alternatively construct general single-flavor
topological orders K = (n), q = (l) with monopole clus-
terization into c-tuplets. The elementary quasiparticles
(e,m) = (lc/n, c) carry spin S = em/2 = 1

2 if n = lc2,

at the filling factor νm = l2/n = l/c2 (l, c ∈ N, n = 2k,
k ≥ 1). This is still not a basic RVB spin liquid – the
spinon is a dyon, a source of gauge flux (a 2D equiv-
alent would be a spinon-vison bound state). Therefore
the gapped spin liquids obtained here are fundamentally
different from the spin liquids of short-range singlets –
they are made, instead, from magnetic moments that re-
main well-defined at some finite coarse-graining length
scales.

E. Transverse response and boundary states

The topological Lagrangian term describes a steady-
state response of rank 1 charge currents to rank d − 1
gauge fields. The response is linear even though the bulk
is insulating, so it implies the existence of soft boundary
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modes. This is the natural generalization of the quantum
Hall effect to higher dimensions. Let us focus on the
kinematic field equations (129) in real time:

Jµ =
ν

q
J µ =

ν

q
εµνλ1···λd−1∂νAλ1···λd−1

. (179)

We can rewrite this as

Jµ =
ν

q

e2
d−1

d!
εµλ1···λdEλ1···λd (180)

using the “electromagnetic” field tensor Eλ1···λd , which
is the canonical conjugate momentum to the rank d − 1
gauge field (E2) derived in Appendix E:

Eλ1···λd =
(d− 1)!

e2
d−1

d∑
i=1

(−1)i−1∂λiAλ1···λi−1λi+1···λd .

(181)
The system already has an implanted scalar “magnetic”
field B = J 0, and we can similarly define an “electric”
field Ej1···jd−1

:

B = ε0νλ1···λd−1∂νAλ1···λd−1
=
e2
d−1

d!
ε0λ1···λdEλ1···λd

Ej1···jd−1
= ∂0Aj1···jd−1

−
d−1∑
i=1

∂jiAj1···ji−10ji+1···jd−1

=
e2
d−1

(d− 1)!
E0j1···jd−1

.

It can be shown that the “electric” field Ej1···jd−1
accel-

erates the particles which carry rank d− 1 currents with
canonical momentum πj1···jd−1

. We can further obtain
the spatial components of the topological current (61)
J i = εi0j1···jd−1Ej1···jd−1

, and rewrite (180) as:

J0 =
ν

q
B , J i =

ν

q
εi0j1···jd−1Ej1···jd−1

. (182)

This response is characterized by a fractionally quantized
transverse charge conductivity:

σij1···jd−1 =
J i

Ej1···jd−1

=
ν

q
ε0ij1···jd−1 . (183)

Analogous consideration of the spin-current topological
Lagrangian (121) leads to a transverse spin conductivity:

σij1···jd−1;a1···ad−2 =
J i;a1···ad−2

Ej1···jd−1

=
νa1···ad−2

q
ε0ij1···jd−1 ,

(184)
whose quantization has the same symmetry-dependent
fate as the spin fractionalization discussed in Section
VI A.

Linear response conductivities (183) and (184) indi-
cate the presence of soft modes in the spectrum. Such
modes can live only at the boundary of a perfectly ho-
mogeneous system when its bulk is gapped. A boundary
B always corresponds to a violation of translational sym-
metry. The density π0λ1···λn−1

of a rank n matter field

θλ1···λn−1
will generally be inhomogeneous at the system

boundary and hence introduce electric fields Ej1···jn at
the boundary in order to satisfy the Gauss law (E2).
This also holds at the highest rank n = d − 1. If we
assume for simplicity that the spatial inhomogeneity is
expressed only in the direction b ⊥ B perpendicular to
the boundary, we find that ∂jE

jk1···kn−1 6= 0 has a so-
lution Ebk1···kn−1 6= 0 near the boundary. Then, (183)
implies charge currents J i 6= 0 near the boundary in all
directions i ‖ B parallel to the boundary. These currents
exist in equilibrium and changing them infinitesimally
requires only an infinitesimal change of the “electric” or
“magnetic” field, which costs arbitrarily small amount of
energy. Hence, some gapless boundary states must be
available to carry these currents. A detailed study of
these boundary states in fractional incompressible quan-
tum liquids is left for future work, and below we give only
some qualitative remarks about their properties.

The transverse response has a definite sense of chi-
rality, so it prevents the back-scattering of currents on
the system boundary. The boundary spectrum is gap-
less in the absence of perturbations that break the gauge
symmetry. Note that an ordinary (rank 1) electric field,
either externally applied or internally generated by dis-
order, cannot by itself cause back-scattering and open
a gap. The equilibrium electric field is pinned to zero
in the bulk of an incompressible quantum liquid, by
screening via the mobile boundary charges. Otherwise,
the transverse response equation would predict the exis-
tence of bulk equilibrium charge currents that can be
infinitesimally changed by infinitesimal perturbations,
which would require gapless bulk excitations.

The gapless boundary modes that produce a Lorentz-
invariant linear response (182) or (183) necessarily have a
relativistic spectrum. Therefore, the boundary spectrum
contains chiral relativistic Dirac points.

F. Electromagnetic response in three dimensions

Incompressible quantum liquids in d = 3 dimensions
have unconventional electromagnetic properties when
monopoles proliferate and bind charge. Here we briefly
explore the fractional magneto-electric effect and Fara-
day/Kerr effect. These properties arise from the Abelian
part of the Lagrangian density (48) combined with the
topological term (138) in real time:

L =
|ψ|2

2
(jµ +Aµ)(jµ +Aµ)− 1

16πē2
1

FµνF
µν

−κ
′
2

2

(
Fµν

2
−Aµν

)(
Fµν

2
−Aµν

)
− 1

8πē2
2

(εµνλ1λ2∂νAλ1λ2
)(εµαβ1β2

∂αAβ1β2)

−ν
m

4π
Aµε

µνλ1λ2∂νAλ1λ2
. (185)
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We redefined the Maxwell couplings e2
n = 4πē2

n in or-
der to facilitate the switch to the commonly used Gaus-
sian units. Integrating out Aµν renormalizes the rank 1
Maxwell term and carries out the replacement

Aµν →
1

2
Fµν =

1

2
(∂µAν − ∂νAµ) (186)

in the topological Lagrangian density:

Lt = −ν
m

4π
εµναβ(∂µθ +Aµ)∂νAαβ

→ νm

8π
εµναβ(∂νAµ)Fαβ = − νm

16π
εµναβFµνFαβ

= −ν
m

8π
F̃µνFµν . (187)

The arrow indicates integration by parts, and

F̃µν =
1

2
εµναβFαβ (188)

is the dual electromagnetic field tensor.
We have previously emphasized the emergent gauge

fields that collect topological defects from the matter
fields through singular gauge transformations. However,
the rank 1 gauge field also includes the physical electro-
magnetic U(1) gauge field. The derivations in Sections
II and IV A indicate that the emergent gauge field Aµ
should be simply absorbed into the physical gauge field
Aem
µ , and the combined gauge field should appear in all

terms of the effective theory. The coupling of the final
renormalized Maxwell term, which involves the combined
field, defines the physical charge unit e. When we change
the path integral variables to relabel the combined gauge
field into Aµ−eAem

µ → −eAµ, we obtain the usual Gaus-
sian form of the effective Lagrangian density:

L =
|ψ|2

2
(jµ − eAµ)(jµ − eAµ)− 1

16π
FµνF

µν + Lt

Lt = −e
2νm

8π
F̃µνFµν =

e2νm

2π
EB . (189)

The electric E and magnetic B fields

F i0 = Ei , F ij = −εijkBk (190)

are the physical fields shifted by the emergent fields of
the incompressible quantum liquid.

Let us first explore the low-energy electrodynamics in
the bulk of an incompressible quantum liquid. If we
rewrite the field equation (124) using the charge den-
sity and current density components of Jµ = e(ρ, j), we
obtain in Gaussian units

ρ =
1

4π
∇E +

ανm

2π
∇B (191)

j =
1

4π

(
∇×B− ∂E

∂t

)
− ανm

2π

(
∇×E +

∂B

∂t

)
,

where α = e2/~c (~ = c = 1) is the fine-structure con-
stant. The usual conservation law is satisfied for the total
currents:

∂ρ

∂t
+ ∇j = 0 . (192)

The equations (191) include both the emergent and phys-
ical gauge fields, and likewise the background and in-
duced charge currents. Note, however, that the cor-
rections proportional to νm come only from the emer-
gent gauge field with compact regularization, because
the physical gauge field obeys Ampere and Faraday laws.
When no external electromagnetic fields are applied, the
background current (ρ0, j0) =

(
ανm

2π ∇B, 0
)

is related
only to the emergent gauge field. We will subtract this
background and reinterpret (191) below as a relationship
between the induced currents and perturbed electromag-
netic fields. Even though field perturbations are driven
externally, they still include the contribution of the emer-
gent gauge fields due to fractional charge-monopole at-
tachment.

If there is no induced current flow (j = 0) or charge
density (ρ = 0) in the bulk, we find:

E = −2ανmB + ∇×α (193)[
1 + (2ανm)

2
]
B− 2ανm∇×α =

∂α

∂t
+ ∇α0

The parameter αµ = (α0,α) can be considered a “dual”
gauge field. When ∇ × α = 0, the electric field has no
curl and becomes proportional to the magnetic field, with
a fractionally quantized proportionality constant 2ανm.
This is magnetoelectric effect: an applied electric field
will induce magnetization, and an applied magnetic field
will induce polarization. The induced magnetization and
polarization are captured here through a bulk emergent
electromagnetic field, but actually originate from the
physical response at the system boundary. Most gen-
erally, the absence of currents ρ = 0, j = 0 relates the
full electromagnetic field to the “dual” gauge field αµ

E =
1

1 + (2ανm)
2

[
(∇×α)− 2ανm

(
∂α

∂t
+ ∇α0

)]
B =

1

1 + (2ανm)
2

[
2ανm(∇×α) +

(
∂α

∂t
+ ∇α0

)]
An electromagnetic wave α ∝ ei(kx−ωt), α ⊥ k, α0 = 0,

−iE =
k×α + 2ανmωα

1 + (2ανm)
2 (194)

−iB =
2ανm(k×α)− ωα

1 + (2ανm)
2

only has a Faraday-rotated polarization inside the sys-
tem by the angle arctan(2ανm), but otherwise propagates
conventionally with dispersion k2 = ω2 (polarization ef-
fects due to bound charges are not included in this anal-
ysis). In the presence of static current flow, we obtain an
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anomalous Ampere law:

4πj =
[
1 + (2ανm)

2
]

(∇×B) . (195)

It should be pointed out that the response derived here
is a classical approximation that works best in the limit
|νm| � 1. Otherwise, quantum correction are significant.
The part of the action St =

∫
dtd3xLt obtained from

(187) is topologically quantized85,86, so that all aspects
of electromagnetic response are ultimately functions of
exp(2πiνm).

Relationships and phenomena analogous to the mag-
netoelectric effect can also be derived for spin currents in
the cases of topological orders governed by (121). How-
ever, such phenomena involve the emergent non-Abelian
gauge field at rank 1, without an external physical coun-
terpart that could be manipulated experimentally. At
least, the monopole-related magnetoelectric effect can
arise from the spin-orbit coupling when monopoles are
bound to hedgehogs via Zeeman effect.

Now consider the contributions to electrodynamics
from higher-energy degrees of freedom, which are be-
yond reach of the fractionalization effective theory. This
response may be subject to a quantum anomaly, de-
pending on the details of the microscopic particle dis-
persion. A quantum anomaly represents the absence of a
Lagrangian density symmetry in the regularized action’s
integration measure. Therefore, the response due to a
quantum anomaly cannot be obtained from a stationary
action condition and must be extracted by integrating
out fields in the path integral. The quantum anomaly
of three-dimensional topological systems can lead to a
correction of the topological term

∆Lt =
θ

(2π)2
EB , (196)

which effectively yields the shift νm → νm + θ/2π in the
response field equations. However, all aspects of topo-
logical order, such as fractionalization, are shaped at low
energies and determined by the original unshifted filling
factor νm because the quantum anomaly is a high-energy
regularization feature.

VII. CONCLUSIONS, POSSIBLE PHYSICAL
REALIZATIONS AND FUTURE DIRECTIONS

In this paper, we have established the existence of sta-
ble incompressible quantum liquids with topological or-
der in general d-dimensional systems of spinors fields.
Independent topological orders can be driven by the fluc-
tuations of hedgehogs and monopoles. They generalize
fractional quantum Hall states in many ways, but also
have novel properties in d ≥ 3 dimensions. We calculated
the topological ground state degeneracy, and showed that
it survives all sufficiently weak perturbations even when
all other common signatures of topological order become
washed out. The topological orders in d ≥ 3 are sharply

defined phases at low finite temperatures, in contrast to
quantum Hall liquids in d = 2 dimensions. Free topo-
logical defects can bind fractional amounts of charge or
spin, but the ultimate sharp quantization of fractional
quantum numbers also depends on symmetries and can
be spoiled. We presented a preliminary discussion of the
long-range entanglement in these topologically ordered
phases, and considered fractional braiding operations.
We also briefly explored the characteristic topological
responses of these unconventional states, including the
anticipated fractional magnetoelectric and Kerr effects.

There are many important questions left for future re-
search. First of all, the phenomenology of quantum en-
tanglement in d ≥ 3 dimensions should be explored in
great detail. The present analysis did not identify topo-
logically protected braiding data that characterize the
scrambled topological orders of hedgehogs. We also ar-
gued in Sections VI C and VI D that the non-local en-
tanglement of electron’s spin among multiple fractional
quasiparticles can give rise to non-trivial dynamically
protected braiding operations – possibly non-Abelian
despite the fact that the topological orders discussed
here are Abelian (the topologically protected particle-loop
braiding is Abelian). This conclusion was based on gen-
eral considerations regardless of the dimensionality d ≥ 2,
and awaits a mathematical description in concrete terms
(e.g. a classification of non-trivial spin entanglement and
operations due to the quantum motion of hedgehogs in
fractionalized d = 3 chiral magnets). Non-Abelian dy-
namically protected braiding of spin could perhaps pro-
vide a fertile platform for universal topological quantum
computing given the ability to externally manipulate and
measure magnetic moments, and the three-dimensional
space to perform braiding operations.

Another obvious subject left for future research is the
nature of soft boundary modes in d ≥ 3 topologically
ordered phases. We have only rudimentarily established
the existence of such modes and their Dirac-like spectra,
but it would be extremely interesting to fully understand
the consequences of bulk fractionalization on the bound-
ary dynamics. Among anticipated phenomena20,30,87–92

are surface topological order, fractional parity anomaly,
etc. This is also important for practical reasons, because
the boundary modes are accessible to experiments. A
deeper analysis of unconventional bulk responses to ex-
ternal probes is also important, and new ideas are needed
to envision unambiguous methods to detect topological
order and measure its properties.

Undoubtedly, it would be interesting to construct mi-
croscopic models that realize some of the topological or-
ders considered here. Solving such models would be dif-
ficult in d > 2 dimensions, especially in the continuum
limit. Lattice models will be more tractable, especially
in the context of monopoles: d = 3 Hamiltonians anal-
ogous to the Hofstadter problem in d = 2 can be read-
ily constructed and perhaps analyzed numerically in the
strongly interacting regime. Such models, however, are
not realistic and would serve mainly as a proof of con-
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cept. More realistic models would need to feature frus-
trated spin dynamics, and would be much harder to solve.
At least, such models can be constructed by the require-
ment that their continuum limit reduce to the theory
considered here. It should be pointed out that a lattice
formulation of dynamics introduces its own constraints
on topological orders by limiting the topological charge
that can be stored and preserved in a finite volume.

This paper was focused on the essential phenomenol-
ogy of topological order. Forthcoming sequel papers will
focus on making connections between the fundamental
picture presented here and concrete topological materi-
als. It will be shown that the highest rank gauge flux
of the hedgehog and monopole gauge fields is directly
related to a Berry flux in momentum space. In other
words, there is a generalization of the famous Thouless-
Kohmoto-Nightingale-den Nijs (TKNN) formula93 to all
homotopy classes πn(Sn), and the present theory pro-
vides a universal real-space description of the known
d = 3 topological materials. Another forthcoming study
will explore the dynamics of spins in the presence of spin-
orbit coupling and possible mobile electrons. Its purpose
is to provide the bridge to microscopic models of mag-
netic topological materials, and lay down a more concrete
foundation for the phenomenological picture of hedgehog
dynamics presented here.

The candidate materials that might realize some of the
fractional states we discussed include chiral magnets and
strongly correlated topological insulators or semimetals.
Specifically, chiral magnets can be related to incompress-
ible quantum liquids of hedgehogs in the same manner as
superconductors are related to fractional quantum Hall
liquids. A type-2 superconductor can host gapped local-
ized vortex defects, which form an Abrikosov lattice in
an externally applied magnetic field. If quantum fluc-
tuations melt this lattice, e.g. because vortices become
almost as dense as particles, then the ensuing quantum
vortex liquid state is naturally a fractional quantum Hall
liquid94. By analogy, the topological defects of a d = 3
magnet are hedgehogs, which can form a lattice in a chi-
ral magnetically ordered phase50. Quantum melting of
such a hedgehog lattice could produce a topologically or-
dered quantum liquid of the kind analyzed in this pa-
per. Note that even a truly periodic magnetic order with
hedgehogs in a microscopic crystal is interesting for this
scenario – its U(1) analogue would be the quantum melt-
ing of a commensurate vortex lattice in a crystal, which
produces a Hofstadter spectrum and still enables quan-
tum Hall or Chern insulator states. Related structures
of magnetic topological defects are skyrmion lattices in
d = 2 dimensions95, although they are not topologically
protected against quantum fluctuations. There are cur-
rently no known chiral magnets that approach the quan-
tum limit, but some may be close.

Existing d = 3 topological insulators are already in-
compressible quantum liquids of hedgehog topological de-
fects, albeit without topological order. In this sense, they
are analogous to integer quantum Hall liquids. The topo-

logical states analyzed in this paper generally break the
time-reversal and mirror symmetries, so additional pro-
visions are required to implement the non-trivial topol-
ogy with time-reversal symmetry. We anticipate that
this requires a lattice formulation of the theory – in the
same sense as it is possible to construct a time-reversal-
invariant quantum “Hall” state by pushing a magnetic
π-flux through every lattice plaquette. Strong interac-
tions are then also needed to stabilize topological or-
der with fractional charged quasiparticles. Interactions
are strong in quantum Hall liquids due to the flatness
of the Landau-level bands. Approximate band flatness
can also be achieved in d = 3 systems, but this is not
a necessary condition for topological order. Some in-
teracting Weyl and Luttinger19 semimetals, character-
ized by similar Berry fluxes as topological insulators, can
perhaps become unstable in the presence of interactions
or additional degrees of freedom such as magnetic mo-
ments. If an energy gap opens in the energy vicinity of
the semimetal’s nodal points, then the Berry flux is not
removed but only redistributed. Hence it is possible to
obtain a topological insulator, perhaps even with topo-
logical order and fractional excitations.

Spin liquids are another system of interest in the con-
text of this work, but this is not a new story53. The
theory presented here regards spin liquids as phases of
purely magnetic degrees of freedom with U(1) symme-
try, and hence sharply distinguishes them from the sim-
ilar phases that (also) involve charge. Topological order
involves attaching spin to the monopoles of an emergent
U(1) gauge field, and the simplest fractional quasiparti-
cle is a fermionic spinon. The U(1) spin liquid in d = 3
dimensions52,53, with gapped matter and monopoles but
gapless photons, is the Abelian version of the phase we
labeled C1H2 in Section IV C. If one identified topologi-
cal order by the conservation of abundant topological de-
fects, then the U(1) spin liquid would not have it. A d = 3
topological order is present only in the phases we labeled
C1T2, which are fully gapped and generalize quantum
Hall liquids. These phases can either break or respect the
time-reversal (TR) symmetry, and may be characterized
as “chiral” and Zn

23,30 spin liquids respectively. Never-
theless, we found in Section VI D that spin-monopole at-
tachment produces gapped spin liquids that have funda-
mentally different excitations than the resonant-valence-
bond spin liquids. Also related to these are symmetry-
protected topological (SPT) phases of bosonic degrees of
freedom in magnets46.

Quantum spin-ice materials like Tb2Ti2O7, Pr2Sn2O7,
Pr2Zr2O7, NaCaNi2F7 are promising candidates for re-
alizing U(1) spin liquids33,96, and possibly also topolog-
ical orders with spin-monopole attachment. The essen-
tial low-energy Hamiltonian describes their dynamics as
a compact U(1) gauge theory52. The deconfined phase of
this model is a stable U(1) spin liquid. A more realistic
model may need to include spin interactions generated
by the spin-orbit coupling97,98. If such interactions are
strong enough, topological order also becomes an option.
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The spin-orbit coupling is generally able to stimulate the
appearance of point topological defects, even in purely
spin systems (to be shown in a forthcoming paper). The
role of matter field is played by the spins themselves in
the spin-ice materials, so the gauge “charge” can be ac-
cumulated simply by applying an external magnetic field.
When both “charge” and “monopoles” are present in the
ground state, there is a chance that interactions may bind
them into fractional quasiparticles. The ensuing topo-
logically ordered phase could perhaps be experimentally
seen as an incompressible magnetization plateau state
in a non-saturating magnetic field, with gapless neutral
modes at the crystal boundary.

A. Charge fractionalization in quantum
chromodynamics (QCD)

At the end, we entertain the possibility that the frac-
tional quantization of quarks’ charge in atomic nuclei
could be a glimpse of a topological order discussed in
this paper. Such a view is different than the traditional
standard model picture of quarks as elementary parti-
cles, but it has appealing features. We will assume that
fundamental quarks are elementary fermions that have
the SU(3) color “charge” and carry the same unit e = 1
of the electric U(1) charge just like electrons. This fits
the essential idea raised in this paper that gauge fields
emerge from the dynamics of topological defects – hence
all elementary particle fields coupled to the same gauge
field should carry the same charge. The integer charge
assignment considered here is color-independent and dif-
ferent from the Han-Nambu assignment99,100.

How and why can the charge of fundamental quarks
fractionalize into the observed amounts 2/3 and −1/3 for
“up” and “down” quarks respectively? For simplicity, we
can work with the most basic QCD Lagrangian density101

L = ūi��Du+ d̄i��Dd = q̄Li��DqL + q̄Ri��DqR (197)

of massless u and d quarks, where ��D = γµ(∂µ − iAµ) is
the Dirac operator gauged with all the gauge fields that
quarks couple to, and

qL =
1− γ5

2
q , qR =

1 + γ5

2
q (198)

are the left-handed (L) and right-handed (R) isospin
quark spinors qT = (u, d). The chirality γ5 = iγ0γ1γ2γ3

is a good quantum number for ungauged massless Dirac
fermions, which leads to the conservation of isospin sin-
glet and triplet chiral currents

jµ5 = q̄γµγ5q , jµ5a = q̄γµγ5τaq (199)

at the classical level. Here, τa are the isospin SU(2) gen-
erators (a ∈ {1, 2, 3}). However, the Adler-Bell-Jackiw
quantum anomaly102,103 breaks the conservation of chi-
ral currents in the gauge theory. Specifically, the “up”

and “down” isospin flavors independently experience the
same chiral anomaly:

∂µj
µ5a = − e2

32π2
δa,3εµναβFµνFαβ . (200)

This response can be equivalently reproduced from a
topological Lagrangian term80. Therefore, a quantum
anomaly is related to the topological Berry flux of a
gapped state – opening up a gap creates a topological
insulator. Indeed, spontaneous and explicit chiral sym-
metry breaking in the full QCD gaps out all quarks,
mesons and baryons. The momentum-space Berry flux
corresponds to a non-zero background flux of a hedge-
hog/monopole rank 2 gauge field in real space. The
topological insulator of Dirac fermions is invariant under
time-reversal, so one cannot collect a finite Berry flux in a
band from the plain momentum-space spin texture of all
states. A finite Berry flux is extracted from the spin helic-
ity σp̂ of chiral currents instead of charge currents. Since
the chirality and helicity of a massless positive-energy
Dirac particle are identical, the chiral Berry flux (the
difference of the Berry fluxes of left-handed and right-
handed particles) is positive in the “conduction” band
and each particle of positive chirality is matched by a
spin hedgehog. The chirality of a negative-energy parti-
cle is opposite from its helicity, implying a negative chiral
Berry flux in the “valence” band. But, an antiparticle is
then again matched by a spin hedgehog (created by the
removal of an antihedgehog).

We can now consider what might be happening in-
side a proton. As a color-neutral object, a proton must
be made from three quarks. However, we assume that
the fundamental quarks have electron’s unit charge, and
then we need two e = +1 quarks and one e = −1 anti-
quark. Being relativistic Dirac fermions, these particles
bring three hedgehogs into the makeup of a proton. The
hedgehogs intrinsically match the chiral currents, but
since a fundamental quark carries both charge and chi-
rality, we can equivalently associate charge to hedgehogs.
We assume that the strong nuclear force compresses the
quarks into such a small volume that the distance be-
tween them does not exceed the confinement length of
hedgehog-antihedgehog pairs (which must be finite in the
QCD ground state, or else quarks themselves would be
deconfined). This is enough for a proton to become a
droplet of an incompressible quantum liquid. Figure 5
depicts an attachment of the two positive unit-charges
to three hedgehogs, which creates three u quarks as frac-
tional quasiparticles with charge 2/3. One of these u
quarks forms a tight bound state with the remaining
fundamental antiquark, thus producing a d quark with
charge −1/3. This is a more complex composite object
than the u quark, hence naturally more massive and less
stable. We can similarly envision the emergence of a neu-
tron, starting from the stable particles that a free neutron
decays into. First we fractionalize the positive charge
and form three u quarks just as in the case of a proton.
Then, we convert two u quarks into d quarks by binding
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(a) (b)

FIG. 5. Fractionalization toy models of a proton (a) and
a neutron (b). The assumption is that quarks fundamen-
tally have the same charge unit as electrons, but the strong
nuclear force causes charge fractionalization by compressing
quarks to relative distances smaller than the topological de-
fect confinement length. The relevant topological defects are
spin hedgehogs and U(1) monopoles bound to them. They
emerge from the relativistic nature of Dirac fields and pro-
liferate in the ground state due to the chiral/axial quantum
anomaly. The actual u and d quarks are seen as fractional
quasiparticles of an incompressible quantum liquid droplet
where particle/antiparticle symmetry is locally broken.

with the available negative unit charges. The schematic
model does not do justice depicting the spin and color
distribution among the nucleon constituents. Note that
the hedgehogs associated with the electron and neutrino
do not directly couple to the quarks and should not con-
tribute to quark fractionalization.

Of course, more analysis is needed to verify this pic-
ture. For example, why should the hedgehogs attach to
and fractionalize only the positive-charge fundamental
quarks? This seems to involve a sort of Cooper pairing
between positive fundamental quarks prior to fractional-
ization (mediated by the third quark?). The answer is
hidden in the details of dynamics. Locally, the proton’s
matter breaks the particle-antiparticle symmetry, so a
bias in the flux-particle attachment is not surprising –
and, it is even important for the stability of topological
order. The effective topological Lagrangian Lt describing
this situation in protons could have the form (167) with

K =

 3 0 0
0 3 0
0 0 3

 , q =

 2
2
−1

 (201)

and ν = 3. The fractional quasiparticle flavors corre-
spond to three color states. The fractional charges in
different colors are ( 2

3 ,
2
3 ,−

1
3 ) according to (169), and

ν = 3 reflects the degeneracy of color states (there is one

Dirac fermion state per hedgehog in a “band”, for each
color and spin; a “band” is not fully populated at least
due to spin degeneracy, so the incompressibility requires
certain short-range repulsive interactions between fun-
damental quarks). Note that Lt written in (167) breaks
parity P and time-reversal T, but stays invariant under
PT, so it does not violate any symmetry of the stan-
dard model. A topological term that respects P and T
can also be constructed by inserting a chirality iψ̄γ5ψ
factor in the definition of Lt. As a matter of princi-
ple, if the fractionalization proposal is correct, it might
be possible to obtain other charge fractions in different
circumstances, constrained by color-neutrality. Quark-
gluon plasmas might exist in many varieties of topolog-
ically ordered incompressible quantum liquids, perhaps
as rich as fractional quantum Hall states.
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Appendix A: Hedgehog gauge field

Here we derive (28) from (25) using the representation
(27) of the vector field n̂(x) in terms of angles θ1, . . . , θn,
where n = d− 1 for notational convenience. The deriva-
tives of n̂a are:

∂n̂a

∂θb
= n̂aXa,b , Xa,b = cot θb δb≤a − tan θb δb,a+1 .

(here, the repeated index a is not summed over) so that
the antisymmetric gauge field tensor (25) is:

Aµ1···µn =
1

n!
εa0a1···an n̂

a0

n∏
i=1

∂n̂ai

∂xµi
(A1)

=
εa0a1···an

n!
n̂a0

n∏
i=1

∂n̂ai

∂θbi

∂θbi
∂xµi

= Aεa0a1···an

n∏
i=1

Xai,bi

∂θbi
∂xµi

,

where

A =
1

n!

n∏
j=1

cos θj (sin θj)
n+1−j . (A2)

Since all indices ai are different, their values are all pos-
sible permutations ai = P(i) of (0, 1, . . . , n). Similarly,
bi = P (i) are all possible permutations of (1, . . . , n). The
parity (−1)P of a permutation P is εa0a1···an , and the
parity (−1)P of a permutation P is εb1···bn . Then:

Aµ1···µn = A
∑
P

(−1)P
n∏
i=1

XP(i),bi

∂θbi
∂xµi

(A3)

= A
∑
P

(−1)P
∑
P

n∏
i=1

XP(P−1(i)),i

∂θP (i)

∂xµi

= A
∑
P

(−1)P
∑
P−P

(−1)P−P
n∏
i=1

X(P−P )(i),i

∂θP (i)

∂xµi

=

[
A
∑
P′

(−1)P
′
n∏
i=1

XP′(i),i

]
εb1···bn

n∏
i=1

∂θbi
∂xµi

= Adet(X)× εb1···bn
n∏
i=1

∂θbi
∂xµi

.

We also introduced a permutation P ′ ≡ P − P of
(0, . . . , n) given by P ′(i) = P(P−1(i)) for i 6= 0 and

P ′(0) = P(0), whose parity is (−1)P
′

= (−1)P(−1)P . Fi-
nally, we interpreted the expression in the square brackets
as the determinant of the n+ 1 dimensional matrix X:

det(X) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 X0,1 X0,2 · · · X0,n−1 X0,n

1 X1,1 X1,2 · · · X1,n−1 X1,n

1 X2,1 X2,2 · · · X2,n−1 X2,n

1 X3,1 X3,2 · · · X3,n−1 X3,n

...
...

...
. . .

...
...

1 Xn−1,1 Xn−1,2 · · · Xn−1,n−1 Xn−1,n

1 Xn,1 Xn,2 · · · Xn,n−1 Xn,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 − tan θ1 0 0 · · · 0 0
1 cot θ1 − tan θ2 0 · · · 0 0
1 cot θ1 cot θ2 − tan θ3 · · · 0 0
1 cot θ1 cot θ2 cot θ3 · · · 0 0
...

...
...

...
. . .

...
...

1 cot θ1 cot θ2 cot θ3 · · · cot θn−1 − tan θn
1 cot θ1 cot θ2 cot θ3 · · · cot θn−1 cot θn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

n∏
i=1

1

cos2 θi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 · · · 0 0 0
1 cot θ1 0 0 · · · 0 0 0
1 cot θ1 cot θ2 0 · · · 0 0 0
1 cot θ1 cot θ2 cot θ3 · · · 0 0 0
...

...
...

...
. . .

...
...

...
1 cot θ1 cot θ2 cot θ3 · · · cot θn−2 cot θn−1 0
1 cot θ1 cot θ2 cot θ3 · · · cot θn−2 cot θn−1 cot θn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

n∏
i=1

1

cos2 θi
cot θi =

n∏
i=1

1

sin θi cos θi
.

Substituting in (A3) yields the formula (28):

Aµ1···µn =

n∏
j=1

cos θj (sin θj)
n+1−j

sin θj cos θj

1

n!
εb1···bn

n∏
i=1

∂θbi
∂xµi

=

n∏
j=1

(sin θj)
n−j 1

n!
εb1···bn

n∏
i=1

∂θbi
∂xµi

. (A4)

Appendix B: Non-Abelian Maxwell terms in the
effective Lagrangian

The rank n gauge field obtained from the vector field
n̂ by a singular gauge transformation (39) is:

A
an+1···ad−1

λ1···λn =
1

n!
εa0···ad−1

n̂a0
n∏
i=1

(∂λi n̂
ai) . (B1)

Smooth infinitesimal deformations

n̂→ n̂ + δn̂ (B2)
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generate gauge transformations of A
an+1···ad−1

λ1···λn that must
leave invariant the rank n Maxwell term in the La-
grangian density:

LMn =
1

2g2
n

J an+1···ad−1
µ1···µd−n J an+1···ad−1

µ1···µd−n . (B3)

Here we determine the form of the gauge fluxes
J an+1···ad−1
µ1···µd−n required by gauge invariance. It is imme-

diately apparent that the flux cannot be a plain curl of
the gauge field, since it acquires a non-zero correction
under a gauge transformation:

δ
(
εµ1···µd−nλ0λ1···λn∂λ0

A
an+1···ad−1

λ1···λn

)
(B4)

=
1

n!
εa0···ad−1

εµ1···µd−nλ0···λn δ

n∏
i=0

∂λi n̂
ai

=
1

n!
εa0···ad−1

εµ1···µd−nλ0···λn

n∑
j=0

(∂λjδn̂
aj )

0...n∏
i 6=j

∂λi n̂
ai .

The same correction can be obtained from a quadratic
form of (B1), so the gauge invariant flux can be expressed
as:

J an+1···ad−1
µ1···µd−n = εµ1···µd−nλ0···λn

[
∂λ0

A
an+1···ad−1

λ1···λn

−
[n−1

2 ]∑
k=0

f
an+1···ad−1b1···bd−k−2c1···cd−n+k−1

d,n,k

×Ab1···bd−k−2

λ0···λk A
c1···cd−n+k−1

λk+1···λn

]
(B5)

using a suitable set of structure constants f . The bounds
for the integer k exhaust all possibilities for the quadratic
gauge field combinations without repetitions. The struc-
ture constants must be antisymmetric at least under any
exchange among the a indices, the b indices, and the c
indices. The total number of indices in f is 3d− 2n− 4.
We require J an+1···ad−1

µ1···µd−n = 0 at all non-singular points in
space-time – a singularity gauge field (B1) should have
a non-vanishing flux only at the positions of singularities
in the field configuration n̂. This is a necessary condition
for gauge invariance. A sufficient condition is obtained by
also requiring that the flux transform only as a locally ro-
tating tensor under gauge transformations. This will be
achieved by simply ensuring a proper tensor structure for
the flux. The necessary condition implies the following
δJ an+1···ad−1

µ1···µd−n = 0 behavior under gauge transformations
at non-singular points:

δJ an+1···ad−1
µ1···µd−n = εµ1···µd−nλ0···λn

{
1

n!
εa0···ad−1

δ

n∏
i=0

∂λi n̂
ai

−
[n−1

2 ]∑
k=0

f
an+1···ad−1b1···bd−k−2c1···cd−n+k−1

d,n,k

(k + 1)!(n− k)!

×δ

[(
εb1···bd n̂

bd−k−1

k∏
i=0

∂λi n̂
bd−k+i

)

×

(
εc1···cd n̂

cd−n+k

n∏
i=k+1

∂λi n̂
cd−n+i

)]}
= 0

After some relabeling of upper indices:

δJ an+1···ad−1
µ1···µd−n = εµ1···µd−nλ0···λn

{
1

n!
εa0···ad−1

δ

n∏
i=0

∂λi n̂
ai

−
[n−1

2 ]∑
k=0

f
an+1···ad−1b1···bd−k−2c1···cd−n+k−1

d,n,k

(k + 1)!(n− k)!

×
εb1···bd−k−1a0···akεc1···cd−n+kak+1···an

(k + 1)!(n− k)!

× δ

(
n̂bd−k−1 n̂cd−n+k

n∏
i=0

∂λi n̂
ai

)}
= 0

The antisymmetry under any λi ↔ λj exchange im-
poses antisymmetric exchanges among a0 · · · an in the
structure constant f term (any contributions symmet-
ric under ai ↔ aj cancel out). The indices bd−k−1 and
cd−n+k of the n̂ components without derivatives are not
present in the structure constant. If bd−k−1 6= cd−n+k,
then the two ε factors (which carry all possible vector
indices) either make bd−k−1 or cd−n+k equal to one of
a0 · · · an, or enforce bd−k−1 ∈ {c1, · · · , cd−n+k−1} and
cd−n+k ∈ {b1, · · · , bd−k−2}. In the former case, one takes
a derivative n̂a∂λn̂

a = 1
2∂λ|n̂|

2 = 0 under δ(· · · ) and the
f term vanishes. In the later case, we can make the
f term vanish by requiring that the structure constants
be antisymmetric under exchange of any bi ↔ cj when
bi 6= cj . Note that some bi indices must be equal to some
ci indices and f should be symmetric under the exchange
of those. At this point, we ensured that the the f term
could be non zero only if bd−k−1 = cd−n+k, and then
n̂an̂a = |n̂|2 = 1 under δ(· · · ) yields:

δJ an+1···ad−1
µ1···µd−n = εµ1···µd−nλ0···λn

(
δ

n∏
i=0

∂λi n̂
ai

)
(B6)

×

{
1

n!
εa0···ad−1

−
[n−1

2 ]∑
k=0

f
an+1···ad−1b1···bd−k−2c1···cd−n+k−1

d,n,k

× (−1)n+1Pb1···bd−k−2a0···ak,c1···cd−n+k−1ak+1···an
(k + 1)!(n− k)!

}
= 0

where we defined:

Pb1···bd−1,c1···cd−1
=

1···d−1∑
P

(−1)P
d−1∏
i=1

δbicP(i)
(B7)

in terms of permutations P of d− 1 elements, and used:

εb1···bd−k−2ia0···akεc1···cd−n+k−1iak+1···an = (−1)d−k−2

×(−1)d−n+k−1εib1···bd−k−2a0···akεic1···cd−n+k−1ak+1···an

= (−1)n+1Pb1···bd−k−2a0···ak,c1···cd−n+k−1ak+1···an .
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We find from (B6) the condition that the struc-
ture constants must satisfy for every combination of
an+1, . . . , ad−1:

A
[n−1

2 ]∑
k=0

f
an+1···ad−1b1···bd−k−2c1···cd−n+k−1

d,n,k (B8)

×
Pb1···bd−k−2a0···ak,c1···cd−n+k−1ak+1···an

(k + 1)!(n− k)!

=
(−1)n+1

n!
εa0···ad−1

,

where A indicates antisymmetrization with respect to
a0, . . . an (only the antisymmetric part survives the sum-
mation over λi). Since the Levi-Civita symbol ε and
the Kronecker symbol δ transform like tensors under ro-
tations in Euclidean space-time, we will automatically
satisfy the sufficient condition for gauge invariance by
finding the structure constants f that themselves trans-
form like tensors. We can convert this into a system of
linear equations for structure constants which automat-
ically expels the non-antisymmetric terms on the left-
hand-side. Multiplying (B8) by εa0···ad−1

and summing
over a0, . . . ad−1 yields:

εa0···ad−1

[n−1
2 ]∑

k=0

f
an+1···ad−1b1···bd−k−2c1···cd−n+k−1

d,n,k (B9)

×
Pb1···bd−k−2a0···ak,c1···cd−n+k−1ak+1···an

(k + 1)!(n− k)!
=
d!

n!
(−1)n+1 .

To summarize, we are looking for fa···b···c··· which is
antisymmetric under exchanges among its a indices, b
indices, c indices, and b ↔ c indices for b 6= c. Also,
any f factor that multiplies εa0···ad−1

but is not antisym-
metric under exchanges among a0, . . . ad−1 can be set to
zero, because it does not contribute to the above equa-
tion. It is always possible to find structure constants un-
der these constraints, and in some cases there is a unique
solution. However, there are multiple solutions when the
variable k in the above sum can take multiple values,
i.e. when n ≥ 3. These solutions for flux can be writ-
ten as (ε∂A− εAA)2 where the quadratic part εAA takes
different forms. This complexity reveals intricate inter-
actions between the non-Abelian topological defects, but
it should be kept in mind that the above procedure es-
tablishes only the necessary and not the sufficient condi-
tion for gauge invariance. The full gauge transformation
of non-singular gauge fields discussed above may further
restrict the form of Maxwell terms. Some examples are:

• d = 3, n = 1:

3! = εa0a1a2f
a2b1c1
3,1,0 Pb1a0,c1a1

= εa0a1a2f
a2b1c1
3,1,0 (δb1c1δa0a1 − δb1a1δa0c1)

= εa0a1a2f
a0a1a2
3,1,0 .

There is a unique solution:

fabc3,1,0 = εabc .
• d = 4, n = 2:

−4!

2!
= εa0a1a2a3f

a3b1b2c1
4,2,0

Pb1b2a0,c1a1a2
2!

=
1

2!
εa0a1a2a3f

a3b1b2c1
4,2,0

×
(
δb1c1δb2a1δa0a2 − δb1c1δb2a2δa0a1

+δb1a1δb2a2δa0c1 − δb1a1δb2c1δa0a2
+δb1a2δb2c1δa0a1 − δb1a2δb2a1δa0c1

)
=

1

2!
εa0a1a2a3(fa3a1a2a04,2,0 − fa3a2a1a04,2,0 ) .

There is a unique solution:

fabcd4,2,0 =
1

2
εabcd .

• d = 4, n = 1:

4! = εa0a1a2a3f
a2a3b1b2c1c2
4,1,0 Pb1b2a0,c1c2a1

= εa0a1a2a3f
a2a3b1b2c1c2
4,1,0

×
(
δb1c1δb2c2δa0a1 − δb1c1δb2a1δa0c2

+δb1c2δb2a1δa0c1 − δb1c2δb2c1δa0a1
+δb1a1δb2c1δa0c2 − δb1a1δb2c2δa0c1

)
= εa0a1a2a3

(
−fa2a3ba1ba04,1,0 + fa2a3ba1a0b4,1,0

+fa2a3a1bba04,1,0 − fa2a3a1ba0b4,1,0

)
= 4εa0a1a2a3f

a0a1ba2ba3 .

There is a unique symmetrized solution:

fabpcqd4,1,0 =
1

8
(εabcdδpq − εabpdδcq + εabpqδcd − εabcqδpd)

• d = 5, n = 3:

5!

3!
= εa0a1a2a3a4

[
fa4b1b2b3c15,3,0

Pb1b2b3a0,c1a1a2a3
3!

+ fa4b1b2c1c25,3,1

Pb1b2a0a1,c1c2a2a3
2! · 2!

]
= εa0a1a2a3a4

[
−fa4b1b2b3c15,3,0

δa0c1
3!

1···3∑
P

(−1)P
3∏
i=1

δbiaP(i)
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+fa4b1b2c1c25,3,1

δb1a2δb2a3δc1a0δc2a1 − δb1a2δb2a3δc1a1δc2a0 + δb1a3δb2a2δc1a1δc2a0 − δb1a3δb2a2δc1a0δc2a1
2! · 2!

]

= εa0a1a2a3a4

[
− 1

3!

1···3∑
P

(−1)Pf
a4aP(1)aP(2)aP(3)a0
5,3,0 +

1

2! · 2!
(fa4a2a3a0a15,3,1 − fa4a2a3a1a05,3,1 + fa4a3a2a1a05,3,1 − fa4a3a2a0a15,3,1 )

]
= εa0a1a2a3a4(−fa4a1a2a3a05,3,0 + fa4a2a3a0a15,3,1 ) = εa0a1a2a3a4(fa0a1a2a3a45,3,0 + fa0a1a2a3a45,3,1 ) .

There are multiple solutions:

fabcde5,3,0 + fabcde5,3,1 =
1

6
εabcde . (B10)

Appendix C: Singular gauge transformations and
dynamical generation of higher ranks in the

non-Abelian effective theory

Maxwell terms LMn at rank n in the effective La-
grangian arise from integrating out the smooth short-
wavelength fluctuations of currents at the same rank. A
further integration of singular currents at short length
scales generates the current term at rank n+1, and gives
it the form compatible to that of the rank n Maxwell
term. We will roughly sketch this process here. Let us
write the rank n flux as:

J an+1···ad−1
µ1···µd−n = εµ1···µd−nα0···αnX

an+1···ad−1
α0···αn . (C1)

The formulas for X were discussed and derived in Ap-
pendix B. The rank n Maxwell term is:

LMn ∼ J
an+1···ad−1
µ1···µd−n J an+1···ad−1

µ1···µd−n (C2)

= (d− n)!

0···n∑
P

(−1)PX
an+1···ad−1
α0···αn X

an+1···ad−1
αP(0)···αP(n)

=
(d− n)!

(n+ 1)!

[
0···n∑
P

(−1)PX
an+1···ad−1
αP(0)···αP(n)

]2

,

where P indicates a permutation and (−1)P its parity.
We will consider a fixed gauge in which singularity gauge
fields have not yet been generated from the given matter
field configuration n̂. In this gauge, the current at rank
n+ 1 is:

J
an+2···ad−1

λ1···λn+1
=

1

(n+ 1)!
εa0···ad−1

n̂a0

(
n+1∏
i=1

∂λi n̂
ai

)
(C3)

and the current term in the Lagrangian density is:

LC,n+1 ∼
(
J
cn+2···cd−1

λ1···λn+1

)2

(C4)

=
εa0···an+1cn+2···cd−1

εb0···bn+1cn+2···cd−1

[(n+ 1)!]2

× n̂a0
n+1∏
j=1

∂λj n̂
aj

 n̂b0

(
n+1∏
k=1

∂λk n̂
bk

)

=
(d− n− 2)!

[(n+ 1)!]2

1···n+1∑
P

(−1)P

(
n+1∏
i=1

δaibP(i)

)

×

n+1∏
j=1

∂λj n̂
aj

(n+1∏
k=1

∂λk n̂
bk

)
.

The last line obtains for a0 = b0, where the derivative-
free factors n̂a produce n̂an̂a = |n̂| = 1. The terms
with a0 6= b0 imply a0 = bi, i > 0 and hence vanish by
∂λ|n̂|2 = 0. Now we unpack the permutations:

LC,n+1 ∼
(
J
cn+2···cd−1

λ1···λn+1

)2

(C5)

=
εa1···an+1cn+2···cdεb1···bn+1cn+2···cd

[(n+ 1)!]2(d− n− 1)

×

n+1∏
j=1

∂λj n̂
aj

(n+1∏
k=1

∂λk n̂
bk

)

=
1

[(n+ 1)!]2(d− n− 1)
Y
cn+2···cd
λ1···λn+1

Y
cn+2···cd
λ1···λn+1

,

and proceed working on the Y factors:

Y
cn+1···cd−1

λ0···λn = εa0···ancn+1···cd−1

 n∏
j=0

∂λj n̂
aj


= A εa0···ancn+1···cd−1

∂λ0

n̂a0 n∏
j=1

∂λj n̂
aj


= n!A ∂λ0

J
cn+1···cd−1

λ1···λn ∝ AXcn+1···cd−1

λ0···λn . (C6)

Here, A antisymmetrizes the space-time indices. The
last proportionality follows from (B5) and (C1). Specif-
ically in the chosen gauge, Y is proportional to anti-
symmetrized X without the non-Abelian part involving
structure constants in (B5), where the rank n gauge field
emerges from the singularities of (C3) upon a singular
gauge transformation and coarse-graining. In conclusion,
structurally:

LC,n+1 ∼ (AX)2 ∼ LM,n .

The full coarse-graining procedure expands all terms into
their full gauge-invariant forms featuring gauge fields.
Given the above structural relationship, we anticipate
that fluctuations indeed generate the Lagrangian terms
at all ranks, starting from the fundamental ones at rank
1. The same effect was revealed in the case of Abelian
charge dynamics.
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Appendix D: Duality mapping of the Abelian
compact gauge theory at rank n

Here we consider the action:

S = −k
(n+1)∑

�

cos
(
εµ1···µd−nνλ1···λn∂νAλ1···λn

)
(D1)

− t
(n)∑
�

cos

(
n∑
l=1

(−1)l−1∂λiθλ1···λl−1λl+1···λn −Aλ1···λn

)
of a matter field θ coupled to a rank n gauge field A
on a d + 1 dimensional space-time cubic lattice. The
sums run over n dimensional hypercube “plaquettes” of
the lattice, and the indices µ, . . . label independent lat-
tice directions along lattice bonds. A quantity fµ1···µn
with n indices µi ∈ {0, 1, . . . , d} lives on an oriented
n dimensional plaquette of the space-time lattice. One
specifies a plaquette by a lattice site i and an ordered
set of indices (µ1, . . . , µn) that indicate space-time di-
rections of the plaquette edges that emanate from the
site i. The plaquette orientation is given by the value
of εµ1···µnαn+1···αd+1

that obtains from ε1,2,3,··· ,d−1 with
the minimum number of index permutations. A plaqu-
ette orientation can be changed either by an exchange
of two indices or by a sign change of one index; fµ1···µn
defined on a plaquette with positive orientation is equiv-
alent to −fµ1···µn on the same plaquette with negative
orientation, and consistent with fµ1···µn being an anti-
symmetric tensor. The lattice derivative ∂ν is defined by
∂νfi = fi+ν̂ − fi. The Maxwell term k is specified on an
n + 1 dimensional plaquette spanned by νλ1 · · ·λn, and
the remaining indices µ1 · · ·µd−n are redundant in the
compact formulation but kept for the sake of the contin-
uum limit where they are contracted in a quadratic form.
Note that the nature of lattice derivatives is such that we
can apply integration by parts (in an infinite system):∑

i

f∂µg =
∑
i

(figi+µ̂ − figi) =
∑
i

(fi−µ̂gi − figi)

= −
∑
i

gi(fi − fi−µ̂) = −
∑
i

f∂µg .

The dual action is derived as follows. Decouple the
cosines in S with integer-valued antisymmetric tensor

fields Jλ1···λn and Φµ1···µd−n using Villain’s approxima-

tion exp(−t cosx) ≈
∑
m exp(−Tm2 + imx):

S =

(n−1)∑
�

[
1

2τ
Jλ1···λnJλ1···λn + iJλ1···λn × (D2)

×

(
n∑
l=1

(−1)l−1∂λlθλ1···λl−1λl+1···λn −Aλ1···λn

)]

+

(n)∑
�

[
1

2κ
Φµ1···µd−nΦµ1···µd−n + iΦµ1···µd−n ×

×
(
εµ1···µd−nνλ1···λn∂νAλ1···λn

)]
.

Large values of t (k) correspond to large values of τ (κ),
and small values of t (k) correspond to small values of τ
(κ). Integrating out the angles θ and A produces

S =

(n)∑
�

1

2τ
Jλ1···λnJλ1···λn +

(n+1)∑
�

1

2κ
Φµ1···µd−nΦµ1···µd−n

(D3)
with constraints on J and Φ:

(∀l) ∂λlJλ1···λn = 0 (D4)

εµ1···µd−nνλ1···λn∂νΦµ1···µd−n + Jλ1···λn = 0 .

The constraints can be solved by expressing J and Φ in
terms of new antisymmetric tensor fields a and φ:

Jλ1···λn = εµ1···µd−nνλ1···λn∂νaµ1···µd−n (D5)

Φµ1···µd−n =

d−n∑
l=1

(−1)l−1∂µlφµ1···µl−1µl+1···µd−n−aµ1···µd−n

The values of a and φ can be real as long as J and Φ are
integer-valued. In fact, the integer-value constraint on Φ
automatically makes J integer-valued. We can soften the
integer value requirement on Φ using a sine-Gordon term
(λκ) without affecting the universality class of the theory.
Substituting the above constraint solutions in the action
yields:

S =
1

2τ

(d−n+1)∑
�

(
εµ1···µd−nνλ1···λn∂νaµ1···µd−n

)2

+
1

2κ

(d−n)∑
�

(
d−n∑
l=1

(−1)l−1∂µlφµ1···µl−1µl+1···µd−n − aµ1···µd−n

)2

−λκ
(d−n)∑

�

cos

(
2π

d−n∑
l=1

(−1)l−1∂µlφµ1···µl−1µl+1···µd−n − 2πaµ1···µd−n

)
. (D6)

This is the dual theory, formulated on the dual cubic lat- tice. Note that an n dimensional plaquette of the original
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lattice is dual to a d−n dimensional plaquette of the dual
lattice.

a. Phase diagram

The original theory of angle-valued fields (D1) is ex-
pected to have Higgs and Coulomb phases. The Higgs
phase is a θ condensate with all excitations gapped by
Higgs mechanism. At least in this phase, we may take
the continuum limit of both compact terms because all
field fluctuations are suppressed. The Coulomb phase
must have a massless gauge boson due to gauge invari-
ance. It features abundant field fluctuations, so it is not
a priori clear that the compact terms can be expanded
to quadratic order for the continuum limit. The surviv-
ing compactness means that the electric field E (canoni-
cally conjugate to A) is integer-valued, and any charged
sources of the frozen E (with fluctuating A) are confined.

The phase diagram of the dual theory (D6) must match
the phase diagram of the original theory (D1). The con-
densation of θ in the original Higgs phase is consistent
with abundant fluctuations of J (due to the iJ∂µθ term
in the intermediate action), implying correspondence to a
dual Coulomb phase with abundant a fluctuations. The
suppression of A in the original Higgs phase is similarly
tied to the fluctuations of φ. Conversely, abundant fluc-
tuations of θ,A in the original Coulomb phase correspond
to the suppressed fluctuations of φ, a in a dual Higgs-
like phase. However, there is a problem: the original
Coulomb phase is gapless, so the dual Higgs phase must
be gapless despite the presence of the dual gauge field a.
Similarly, the original Higgs phase is gapped, so the dual
Coulomb phase must be gapped too despite the presence
of the dual gauge field a. If the dual theory contained
only the matter field φ, then its superfluid (Higgs) and
disordered (Coulomb) phases would correctly match the
excitation spectra of the original theory. Another prob-
lem is how to obtain gapless phases from fields whose
gauge-invariant configurations are discrete-valued and al-
ways classically cost a finite action.

The hint to solving the second problem is that the only
gapless mode in the original theory is the A photon of the
Coulomb phase, and the corresponding gapless mode of
the dual theory is the Goldstone mode of φ. Indeed, the
field φ is not required to be integer-valued, only the com-
bination Φ in (D5) is. Let us separate the transverse
and longitudinal modes of a and absorb the longitudinal
modes into ∂φ by a change of variables. This amounts to
gauge fixing through some condition imposed on φ and
a. However, neither φ nor a can be integer-valued in
a fixed state-independent gauge on the lattice. Hence,
separating transverse from longitudinal gauge modes in-
evitably runs into geometric frustration on the lattice.
A set of non-quantized transverse gauge modes a can
emerge from frustration and live at very long wavelengths
with small amplitudes, as long as they are compensated
by appropriate longitudinal φ modes to make Φ integer-

valued. These long-wavelength a modes cost arbitrar-
ily small Maxwell energy, but the attached longitudinal
modes are generally costly through the non-compact κ−1

term of the dual action (D6). For this reason, the pres-
ence of the κ−1 term effectively gaps out the transverse a
modes, and we can safely integrate them out. The result-
ing effective theory may have a sine-Gordon term for the
surviving longitudinal modes φ, but the sine-Gordon cou-
pling cannot be infinite because φ is fundamentally not
quantized as a result of frustration (it cannot be even
finite if it is a relevant perturbation that flows to infinity
under renormalization group). The final dual theory for
low-energy excitations is approximately a non-compact
longitudinal model:

S =
1

2κ′

(d−n)∑
�

(
d−n∑
l=1

(−1)l−1∂µlφµ1···µl−1µl+1···µd−n

)2

.

(D7)
This model correctly matches the phases of the original
theory and their excitation spectra. The analogous com-
pact model

S′ = −λ′
(d−n)∑

�

cos

(
2π

d−n∑
l=1

(−1)l−1∂µlφµ1···µl−1µl+1···µd−n

)

also matches the phases of the original theory and al-
most all of its excitations. It only differs from the origi-
nal theory in regard to its confinement of charges in the
Coulomb phase. An excitation with quantized “electric”
charge in the original theory corresponds to a quantized
topological defect of the dual theory. The compact the-
ory S′ does not confine its defects in the ordered phase
because the frustration of φ due to separated quantized
defects can be collected into a singular multi-dimensional
“fault line” that terminates at the defects and costs no
λ′ energy. Consequently, the non-compact theory (D7)
correctly describes the spectrum of charged excitations
in the original model’s Coulomb phase.

b. Without gauge fields in the original theory

A special case of the original theory (D1) obtains in
the k → ∞ limit, which suppresses the gauge field A.
The ensuing action contains only the matter field:

S = −t
(n)∑
�

cos

(
n∑
l=1

(−1)l−1∂λiθλ1···λl−1λl+1···λn

)
.

(D8)
Its phase diagram consists of a superfluid ordered phase
with gapless Goldstone modes, and a disordered gapped
phase. Following the same procedure as before, we obtain
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the dual theory

S =
1

2τ

(d−n+1)∑
�

(
εµ1···µd−nνλ1···λn∂νaµ1···µd−n

)2

−λκ
(d−n)∑

�

cos

(
2π

d−n∑
l=1

(−1)l−1∂µlφµ1···µl−1µl+1···µd−n

−2πaµ1···µd−n

)
. (D9)

The main difference from (D6) is the absence of the non-
compact term with dual matter (κ → ∞). Repeating
the previous analysis, we find that the long-wavelength
transverse modes of a must still bind some longitudinal
modes of φ in order to satisfy the integer constraint (D5)
on Φ, but these longitudinal modes now cost no energy in
the absence of the non-compact matter term. Therefore,
the gauge bosons are massless by gauge-invariance, unless
a Higgs mechanism occurs. The Higgs phase of the dual
model is fully gapped and corresponds to the disordered
phase of the original model. The dual Coulomb phase
has massless photons, which corresponds to the massless
Goldstone modes of the original model’s superfluid phase.

Note that we could also consider a fully compact
Maxwell term in the dual theory S′. However, such a
compact theory would confine its charges in the Coulomb
phase, so the topological defects of the original model’s
ordered phase would need to be confined too. Defect
confinement is not present in the original compact the-
ory, so the correct dual theory indeed has a non-compact
Maxwell term.

c. Without matter fields in the original theory

Another special case of the original theory is the limit
t→ 0:

S = −k
(n+1)∑

�

cos
(
εµ1···µd−nνλ1···λn∂νAλ1···λn

)
. (D10)

This is a pure compact gauge theory at rank n, which
describes the phase Gd−1 = C1 · · ·Cd−1 from Section IV C
after all other gapped fields have been integrated out.
The dual theory is derived using the same approach as
before, but with J = 0, a = 0:

S =
1

2κ

(d−n)∑
�

(
d−n∑
l=1

(−1)l−1∂µlφµ1···µl−1µl+1···µd−n

)2

(D11)

− λκ
(d−n)∑

�

cos

(
2π

d−n∑
l=1

(−1)l−1∂µlφµ1···µl−1µl+1···µd−n

)
This is a gauge theory at rank d − n − 1 provided that
n < d−1, because the Abelian current term of rank d−n
is equivalent to the Maxwell term at rank d− n− 1.

The highest rank n = d − 1 is special because the
“longitudinal” field φ becomes a scalar without indices.
The dual action (D11) reduces to sums over lattice links:

S =
1

2κ

∑
−

(∂µφ)
2 − λκ

∑
−

cos (2π∂µφ) . (D12)

It has been shown104 that λκ is always relevant here and
flows to infinity under renormalization group (in d = 2,
but the argument naively extends to d > 2), so this turns
into a height model with φ ∈ Z (an arbitrary real-valued
uniform offset to φ is irrelevant). The final dual theory:

S =
1

2κ

∑
−

(∂µφ)
2

, φ ∈ Z (D13)

with integer-valued field is known to have only an ordered
“smooth” phase in d = 2 dimensions76, and the ordered
phase is only more stable in d > 2. This ordered phase is
evidently gapped and corresponds to the confining phase
of the original pure-gauge theory (D10).

A disordered phase of the dual theory would corre-
sponds to the large k phase of the original theory (D10).
At large k, the fluctuations of A would be suppressed
and we would naively be able to expand the cosine to
quadratic order and take the continuum limit. The ensu-
ing non-compact gauge theory would then have a mass-
less photon mode. However, this is not actually accurate.
What does this correspond to in the dual theory? In or-
der to quantize the dual theory, we introduce a canoni-
cally conjugate observable n to φ, defined on dual lattice
sites i through [ni, φj ] = iδij . Since φ ∈ Z, we find that
n ∈ [0, 2π) is a continuous variable. The dual Hamilto-
nian takes form

H = −u
2

∑
i

cos(ni) +
1

2κ

∑
〈ij〉

(φi − φj)2 . (D14)

The φ-disordered state is ordered in n, but the settled
value of 〈ni〉 = 0 in the ground state is not separated from
other values 〈ni〉 6= 0 by a finite gap and consequently
κ−1 is not a small perturbation. It has been shown that
the actual spectrum is gapped in d = 2. The dual height
model is in its smooth phase for all κ, so that 〈φ〉 is always
well defined in the ground state. Conversely, the original
compact gauge theory at the highest rank n = d − 1 is
always confined and gapped.

Appendix E: Canonical formalism of the multi-rank
Abelian gauge theory: energy-momentum tensor

and angular momentum

The Abelian Lagrangian density (47) of gauge and
matter fields at rank n in d dimensions is:

L =
1

(d− n)!

1

2e2
n

(
εα1···αd−nµλ1···λn∂µAλ1···λn

)2
+
κn
2

(
n∑
i=1

(−1)i−1∂λiθλ1···λi−1λi+1···λn +Aλ1···λn

)2
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The canonical conjugates to Aλ1···λn and θλ1···λn−1
are:

Eµλ1···λn =
δL

δ∂µAλ1···λn
(E1)

πµλ1···λn−1
=

δL
δ∂µθλ1···λn−1

= n
δL

δAµλ1···λn−1

= −n∂νEµνλ1···λn−1

Eµλ1···λn is the generalized field tensor (Fµν in electrody-
namics). The formulas for πµλ1···λn−1 follow from gauge-
invariance and the Lagrange field equation for the gauge
field. The explicit expressions are:

Eλ1···λn+1
=

(εα1···αd−nρν1···νn∂ρAν1···νn)εα1···αd−nλ1···λn+1

(d− n)!e2
n

=
n!

e2
n

n+1∑
i=1

(−1)i−1∂λiAλ1···λi−1λi+1···λn+1
(E2)

πλ1···λn =nκn

[
n∑
i=1

(−1)i−1∂λiθλ1···λi−1λi+1···λn−Aλ1···λn

]
The symmetry under translations by a

xµ → xµ + δa δαµ

Aλ1···λn → Aλ1···λn + δa ∂αAλ1···λn

L → L+ ∂µ(δa δαµL)

yields the conserved canonical energy-momentum tensor:

Tα,µ = Eµλ1···λn ∂αAλ1···λn

+πµλ1···λn−1 ∂αθλ1···λn−1 − δαµL .

Similarly, rotations lead to the conservation of angular
momentum. Under infinitesimal rotations by δθ

Rαβ(δθ) = e−iMαβδθ → 1− iMαβδθ

(Mαβ)µν = −i(δαµδβν − δανδβµ) ,

the coordinates xµ and tensor fields like Aλ1···λn trans-
form as:

xµ → xµ − δθ(δαµxβ − δβµxα)

Aλ1···λn → Aλ1···λn + δθ(xα∂β − xβ∂α)Aλ1···λn

+δθΣαβ;λ1···λn,γ1···γnAγ1···γn .

Rotations in the αβ plane are obtained when both α
and β are spatial indices, otherwise we have the gen-
eralized Lorentz transformations in the imaginary (Eu-
clidean) space-time. The “spin matrix” Σαβ is respon-
sible for rotating the internal degrees of freedom of the
field. For the gauge fields in this theory, Rαβ(δθ) is sep-
arately applied on each index of Aλ1···λd−1

and only the
lowest-order terms are kept (the sense of rotation is op-
posite to that of xµ):

Σαβ;λ1···λn,γ1···γn =

n∑
k=1

(Mαβ)λkγk
∏
i6=k

δλiγi

=

n∑
k=1

(δαλkδβγk − δαγkδβλk)
∏
i 6=k

δλiγi .

As a scalar, the imaginary-time (Euclidean) Lagrangian
density transforms according to:

L → L+ δθ(xα∂β − xβ∂α)L

= L+ δµ

[
δθ(xαδβµ − xβδαµ)L

]
− δθ(δβα − δαβ)L

= L+ ∂µWµ ,

where

Wµ = δθ (xαδβµ − xβδαµ)L .

Therefore, the canonical angular momentum current den-
sity is:

Jαβ,µ ∝ Eµλ1···λnδAλ1···λn + πµλ1···λn−1
δθλ1···λn−1

−Wµ

= xαTβ,µ − xβTα,µ
+Eµλ1···λd−1

Σαβ;λ1···λd−1,γ1···γd−1
Aγ1···γd−1

+πµλ1···λn−1Σαβ;λ1···λn−1,γ1···γn−1θγ1···γn−1 .

The canonical construction of Tα,µ and Jαβ,µ us-
ing Noether’s theorem ensures the conservation laws
∂µTα,µ = 0 and ∂µJαβ,µ = 0. However, the canonical
tensors Tα,µ and Jαβ,µ are not symmetric in their indices
and do not look gauge-invariant. These issues are fixed
by symmetrizing the energy-momentum tensor.

The symmetrized energy-momentum tensor and an-
gular momentum currents (without commas separating
their indices) are:

Tµν =
1

nκn
πµλ1···λn−1

πνλ1···λn−1
(E3)

+
e2
n

n!
Eµλ1···λnEνλ1···λn − δµνL

Jαβµ = xαTβµ − xβTαµ .

They differ from the canonical ones only by total deriva-
tives and hence describe the same bulk quantities.

Appendix F: Braiding of multi-dimensional
excitations

A useful operation that generalizes from particle braid-
ing is braiding of multi-dimensional objects. Consider
creating a (quasi) particle-antiparticle pair at some point
in space, driving the particle along a closed loop path,
and eventually annihilating the pair. This operation
leaves behind a Dirac string loop. Now consider creat-
ing adjacent Dirac loops that completely cover a sphere.
If all loops have the same orientation relative to the lo-
cal orientation of the sphere’s surface, then the initial
and final states are both free of charge or gauge flux and
hence differ only by a phase. This phase can be fraction-
alized and it can characterize topological order. Let us
begin with constructing the operator that creates a Dirac
loop. First we want to create a particle-antiparticle pair
in terms of charge. The operator:

ψ†(x) = e−iνθ(x) (F1)
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creates a point-like lump of charge ν at location x if
θ is the angle operator conjugate to the integer-valued
particle number, i.e. the usual U(1) phase. Creating a
particle-antiparticle pair separated by a distance δx is
accomplished with:

ψ(x)ψ†(x + δx)→ e−iν(∂µθ+Aµ)δxµ . (F2)

We have gauged this operation in order to create a phys-
ical state. Movement of a particle along a path is done
by chaining similar pair-creation operations: in every in-
finitesimal movement step, one creates a new particle-
antiparticle pair displaced by δx along the path in such
a way that the antiparticle lands at the same position as
the old “driven” particle and annihilates it, leaving be-
hind just the new particle at a new position. It is easy
to see that the loop creation operation is given by the
operator:

∏
δxµ∈P

e−iν(∂µθ−Aµ)δxµ = exp

−iν ∮
P

dxµ(∂µθ +Aµ)


= exp

−iν ∮
P

dxµ jµ

 . (F3)

For the simplicity of notation, we work here with a renor-
malized charge current jµ = ∂µθ+Aµ “per particle” that
does not contain the incompressible |ψ|2 density factor.
The quasiparticles of an incompressible quantum liquid
combine a monopole with a lump ν of charge, so we also
need to create a monopole/antimonopole pair and drive
the monopole around the loop. Since the monopole is a
point-particle, its normalized current Jµ ∼ ∂µφ can be
similarly written in terms of an operator eiφ that creates
a monopole. By duality, we simply need to replace the
charge current operator jµ with the normalized defect
current operator Jµ in the above formula. The full Dirac
loop operator is then:

LP = exp

−i ∮
P

dxµ(νjµ + qdJµ)

 . (F4)

One must independently find the charge qd. Since the
operator LP creates a Dirac loop, we can immediately
extend it to an operator that moves the loop sweeping
an open cylindrical surface S from one end to another:

LS =
∏
P
LP = exp

−i∑
P

∮
P

dxµ(νjµ + qdJµ)


= exp

−i∫
S

daµ εµνλ∂ν(νjλ + qdJλ)

 .

Here, daµ is a vector normal to the surface with a magni-
tude equal to the local surface area element. The surface

is orientable, and its orientation in the integral corre-
sponds to the direction of sweep. At this stage, we ob-
serve that the Dirac attachment links between different
gauge field ranks require us to transport the matter and
gauge field configurations associated with the quasipar-
ticle at all intermediate ranks. The rank 2 matter field
describes one-dimensional extended objects, which are
actually quantized flux lines linked to Dirac strings. We
must generate the appropriate rank 2 matter field, and
the rank 2 gauge field it couples to, when we create and
move a Dirac loop. Defining the gauge-invariant rank 2
current jµν = ∂µθν − ∂νθµ −Aµν , we have a correction:

LS = exp

−i ∫
S

daµ εµνλ

[
∂ν(νjλ + qdJλ) + q2jνλ

] .

(F5)
The charge constant q2 for jµν needs to be separately
determined. We have constructed the correction to LS
purely on symmetry grounds and by formal analogy to
the operator LP that moves a point-like object along a
one-dimensional path. More formally, jµ is equivalent
to the canonical momentum of the matter field per par-
ticle (the density factor |ψ|2 is stripped away), and in-
deed generates translations. Similarly, jµν is the canoni-
cal momentum of the rank 2 matter field per particle per
unit-length (given its units), so it can be used as above to
generate translations of a line-shaped object. This would
be all in d = 3 (Jλ contains a derivative of Aµν), and
we could continue in the same fashion to higher ranks in
d > 3 by defining operators that create n−1 dimensional
objects and sweep them across n dimensional manifolds
Mn:

LMn
= exp

[
−i
∫
Mn

n∏
i=0

dxi εµ1···µn

(
qnjµ1···µn (F6)

+
qn−1

n

n∑
i=1

(−1)i−1∂µijµ1···µi−1µi+1···µn + · · ·
)]

.

If the manifoldMn is closed (without a boundary), then
only the highest-rank gauge field can contribute:

LMn
= exp

−iqn ∮
Mn

n∏
i=0

dxi εµ1···µn Aµ1···µn

 . (F7)

So, creating a loop, sweeping it across a closed surface S,
and then annihilating it in d = 3 is achieved by:

LS = exp

−i ∮
S

daµ εµνλ

[
∂ν(νjλ + q3Jλ) + q2jνλ

]
= exp

−iq2

∮
S

daµ εµνλAνλ

 = e−2πiq2N , (F8)

where N is the total π2(S2) topological charge enclosed
by S. The currents jµ and Jµ have no curl in an incom-
pressible quantum liquid, so they dropped out.
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Appendix G: Fractional braiding statistics

Here we analyze the Aharonov-Bohm phase in both
dynamically and topologically protected braiding oper-
ations in d = 3 dimensions. The starting point is the
following Lagrangian density of an incompressible quan-
tum liquid with monopoles

L = −jµAµ − jµνAµν − κ
(
Fµν

2
−Aµν

)(
Fµν

2
−Aµν

)
− ν

4π
εµναβAµ∂νAαβ + LM1 + LM2 , (G1)

where Fµν = ∂µAν − ∂νAµ, LMn are rank n Maxwell
terms, and the external currents jµ and jµν describe in-
serted fractional excitations – point-like quasiparticles at
rank 1 and loops at rank 2 respectively.

Consider first the braiding of two point quasiparticles.
The braiding outcome is non-trivial even though it is
not topologically protected. The external currents of two
quasiparticles at positions x1(t) and x2(t) are jµν = 0
and jµ = jµ1 + jµ2 :

j0
1(x, t) = q1 δ

(
x− x1(t)

)
, ji1(x, t) = q1 ẋ

i
1δ
(
x− x1(t)

)
j0
2(x, t) = q2 δ

(
x− x2(t)

)
, ji2(x, t) = q2 ẋ

i
2δ
(
x− x2(t)

)
Integrating out δAµν in Aµν = 1

2Fµν+δAµν renormalizes
the rank 1 Maxwell term and replaces the topological
term with an axion term:

L = −jµAµ −
ν

4π
εµναβAµ∂ν∂αAβ + LM1 . (G2)

If we define the operator

Cµν =
ν

2π
εµναβ∂α∂β , (G3)

then integrating out Aµ yields:

L =
1

2
jµC−1

µν j
ν + · · · , (G4)

when we neglect the “radiative” interactions between
charges and currents induced by electromagnetic field
fluctuations (through LM1). It is important to note that
(G3) is a symmetric operator (its anti-symmetric parts
would not contribute the braiding action S). Namely,
transposing C flips the sign through the exchange of ex-
ternal indices µ, ν, but this sign flip is canceled in the
integration by parts ε···αβ∂α∂β → ε···αβ(−∂β)(−∂α). The
effective braiding action

S =

∫
d4x L =

∫
d4x

1

2

(
j1µA

µ
2 + j2µA

µ
1

)
(G5)

captures the Aharonov-Bohm phase associated with the
braiding of two quasiparticles around each other. Each
quasiparticle picks the Aharonov-Bohm phase only from
the flux attached to the other quasiparticle, via

Aiµ = C−1
µν j

ν
i ⇒ CµνAiν =

ν

2π
εµναβ∂α∂βAiν = jµi .

Substituting the above formulas for jµn(x, t) allows us to
determine Aµn. For a quasiparticle at rest, A0

n = 0 and:

ε0ijk∂i∂jAnk =
2πqn
ν

δ(x− xn) . (G6)

Therefore, Aµn is the U(1) gauge field of a monopole at xn
with topological charge 2πqn/ν. The fractional charge of
a point quasiparticle in the Laughlin-like incompressible
quantum liquid with the filling factor ν = 1/m is qn = ν.
This endows Aµn with a single 2π unit of monopole flux.
Each quasiparticle of charge qn = ν picks an Aharonov-
Bohm phase from the monopole quantum attached to
the other quasiparticle, but (G5) associates only a half
of the total two-particle phase to the braiding operation.
This result is analogous to the d = 2 case of quantum
Hall liquids59, but different from the d = 3 field-induced
correction calculated in Ref.44

As an example, simulate the exchange of two identical
quasiparticles by driving them on opposite semi-circular
paths in a single plane about their center of mass. Each
quasiparticle contributes 1

2 ×
Ων
2 to the Aharonov-Bohm

phase; Ω = 2π is the solid angle that subtends a closed
loop in the braiding plane, and the extra factor of 1

2 is the
patch for the semi-circular path. The braiding phase is
a half of the total Aharonov-Bohm phase of both quasi-
particles, ϕ = 1

2νπ. This phase is not topologically pro-
tected, but if one is able to precisely control the quasi-
particle trajectories then the value of ϕ is protected dy-
namically – it can be arbitrarily changed only at the cost
of exciting additional gapped excitations that distort the
field lines of charges and monopoles. There is also an-
other issue regarding the gauge-dependent choice for the
unavoidable Dirac string, discussed in Appendix I.

A few comments are in order. The above deriva-
tion utilizes antisymmetrized combinations of deriva-
tives, which vanish when applied to any analytic func-
tion. Hence, we rely on singular field configurations at
rank 1 in order to describe monopoles. As explained in
the paper, quantized monopole singularities in the rank 1
gauge fields are made possible by the compact regulariza-
tion of the field theory, and their mathematical structure
is analogous to that of a U(1) phase θ in the description
of quantized vortices. The antisymmetrized derivatives
of gauge fields should be computed mod 2π. If we naively
annihilated them, we would never be able to capture any
interaction between charge currents and monopoles at
rank 1.

Now, let us calculate the braiding phase of a quasi-
particle and a loop. Repeating the above procedure of
integrating out Aµν and then Aµ in (G1) leads to the
effective Lagrangian density

L → −jµAµ −
Fµν

2
jµν −

ν

8π
εµναβAµ∂νFαβ + LM1 + · · ·

→ 1

2
(jµ − jµα∂α)C−1

µν (jν − ∂βjνβ) + · · · , (G7)

with an abuse of notation: ∂β from the last bracket
acts to the left on the objects outside the bracket. We
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are again neglecting radiative contributions to current-
current interactions. The braiding action is

S =

∫
d4x

1

2

[
−jµα∂αC−1

µν j
ν − jνβ∂βC−1

µν j
µ
]

=

∫
d4x jµνAµν , (G8)

where

CµαAµν = −∂ν jα .

If we rewrite Aµν = ∂µaν − ∂νaµ, then

εµναβ∂α∂β(∂µaλ − ∂λaµ) = −2π

ν
∂λj

ν (G9)

yields a monopole solution

εµναβ∂α∂β∂µaλ = 0 , εµναβ∂α∂βaµ =
2π

ν
jν (G10)

without higher-rank singularities. Since the fractional
quasiparticle carries charge j0 ∝ q1 = ν, the ensuing
rank 2 gauge field Aµν is simply the “electromagnetic”
field tensor of a unit 2π monopole attached to the quasi-
particle. The braiding phase is the full Aharonov-Bohm
phase collected from a 2π monopole quantum at rank
2. We also need the loop’s rank 2 charge q2. The rank
2 “electric charge” density (per unit volume and loop’s
unit-length) j0i couples to A0i in the Lagrangian density,
and similarly, the rank 2 “magnetic flux” density jij cou-
ples to Aij . The linking Lagrangian terms relate Aµν to
1
2Fµν , so the ratios of electric and magnetic charges are
the same in the two descriptions. The magnetoelectric
effect derived in Section VI F relates electric and mag-
netic fields as E = −2ανB where α = e2/~c → 1/4π is
the fine-structure constant in natural units. Therefore,
a 2π unit of magnetic flux binds ν electric field units in
the loop. The loop is a fractional excitation that carries
rank 2 charge q2 = ν.

As an example, consider driving the point-particle on a
closed path through the loop. Relative to the quasiparti-
cle, the loop sweeps a torus-shaped surface that encloses
the quasiparticle and collects all of its monopole’s flux.
The rank 2 Aharonov-Bohm phase (F8) is 2πν, so the
braiding phase is ϕ = 2πν. This is naively expected from
the Aharonov-Bohm effect at rank 1, for a quasiparticle
of charge q1 = ν that encircles a 2π-quantized vortex
loop, but now we have a confirmation that there are no
special corrections from the topological Lagrangian term.

Lastly, we briefly show that loop-loop braiding is trivial
in the presently considered topological orders. The braid-
ing action for two loops described with currents jµ = 0
and jµν = jµν1 + jµν2 is obtained from (G7):

S =

∫
d4x

1

2

[
−jµα1 ∂αC−1

µν ∂βj
νβ
2 − j

µα
2 ∂αC−1

µν ∂βj
νβ
1

]
→ 0

after an integration by parts which transfers ∂β onto
a target on its right. This action vanishes because the

closed rank 2 loops satisfy ∂µj
µν = ∂νj

µν = 0. Physi-
cally, this braiding only moves electric and magnetic flux
lines around one another, and hence does not generate
Aharonov-Bohm phases. The situation would have been
different if rank 1 electric or magnetic charge were at-
tached to the loops27,55–58.

Appendix H: The electromagnetic angular
momentum of charges and monopoles

Consider a system of point charges ei at locations xi
and point monopoles mj at positions xj . The angular
momentum of the electromagnetic field contributed by
the charge ei and all monopoles relative to xi is:

Li =

∫
d3x (x− xi)×

(
E(x)×B(x)

)
(H1)

=
ei
4π

∫
d3x

1

|x|

{
x̂
[
x̂B(x + xi)

]
−B(x + xi)

}
.

Using:

(B∇)x̂ =
B− x̂(x̂B)

|x|
(H2)

we obtain:

Li = − ei
4π

∫
d3x

[
B(x + xi)∇

]
x̂ (H3)

→ ei
4π

∫
d3x

[
∇B(x + xi)

]
x̂

=
2π

4π

∑
j

eimj

∫
d3x δ(x + xi − xj)x̂

=
1

2

∑
j

eimjδx̂ij .

The arrow indicates integration by parts, and δxij =
xj − xi = |δxij |δx̂ij . Since the total momentum carried
by the electromagnetic field is zero, the angular momen-
tum does not depend on the anchor point. The total
electromagnetic angular momentum of all charges and
monopoles, with respect to any anchor point, is:

L =
∑
i

Li =
1

2

∑
ij

eimjδx̂ij . (H4)

This angular momentum was computed classically, and
hence represents the expectation value 〈Ψ|L|Ψ〉 of the
angular momentum operator L in the quantum state |Ψ〉
of charges, monopoles and their electromagnetic field. If
|Ψ〉 is an eigenstate of L (along some direction), then the
above expression must have a quantized magnitude in
agreement with the quantization of angular momentum
eigenvalues. We will specialize to such circumstances by
aligning all δx̂ij in the same direction.

Let us calculate the angular momentum produced by
N dyons whose sizes are negligible next to their separa-
tions. If ith dyon carries electric charge ei and magnetic
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charge mi, then the total angular momentum is:

L =
1

2

N∑
i=1

N∑
j=1

eimjδx̂ij (H5)

=
1

2

∑
i

eimiδx̂ii +
1

2

∑
i<j

(eimj − ejmi)δx̂ij .

If all δx̂ii and δx̂ij = −δx̂ji are independent variables,
then the angular momentum quantization requires:

(∀i) eimi ∈ Z
(∀i 6= j) eimj − ejmi ∈ Z . (H6)

The former is Dirac’s monopole charge quantization54

and the latter is Schwinger-Zwanziger condition105,106.
These conditions ensure that the sign changes of δx̂ij ,
i.e. internal dyon rotations and pairwise dyon exchanges,
do not violate angular momentum quantization or dyon
exchange statistics. All alterations can change the to-
tal angular momentum only by an integer (multiple of
~). Note that an exchange of two identical dyons does
not affect the total angular momentum. Violating ei-
ther of these conditions due to a fractionalization of ei
would need to be compensated by long-range correlations
among δx̂ij in order to protect the quantization of L.

The two conditions (H6) together seem to prohibit
charge fractionalization unless monopoles can exist only
in multi-monopole clusters. However, there is a way
out. Classically, a system of non-coinciding charges and
monopoles that satisfy Dirac quantization can be trans-
formed into a system of point-like dyons though a duality
mapping E + iB→ eiθ(E + iB) of electrodynamics with
electric and magnetic charges. The resulting dyons sat-
isfy Schwinger-Zwanziger condition. The total electro-
magnetic angular momentum is invariant under duality,
and thus does not obtain contributions from the internal
structure of dyons after duality, as if δx̂ii ≡ 0 in (H5).
This hints a path to the eventual quantum regularization,
where neither electric nor magnetic charge are ever local-
ized at a single point. At the least, it is more appropriate
to write:

L =
∑
i

Li +
1

2

∑
i<j

(eimj − ejmi)δx̂ij , (H7)

where Li is the intrinsic dyon’s quantum spin.
Next, we briefly review the quantum dynamics of

dyon’s emergent spin. Consider an elementary dyon
made from a unit-charge e = 1 and unit-monopolem = 1.
The electromagnetic angular momentum (H4) must be
included in the angular momentum operator of the dyon.
If the monopole is fixed at the origin, then the charge-
particle’s stationary state can be an eigenstate of the to-
tal angular momentum operators L2 and Lz by rotational
symmetry. One can easily verify that the operators

Li = −iεijkxj(∂k − iAk)− em

2

xi
|x|

(H8)

satisfy the commutation relations [Li, Lj ] = iεijkLk for
i, j, k ∈ {x, y, z}. The plain kinetic energy Hamiltonian
of the charge-particle is found to be:

H =
1

2Mr2

[
− ∂

∂r

(
r2 ∂

∂r

)
+ L2 −

(em
2

)2
]

(H9)

in spherical coordinates. Since the kinetic energy is pos-
itive, the minimum angular momentum magnitude is
em/2 → 1/2. Consequently, there are two degenerate
lowest-energy eigenstates, corresponding to Lz → ±1/2.
The angular part of the wavefunctions is given by the
monopole harmonics Y 1

2 ,l,m
:

Y 1
2 ,

1
2 ,

1
2

= − 1√
2π

sin

(
θ

2

)
eiφ (H10)

Y 1
2 ,

1
2 ,−

1
2

= − 1√
2π

cos

(
θ

2

)
in the gauge

A =
1

2r

1− cos θ

sin θ
φ̂ (H11)

for the monopole’s magnetic field

B = ∇×A =
r̂

2r
. (H12)

It is interesting to observe that the gauge-invariant cur-
rent

Jµ ∝ −
i

2

[
Y ∗(∂µY )− (∂µY

∗)Y
]
− |Y |2Aµ

= ± sin θ

8πr
φ̂µ (H13)

contains vortex-like flow (concentrated near the
monopole and with a proper core) that builds a
magnetic moment consistent with the total angular
momentum direction Lz = ±1/2.

Appendix I: Dyon braiding

Here we attempt to analyze the braiding of dyons with
a few thought experiments. We will initially assume
that the Aharonov-Bohm phase completely determines
the braiding statistics, and run into a paradox: the statis-
tics is not symmetric and depends on the braiding path.
We will then “resolve” the paradox by making a naive
assumption that quantized Dirac strings have a physical
effect on fractional charges. The ultimate correct under-
standing of Aharonov-Bohm phases will be obtained at
the end from a closer scrutiny of dyon quantum mechan-
ics.

Suppose that a dyon consists of a fractional charge ν
bound to a monopole quantum. Driving a dyon on a loop
P near another static dyon produces the Aharonov-Bohm
phase

ϕ = ν

∮
P

δyA(y) =
ν

2
ΩP , (I1)
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where ΩP is the solid angle through which the loop is seen
from the static dyon. Let us simulate an exchange of two
identical dyons in d = 3, by driving them in opposite
directions on a circle centered at their center of mass.
Relative to dyon 1, the dyon 2 completes a half of a
twice larger circle which is seen through the solid angle
Ω = 2π. This accumulates the phase ϕ2 = νπ/2 for the
dyon 2. The same happens to the dyon 1, so the total
Aharonov-Bohm phase of both dyons is ϕ1 + ϕ2 = νπ.
The two-body wavefunction of dyons acquires a half of
this phase as calculated in Appendix G.

Since ΩP is well-defined only modulo 4π, the
Aharonov-Bohm phase ϕ is well-defined modulo 2πν.
This is fine for integer ν, but presents a problem when
ν is fractional. Even worse, the simulated monopole-
quasiparticle exchange is generally anisotropic: the time-
reversal ϕ = νπ → −νπ 6= ϕ+2πn has the same effect as
the reorientation ẑ → −ẑ of the exchange rotation axis.
Both issues could be easily resolved if the Dirac strings
were detectable in the presence of fractional charge. A
monopole source Aµν is fundamentally isotropic, but the
rank 1 gauge field linked to it by Aµν ∼ 1

2 (∂µAν −∂νAµ)
cannot be isotropic due to a necessary Dirac string. This
inter-rank link is frustrated and the attached Dirac string
spontaneously breaks the rotation symmetry. Then, the
4π uncertainty of ΩP is just the contribution of the
Dirac string to the Aharonov-Bohm phase, and its natu-
ral anisotropy leads to the exchange anisotropy.

So, can a fractional charge see a 2π quantized Dirac
string? The Aharonov-Bohm phase is well-defined for
any charge and flux in the absolute continuum limit.
However, the fundamental quantization of charge and
flux is defined only with a compact regularization. A
Dirac string is truly deprived of any physical content in
a compact lattice gauge theory – it can be erased by
a gauge transformation that looks singular in the con-
tinuum limit, but cannot be sharply distinguished from
a non-singular transformation on a lattice. Let us ex-
plicitly construct such a transformation. Consider a
straight quantized string given by the continuum-limit

gauge field A(r, θ, z) = θ̂/r expressed in cylindrical co-
ordinates. If we place this gauge field on a lattice, then
we can carry out a gauge transformation to collect all of
its
∮
dyA = 2π into a single lattice link on any loop that

encloses the string. The resulting gauge field lives inside
factors eiAij in a compact gauge theory, and hence can be
trivially removed due to the equivalence of Aij ∈ {0, 2π}.
At the same time, the wavefunction of a nearby parti-
cle that couples to the gauge field will acquire a global
∆ϕ = 2π phase winding by this gauge transformation.
The gauge-invariant charge current Jµ ∼ ∂µϕ+Aµ is not
changed by this Dirac string removal. In this sense, the
string specifically associated with the gauge field is not
physically observable with gauge-invariant operators.

On the other hand, we are working with artificial gauge
fields in this paper. When we apply a singular gauge
transformation to extract a gauge field from ordinary
matter, that gauge field represents physical currents in

a singular gauge. A quantized Dirac string represents a
vortex of charge currents, and the analysis of topologi-
cal ground state degeneracy in Section VI B relies on its
physical reality.

A simple thought-experiment can further explore the
reality of quantized Dirac strings. Consider an infinite
superconducting medium of unit-charge particles with a
spherical hole that contains a monopole quantum. The
superconductor cannot expel the monopole’s flux, so it
will try to screen it. In typical realistic situations, a
superconductor screens magnetic flux by admitting lo-
calized Abrikosov vortices via the phase of its order pa-
rameter. So, one might naively imagine that a vortex
would form near the hole, collect all of the monopole’s
flux and take it to infinity through a narrow localized
tube – inside which the depletion of the order parame-
ter is physically observable. The first problem with this
picture is that an Abrikosov vortex cannot terminate at
a point surrounded by the superconductor, such as any
point on the surface of the hole. The monopole-screening
vortex would necessarily have to stretch between the ex-
terior boundaries of the superconductor, and only pass
through the hole. One arm of the vortex would collect the
actual monopole’s flux, while the other continuation arm
would be an avatar of the “unobservable” Dirac string
(i.e. it would have phase winding without a gauge flux in
the core). This is a frustrated situation, the vortex arms
must spontaneously choose arbitrary directions. Clearly,
one should carefully consider dynamics in order to find
out how this frustration is resolved.

The proper approach is to first solve the Schrodinger
equation for the superconductor’s charged particles in the
presence of a monopole. Assuming that we may neglect
interactions between the particles, the solution is given
by monopole harmonics. The ground state is always de-
generate by rotational symmetry: it is an eigenstate of
the total angular momentum L, but the minimum orbital
quantum number is l = 1/2 due to the angular momen-
tum of the electromagnetic field. This is reviewed in
Appendix H. The superconductor must condense in one
of these degenerate single-particle states and effectively
break the rotation symmetry by choosing the quantiza-
tion axis for L. Therefore, the physical superconductor’s
state is biased with respect to rotations according to the
quantum dynamics of angular momentum. The ultimate
resolution of monopole screening is not very different
from the first qualitative picture we built: the gauge-
invariant currents of monopole harmonics (H13) indeed
look much like an Abrikosov vortex that passes through
the hole, and build a magnetic moment consistent with
the angular momentum 〈L〉 direction.

The lesson learned from this thought experiment is
that Dirac strings are only as real as the physical states of
particles that espouse them. A physical excitation that
carries a quantized line or loop singularity is a vortex,
but we can describe it using a singular gauge field. Such
excitations can have non-trivial braiding statistics with
fractional charges.



52

Two point-like dyons can also have non-trivial braid-
ing statistics. A part of this braiding statistics is the
Aharonov-Bohm phase. However, the Dirac string at-
tached to the monopole appears to make the Aharonov-
Bohm phase gauge-dependent. Now we know how to
resolve this problem. Solve the Schrodinger equation of
a dyon to find the gauge-invariant charge currents in the
dyon’s ground states. These are given by (H13) for an
elementary quantized dyon, and strictly related to the

physical spin L = 1/2 of the dyon. Then, carry out the
usual singular gauge transformation j = |Y |2a to extract
the topological defect into a gauge field. The outcome is:

a+ = − 1

2r

sin θ

1− cos θ
φ̂ , a− =

1

2r

sin θ

1 + cos θ
φ̂ (I2)

for the dyon’s spin states Lz = ±1/2. These gauge fields
describe the original dyon’s monopole, but the attached
Dirac string does not have an arbitrary orientation any
more – its orientation is determined by the dyon’s spin.
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