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Magnetism, coupled with nontrivial band topology, can bring about many interesting and exotic
phenomena, so that magnetic topological materials have attracted persistent research interest. How-
ever, compared with non-magnetic topological materials (TMs), the magnetic TMs are less studied,
since their magnetic structures and topological phase transitions are usually complex and the first-
principles predictions are usually sensitive on the effect of Coulomb interaction. In this work, we
present a comprehensive investigation of XFe4Ge2 (X = Y, Lu) and Mn3Pt, and find these mate-
rials to be filling-enforced magnetic topological metals. Our first-principles calculations show that
XFe4Ge2 (X = Y, Lu) host Dirac points near the Fermi level at high symmetry point S. These Dirac
points are protected by PT symmetry (P and T are inversion and time-reversal transformations,
respectively) and a 2-fold screw rotation symmetry. Moreover, through breaking PT symmetry, the
Dirac points would split into Weyl nodes. Mn3Pt is found to host 4-fold degenerate band crossings
in the whole high symmetry path of A-Z. We also utilize the GGA + U scheme to take into account
the effect of Coulomb repulsion and find that the filling-enforced topological properties are naturally
insensitive on U .

I. INTRODUCTION

The topological nature of electronic bands has at-
tracted tremendous attention in condensed matter
physics since the birth of topological insulator [1, 2].
During the past decade, a variety of topological materi-
als have been discovered, including topological insulators
[1–5], Dirac semimetals [6–10], Weyl semimetals [11–13],
node-line semimetals [14–18], topological crystalline in-
sulators [19, 20], and various other topological phases
[21–27]. It is well-known that the nontrivial band topol-
ogy is usually protected by time-reversal (T ) symmetry
or other spatial symmetries such as mirror symmetry,
glide symmetry, etc [26]. Furthermore, symmetry and
band topology are intertwined with each other, and as a
result symmetry information can be used to diagnose the
band topology in a highly efficient manner. Nowadays
the time-reversal-invariant topological materials (TMs)
have been extensively studied in both theories and exper-
iments. Recently, symmetry-based methods for the effi-
cient discovery of topological materials were developed
[28–31], and thousands of nonmagnetic TM candidates
have been proposed [32–34].

Compared to the time-reversal-invariant topological
materials, magnetic topological materials are also ex-
pected to show rich exotic phenomena [35], such as ax-
ion insulators [36–43], antiferromagnetic topological in-
sulator [40–47], magnetic Dirac semimetal [48–51], and
magnetic Weyl semimetals [11, 52]. However, the pre-
dictions on magnetic TMs are relatively rare and very
few of them have been realized in experiments up to now
[35]. This limitation is originated from the fact that the
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topological properties are usually accompanied by sig-
nificant spin-orbit coupling (SOC), while SOC typically
leads to complex magnetic structures which is difficult
to characterize experimentally and theoretically. More-
over, unlike non-magnetic systems, Coulomb interaction
is of substantial importance in most magnetic systems,
and the Coulomb repulsion is usually incorporated by the
parameter U in first principles calculations. Therefore,
the first-principles predictions for magnetic topological
materials usually depends on the value of U [11, 38, 52].

Recently, the filling constraint for band insulator
has been established to discover topological semimetals
[53, 54]. This method enables the efficient search for
filling-enforced topological materials solely on their space
group (SG) and the filling electron number. The central
logic is that there is a tight bound for fillings of band
insulator in a SG [53]. Once a material crystallizing in
this SG own the number of valence electrons per unit cell
out of the tight bound, it cannot be a insulator. Based
on the filling-constraint method [53, 54], one can readily
calculate the filling constraint νBS for a material accord-
ing to its SG, where ν represents the filling number of
occupied electrons per unit cell. If ν /∈ νBS · Z (here Z
represents any integer), this material has an electron fill-
ing incompatible with any band insulator, and it must
have symmetry-protected gaplessness near the Fermi en-
ergy (unless a further symmetry-breaking or correlated
phase is realized). This type of material is referred to
as filling-enforced (semi)metals [53, 54]. Moreover, the
filling-constraint method has been extended to magnetic
materials based on their magnetic space group (MSG)
symmetries [55]. Note that the filling-constraint method
is based on the interplay between electron filling and
(magnetic) space group symmetries, and therefore it is
insensitive to the precise value of U so long as the rele-
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FIG. 1. Crystal structure of YFe4Ge2. The green, blue, and
purple balls represent the Y, Fe, and Ge ions, respectively.
The arrows denote the ground magnetic order measured by
Ref. [56].

vant symmetries are preserved.
In this work, by applying the filling-constraint method

[53–55], we find serveral magnetic topological metals:
XFe4Ge2 (X = Y, Lu) and Mn3Pt. We display detailed
analysis for the topological features of XFe4Ge2, where
Dirac points are located at S point near the Fermi en-
ergy. Moreover, the calculations show that the Dirac
points would split into Weyl nodes by a small perturba-
tion. We also perform the first-principles calculations for
the high-temperature phase of Mn3Pt, where the bands
along the A-Z path are four fold degenerate. The results
show that the essential properties and our conclusions do
not depend on the value of U as we expected.

II. METHOD

The calculations of electronic band structure and den-
sity of states have been carried out as implemented in
the Vienna ab-initio simulation package (VASP) [57–59].
The Perdew–Burke–Ernzerhof (PBE) of generalized gra-
dient approximation (GGA) is chosen as the exchange-
correlation functional [60]. 6×6×12 and 16×16×8 k-
point meshes are used for the Brillouin zone (BZ) integral
in XFe4Ge2 (X = Y, Lu) and Mn3Pt system, respec-
tively. The self-consistent calculations are considered to
be converged when the difference in the total energy of
the crystal does not exceed 0.01 mRy. The effect of spin-
orbit coupling (SOC) [61] is considered self-consistently
in all the calculations. We also utilize the GGA + U
scheme [62] to take into account the effect of Coulomb
repulsion in 3d orbital and the value of parameter U is
varied between 0 and 4 eV.

III. RESULTS

YFe4Ge2 was previously reported to crystallize in
the ZrFe4Ge2 type of structure with the space group
P42/mnm at room temperature [63]. In this tetragonal
structure, YFe4Ge2 has two formula units in the primi-
tive unit cell [63]. In 2001, Schobinger-Papamantellos et

FIG. 2. Partial density of states (PDOS) of YFe4Ge2
(left) and LuFe4Ge2 (right) from GGA calculation with non-
collinear antiferromagnetic configuration. The Fermi energy
is set to zero.

al. [56] measured the neutron diffraction and magnetic
properties of YFe4Ge2, and found a magnetostructural
(ferroelastic and antiferromagnetic) transition, where the
magnetic transition at TN = 43.5 K is accompanied
by a first-order phase transition from tetragonal struc-
ture (P42/mnm) to orthorhombic structure (Pnnm).
The magnetic structure below TN is non-collinear an-
tiferromagnetic with the type-III magnetic space group
Pn′n′m′ (58.399 in the Belov-Neronova-Smirnova (BNS)
settings [64]), as shown in Fig. 1. Note that the mag-
netic moments on two sites related by the inversion sym-
metry (P ) point in opposite directions, thus YFe4Ge2
is invariant under PT symmetry (T is the time-reversal
transformation). The magnetic moments of Fe ions at
two sites are measured to be 0.63 µB per Fe ion equally
at 1.5 K. Similar to YFe4Ge2, LuFe4Ge2 has the first-
order magnetoelastic transition at TN = 32 K from non-
magnetic tetragonal structure to antiferromagnetic or-
thorhombic structure, while the Fe moment value is 0.45
µB [65]. These materials are suggestted to be filling-
enforced topological materials [55], as we show in the
following.

Based on the non-collinear antiferromagnetic configu-
ration suggested by neutron diffraction experiment [56]
as shown in Fig. 1, we perform the first-principles cal-
culations for YFe4Ge2. The density of states and the
band structures are shown in Fig. 2 (a) and Fig. 3 (a)-
(c), respectively. It should be noted that, due to PT
symmetry, the electronic bands in the whole BZ are dou-
bly degenerate, as shown in Fig. 3. The bands in the
energy range from −10.0 and −8.0 eV are mainly con-
tributed by Ge-4s states, while Y bands appear mainly
above 3.0 eV. The 3d states of Fe ions are mainly lo-
cated from −6.0 to 2.0 eV, while Ge-4p states appear
mainly between −6.0 to −2.0 eV, implying strong hy-



3

FIG. 3. Band structures of XFe4Ge2 (X = Y, Lu) with experimental magnetic configuration [56]. (a)-(c) Band structures of
YFe4Ge2 from GGA, GGA+U (U = 2 eV) and GGA+U (U = 4 eV) calculations, respectively. (d)-(f) Band structures of
LuFe4Ge2 from GGA, GGA+U (U = 2 eV) and GGA+U (U = 4 eV) calculations, respectively. The Fermi energy is set to
zero. The Dirac points near the Fermi level are marked with red circle.

bridization between Fe and Ge states, as shown in Fig.
2 (a). Due to hybridization between Fe and Ge states,
the Ge ion has a small calculated magnetic moment (∼
0.05 µB), but the major magnetic moment is still located
at the Fe site. Our calculated magnetic moments of Fe
ions at two Fe sites are 1.86 µB and 1.70 µB , which is
larger than the experimental value. Though GGA calcu-
lations often underestimate the magnetic moments [66],
in certain cases the magnetic moments could be overesti-
mated. Similar discrepancy has also been reported in the
calculations for other Fe-based intermetallic compounds
[67]. For YFe4Ge2 system, the filling constraint νBS for
its MSG 58.399 is 4 [53–55]. Meanwhile, the number of
electrons per unit cell for YFe4Ge2 is to ν = 414, thus
ν /∈ νBS · Z, indicating that YFe4Ge2 must be a filling-
enforced material. It should be noted that, our calcu-
lated magnetic moments of Fe ions incorporates all the
symmetry restrictions, and the filling-enforced properties
predicted in this work are robust as long as the relevant
symmetries are preserved.

However, the filling-constraint method does not pro-
vide the detailed topological properties. As shown in the
symmetry analysis at S point in the next section, only a
4-dimensional irreducible representation is allowed, thus
all the states at the S point must be grouped into Dirac
points. While this conclusion holds for all materials in
the same magnetic space group, the filling of YFe4Ge2
implies these Dirac points are naturally close to the Fermi
energy. As shown in Fig. 3 (a), there is a Dirac point at
only 56 meV above the Fermi level at S point, while the

Dirac point below the Fermi level is relatively far away (at
about −120 meV). We also take into account the effect
of Coulomb repulsion in Fe-3d orbital by performing the
GGA + U calculations. The value of U around 2 eV is
commonly used in the Fe-based intermetallic compound
[68, 69]. We have varied the value of U from 0 to 4.0
eV (U = 0 eV represents GGA calculation without U),
and the calculations show that the position of the Dirac
point is kept at the S point with slightly varying energy
near the Fermi level, as shown in Fig. 3 (a)-(c). As men-
tioned above, the filling-constraint method depends only
on electron filling and magnetic space group symmetries,
thus the filling-enforced topology is not sensitive to the
calculation details.

We also perform the first-principles calculations of
LuFe4Ge2 whose the band structures and the density of
states are shown in Fig. 3 (d)-(f) and Fig. 2 (b), respec-
tively. Except Lu-4f states which are located around −5
eV, the electronic properties of LuFe4Ge2 are very sim-
ilar to YFe4Ge2, as shown in Fig. 2 (b) and Fig. 2 (a).
The filling number of electrons per unit cell is found to be
ν = 478, thus ν /∈ νBS · Z, also identifying LuFe4Ge2 as
featuring Dirac points pinned at S point near the Fermi
level.

As mentioned above, YFe4Ge2 exhibits an antiferro-
magnetic order with opposite spins related by inversion,
and so PT symmetry is present and the electronic bands
are doubly degenerate everywhere. Upon breaking the
PT symmetry, the Dirac cone may split into Weyl nodes
[70]. Note that, with the PT symmetry and the two-



4

FIG. 4. Band structures of YFe4Ge2 from GGA calculation
with the magnetic configuration that is slightly deviated from
the ground state. The Fermi energy is set to zero. The inset
is the detailed structure around S point. The red and blue
line represent the eigenstates of {2010|1/2, 1/2, 1/2} with the
eigenvalues −ie−iπky and +ie−iπky , respectively. The Weyl
points along X-S line and Y -S line are marked with black
circle.

fold rotation {2001|0} symmetry coexisting in this sys-
tem, the z-direction component of Fe magnetic moment
mz should be zero, and the magnetic moments are lying
in the xy-plane. By a small perturbation such as exter-
nal field, the magnetic configuration may have nonzero
z-direction component with PT symmetry broken while
{2001|0} preserved, and the Dirac cone may split into
Weyl nodes. Accordingly, we perform the GGA calcu-
lations with the magnetic state where the magnetic mo-
ments have the deflection angle about 2◦ from xy-plane.
As shown in Fig. 4, at S point, all the Dirac points in-
deed split into Weyl points, while the splitting energies
of the upper and lower Dirac points around Fermi level
are 6 meV and 40 meV, respectively. In addition, there
is also a symmetry-protected band crossing in the path
X-S, as shown in Fig. 4. As discussed in the symmetry
analysis below, the hybridization between the red and
blue bands in the set of Fig. 4 is forbidden and there is
an unavoidable crossing point located at X-S line. Sim-
ilarly, the first-principles results show that there is also
an unavoidable band crossing point along the path Y -S,
as shown in Fig. 4. As shown in Fig. 4, the splitting
of Weyl points is very weak due to our small deflection
angle, thus the Fermi arc may be short and easy to be
buried in bulk states.

We also find the high-temperature phase of a cubic
antiferromagnetic intermetallic compound Mn3Pt as an-
other filling-enforced topological material. Experiment
reveals that Mn3Pt crystallizes in a cubic crystal struc-
ture (space group Pm-3m) at room temperature and has
a long-range antiferromagnetic order with TN = 475 K
[71–73]. Neutron diffraction experiments show a first-
order magnetic transition in Mn3Pt system at about 365

FIG. 5. Band structures of Mn3Pt with high-temperature
collinear antiferromagnetic configuration from GGA calcula-
tion. The Fermi energy is set to zero.

K, between a low-temperature non-collinear antiferro-
magnetic state and a high-temperature collinear antifer-
romagnetic state [71–73]. The high-temperature phase
of Mn3Pt is collinear antiferromagnetic with the mag-
netic space group Pc42/mcm (132.456), where the Mn
atoms in xy-plane couple antiferromagnetically, and the
Mn atoms along z-direction also have opposite spin ori-
entations. Very recently, Liu et al. [74] report the obser-
vation of the anomalous Hall effect in thin films of the
low-temperature phase for Mn3Pt. They also show that
the anomalous Hall effect can be turned on and off by
applying a small electric field at a temperature around
360 K and the Mn3Pt is close to the phase transition [74].
Therefore exploring the possible exotic properties of the
high-temperature phase for Mn3Pt is also an interesting
problem.

Similarly, we perform the first-principles calculations
based on the high-temperature phase of Mn3Pt and
the band structures are shown in Fig. 5. The high-
temperature phase of Mn3Pt also has PT symmetry
like YFe4Ge2, thus the electronic band structures are
symmetry-protected doubly degenerate in whole BZ. The
calculated magnetic moment at the Mn site is 2.9 µB per
Mn ion, which is in reasonable agreement with the exper-
iment value 3.4 µB [71–73]. The Pt-5d states are mainly
located from −6.0 to −3.0 eV. The 3d states of Mn ions
appear mainly from −3.0 to 2.0 eV. For Mn3Pt, the filling
number of electrons per unit cell is 306 while the νBS for
its MSG (132.456) is also 4, thus ν /∈ νBS · Z, indicating
that there is a half-occupied four-fold energy level near
Fermi energy. As shown in Fig. 5, the bands are four fold
degenerate in the path of A-Z, which is protected by the
symmetry operations of magnetic stucture, as shown in
the detailed symmetry analysis in the next section. We
also vary the value of U from 0 to 4.0 eV and find that
the four-fold energy level always exists.
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IV. SYMMETRY ANALYSIS

In this section, we show the detailed symmetry
analysis for the Dirac band crossings. We will first
focus on the S point in XFe4Ge2 (X = Y, Lu), followed
by a corresponding discussion for Mn3Pt. For the S
point (1/2, 1/2, 0), eight symmetry operations are
generated by three symmetries: the PT symmetry
{−1′|0}, a two-fold screw rotation {2100|1/2, 1/2, 1/2}
and a two-fold rotation {2001|0}, where the left part
represents the rotation and the right part means the
lattice translation. Note that −1 above denotes the
inversion symmetry and the superscript prime means
an additional time-reversal operation T here. Since
{2100|1/2, 1/2, 1/2}2 = −{1|1, 0, 0}, where the minus sign
originates from the spin rotation, the momentum phase
factor equals to−1 for a Bloch state at the S point. Thus,
the eigenvalues for {2100|1/2, 1/2, 1/2} is ±1. We can
then choose the eigenstates ψ±nS of {2100|1/2, 1/2, 1/2}
at S point, where the superscript denotes the eigen-
value of {2100|1/2, 1/2, 1/2} and n is the band index.
Because [{−1′|0}, {2100|1/2, 1/2, 1/2}] = 0 when acting
on the Bloch states at S, operation of {−1′|0} will
preserve the eigenvalue of {2100|1/2, 1/2, 1/2} and
result in the other state in the Kramers doublet:
i.e. {−1′|0}ψ+

nS is orthogonal to ψ+
nS but with the

same eigenvalues of {2100|1/2, 1/2, 1/2}. Besides, it
should be noted that {2100|1/2, 1/2, 1/2}{2001|0} =
−{2001|0}{2100|1/2, 1/2, 1/2}, thus
{2001|0}ψ±nS reverses the eigenvalue of
{2100|1/2, 1/2, 1/2}. So the four orthogonal states
ψ+
nS , {−1′|0}ψ+

nS , {2001|0}ψ
+
nS , {2001|0}{−1′|0}ψ+

nS are
degenerate, constituting the basis of the 4-dimensional
irreducible representation. Therefore, in XFe4Ge2
system, the S point (1/2, 1/2, 0) only allow for
4-dimensional irreducible representation.

Based on the k · p method, we build the
effective Hamiltonian by using the four rele-
vant states as basis vectors, in the order of
ψ+
nS , {−1′|0}ψ+

nS , {2001|0}ψ
+
nS , {2001|0}{−1′|0}ψ+

nS .
To the lowest order in q, the Hamiltonian can be written
as


qxC5 0

−iqzC1−qyC2√
2

qz(iC3−C4)√
2

0 qxC5
qz(iC3+C4)√

2

iqzC1−qyC2√
2

iqzC1−qyC2√
2

qz(−iC3+C4)√
2

−qxC5 0
qz(−iC3−C4)√

2

−iqzC1−qyC2√
2

0 −qxC5

 ,
(1)

where q = k−S, and Ci (i = 1, 2, ..., 5) are parameters.
The effective Hamiltonian suggests a linear dispersion in
neighbourhood of S. It is worth mentioning that there is
also only one 4-dimensional irreducible representation in
Z point (0, 0, 1/2), and the dispersion around Z point is
also linear.

When PT symmetry is broken, there are only four
symmetry operations for the S point (1/2, 1/2, 0) gener-

ated by {2100|1/2, 1/2, 1/2} and {2001|0}. As mentioned
before, for the eigenstates ψ±nS of {2100|1/2, 1/2, 1/2}
at S point, {2001|0}ψ±nS reverses the eigenvalue of

{2100|1/2, 1/2, 1/2}. So ψ+
nS and {2001|0}ψ+

nS own the
same energy and they are orthogonal with each other,
constituting the basis of the 2-dimensional irreducible
representation. Therefore all the states at the S point
must be grouped pairwise. Meanwhile, for the k point
(1/2, ky, 0) in the path X(1/2, 0, 0)−S(1/2, 1/2, 0),
only a two-fold screw rotation {2010|1/2, 1/2, 1/2} is pre-
served. Note that {2010|1/2, 1/2, 1/2}2 = −{1|0, 1, 0},
for k point (1/2, ky, 0), the eigenvalues should be
±ie−iπky . As shown in Fig. 4, the first-principles re-
sults show that two bands along this line belong to the
eigenstates of {2010|1/2, 1/2, 1/2} with different eigenval-
ues. Thus the hybridization between these two bands is
forbidden and the band crossing is symmetry protected,
as shown in Fig. 4. Using these two eigenstates with
eigenvalues of ±ie−iπky as basis vectors, we also build the
effective Hamiltonian of band crossing along X-S based
on the k · p method, and the Hamiltonian to the lowest
order in q can be written as

[
qyD6 qz(−iD1 +D3) + qx(−iD2 +D4)

qz(iD1 +D3) + qx(iD2 +D4) qyD5

]
,

(2)

where Di (i = 1, 2, ..., 6) are parameters, and
q = k −W (W is the position of band crossing). The
effective Hamiltonian could be expanded to H(q) =∑
i=x,y,z ciqiI+

∑
i,j=x,y,z vijqiσj , where I is the identity

matrix while σ is the Pauli matrix. Here vij(i, j = x, y, z)
could be written as

 D4 0 D3

D2 0 D1

0 1
2 (−D5 +D6) 0

 , (3)

Therefore the Chern number of the band crossing can
be quantified by the value sgn[det(vij)] = sgn[ 12 (D2D3−
D1D4)(−D5 + D6)] [11]. By fitting the calculated band
dispersion, we obtain det(vij) 6= 0, thus the Chern num-
bers of the band crossings are suggested to be ±1. Sim-
ilarly, for the k point (kx, 1/2, 0) in the path Y (0, 1/2,
0)−S(1/2, 1/2, 0), {2100|1/2, 1/2, 1/2} is preserved and
the first-principles results show that there is also a Weyl
point along the Y -S path.

In Mn3Pt, similar to the discussion above, we
study the symmetry operations of this magnetic struc-
ture and find that there is only one 4-dimensional
irreducible representation along A-Z path in the
BZ: For the path of A(1/2, 1/2, 1/2)-Z(0, 0, 1/2),
eight symmetry operations are generated by three
symmetries: the PT symmetry {−1′|0}, a two-fold
screw rotation {2110|0, 0, 1/2} and a mirror operation
{m1−10|0}. Since {2110|0, 0, 1/2}2 = −{1|0, 0, 0} (the
minus sign is coming from the electron spin), the
eigenvalues for {2110|0, 0, 1/2} is ±i. We can then
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choose the eigenstates ψ±nA−Z of {2110|0, 0, 1/2} in
A-Z path, where the superscript denotes the eigen-
value of ±i and n is the band index. Note that
{−1′|0}{2110|0, 0, 1/2} = −{2110|0, 0, 1/2}{−1′|0},
indicating that {−1′|0}ψ+

nA−Z is orthogonal

to ψ+
nA−Z but with the same eigenvalues of

{2110|0, 0, 1/2}. Besides, it should be noted that
{2110|0, 0, 1/2}{m1−10|0} = −{m1−10|0}{2110|0, 0, 1/2},
thus {m1−10|0}ψ±nA−Z reverses the eigenvalue

of {2110|0, 0, 1/2}. So ψ+
nA−Z , {−1′|0}ψ+

nA−Z ,

{m1−10|0}ψ+
nA−Z , {m1−10|0}{−1′|0}ψ+

nA−Z are again
orthogonal and degenerate, constituting the basis of
the 4-dimensional irreducible representation. Therefore,
in Mn3Pt system, only a 4-dimensional irreducible
representation is allowed along the A(1/2, 1/2, 1/2)-
Z(0, 0, 1/2) path.

V. CONCLUSION

In conclusion, by applying the filling constraints, we
discover several magnetic topological metals: XFe4Ge2
(X = Y, Lu) and Mn3Pt. The first-principles calculations
show that YFe4Ge2 is a metal with a Dirac cone located
at S point near the Fermi level, which is protected by
the symmetry operations of magnetic stucture. We have
varied the value of U from 0 to 4.0 eV, and the results
show that Dirac point always exists, since the topological
property is filling-enforced and independent on U . When
the magnetic moments have a small nonzero z-direction
component, the Dirac point would split into Weyl nodes
around the S point. We also perform the first-principles
calculations based on the high-temperature collinear an-
tiferromagnetic configuration of Mn3Pt. The calculation
results and symmetry analysis show that it is also a topo-
logical material. Even though there are lots of bands
around the Fermi level in these materials, we believe that
the Dirac points in XFe4Ge2 (X = Y, Lu) can still be
detected experimentally [75–77]. Meanwhile, since the
Weyl points can be regarded as a magnetic monopole in
the momentum space with an important contribution to
the Berry curvature, the topological properties of Weyl
nodes may also be observed experimentally [78–80]. Note
that the first-principles predictions on magnetic topolog-
ical materials are relatively rare and usually depend on
the value of U . Correspondingly, these filling-enforced
topological properties are robust and could be better
suited for ideally low-consumption device applications,
such as spintronics, quantum computation, and many
other potential device applications.
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