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In recent years, second-order topological insulators have been proposed as a new class of topologi-
cal insulators. Second-order topological insulators are materials with gapped bulk and surfaces, but
with topologically protected gapless states at the intersection of two surfaces. These gapless states
are called hinge states. In this paper, we give a general proof that any insulators with inversion
symmetry and gapped surface in class A always have hinge states when the Z4 topological index µ1 is
µ1 = 2. We consider a three-dimensional insulator whose boundary conditions along two directions
change by changing the hopping amplitudes across the boundaries. We study behaviors of gapless
states through continuously changing boundary conditions along the two directions, and reveal that
the behaviors of gapless states result from the Z4 strong topological index. From this discussion,
we show that gapless states inevitably appear at the hinge of a three-dimensional insulator with
gapped surfaces when the strong topological index is Z4 = 2 and the weak topological indices are
ν1 = ν2 = ν3 = 0.

I. INTRODUCTION

A topological insulator (TI) is a material with the in-
sulating bulk, but with topologically protected gapless
surface or edge states [1–9]. TIs are classified in terms of
Z2 topological invariants and their gapless surface states
are topologically protected. Two- and three-dimensional
TIs have one-dimensional (1D) and two-dimensional (2D)
topological gapless states, respectively. Namely, topolog-
ical nature in the n-dimensional bulk of the system is
associated with (n−1)-dimensional gapless states in TIs.

In recent years, second-order topological insulators
(SOTI) have been proposed as a new class of topolog-
ical insulators [10–56]. In three dimensions, SOTIs are
insulating both in the bulk and in the surface. However,
they have anomalous gapless states at an intersection of
two surfaces, called hinge states. In the SOTIs, the topo-
logical nature of n-dimensional bulk manifests itself not
as (n − 1)- but as (n − 2)-dimensional gapless states.
Among various classes of SOTIs, one class of SOTIs is
protected by inversion symmetry [24–29], and this class
of SOTIs is characterized by a Z4 index of symmetry-
based indicators [25–29, 57–62]. Appearance of the hinge
states in a SOTI is usually understood in term of the sur-
face Dirac Hamiltonian with a symmetry-respecting mass
term. The surface energy spectrum is gapped by adding
this mass term. However, due to symmetry constraint,
the mass term changes its sign depending on the surface
direction. Therefore, at the intersection of two surfaces
having mass terms with opposite signs, the mass terms
can be regarded as zero. This allows behaviors of elec-
trons at the hinge to be represented as massless Dirac
hamiltonian and the energy spectrum becomes gapless
at the hinge.

As described above, appearance of a hinge state is
topologically protected by symmetry. However, in the
above discussion with the surface Dirac Hamiltonian, we

cannot directly explain how the Z4 index of symmetry-
based indicators is related to the hinge state. In this pa-
per, our purpose is to show the emergence of the gapless
hinge states when the Z4 index of symmetry-based in-
dicators is nontrivial without relying upon specific mod-
els. The previous work discussing the connection between
symmetry-based indicators and hinge states [59], is based
on the k ·p Dirac Hamiltonian. Therefore, this approach
cannot be applied to systems whose surfaces are not de-
scribed by Dirac model. In order to complete the proof,
it is necessary to establish a theory on the connection be-
tween the Z4 index and hinge states for general systems.
There have been studies based on tight-binding models
of SOTIs with a nontrivial Z4 index of symmetry-based
indicators [25–29]. However, this argument does not lead
to a general proof that hinge states appear generally in
any model with a nontrivial Z4 index of symmetry-based
indicators.

In this paper, we propose a new method to understand
the hinge state only from the Z4 index of symmetry-based
indicators. This method is applicable to a broad range of
systems. In this method, we change boundary conditions
in two directions by changing hopping amplitude across
the boundaries. When the hopping amplitudes across
the two boundaries become zero, the system is cut along
two planes, giving rise to a hinge. Then by tracing the
spectral flow along the change, we can see whether and
how hinge states appear. From this discussion, we show
that when the Z4 topological index µ1 is µ1 = 2 for class
A, gapless states appear inevitably at the hinges of three-
dimensional insulators with inversion symmetry. We note
that the gapless states may not be localized at the hinges
if surfaces are gapless. Therefore we restrict ourselves to
the case with no gapless surface states throughout the
present paper. In the main text of this paper, we consider
systems in class A, and we extend our theory to systems
in class AII in Appendix C.

A similar method with changing the hopping ampli-
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FIG. 1. (Color online) Parity eigenvalues at TRIM. (a,
b) Two examples of parity eigenvalues at TRIM to realize
(ν1, ν2, ν3, µ1) = (0, 0, 0, 2). They are transformed to each
other by a shift of an inversion center by a3/2.

tude across only one boundary has been applied to char-
acterize TIs [6] and SOTIs [63], and this method is called
cutting procedure. In Ref. [63], the boundary condi-
tion is changed only along one direction, in contrast
with the present paper. Through this change the three-
dimensional system is related with a two-dimensional
slab. Then we show that the indicators, which charac-
terize three-dimensional inversion-symmetric SOTIs, are
directly related to the indicators of the two-dimensional
inversion-symmetric systems, i.e. the Chern number par-
ity. In the present paper, we study the spectral flows in
the band gap, i.e. the behaviors of gapless states through
continuously changing the boundary conditions along the
two directions. In addition, we find the spectral flows re-
lated to appearance of the hinge states.

This paper is organized as follows. In Sec. II, we ex-
plain the Z4 topological index and cutting procedure. In
addition, we show appearance of hinge states by the ap-
plying the cutting procedure to one of the models with
Z4 = 2. In Sec. III, we confirm our theory in Sec. II
by calculations on a tight-binding model of a SOTI. In
Sec. IV, we discuss which of the hinges have hinge states.
Our conclusion is given in Sec. V.

II. Z4 TOPOLOGICAL INDEX AND CUTTING
PROCEDURE

In this section, we will establish the relationship be-
tween the hinge state and Z4 topological index by cutting
procedure.

A. Strong Z4 index and weak Z2 indices

We consider a noninteracting centrosymmetric sys-
tem on a three-dimensional lattice in class A, one of
the Altland-Zirnbauer symmetry classes [64]. For three-
dimensional systems, there are eight time-reversal invari-

ant momenta (TRIM) denoted by Γj . The eight TRIM
Γj can be indexed by three integers nl = 0, 1 defined mod
2,

Γj=(n1,n2,n3) =
1

2
(n1b1 + n2b2 + n3b3), (1)

where bl are primitive reciprocal lattice vectors. Accord-
ing to Ref. [60], the symmetry indicator for class A is
found to be XBS = Z2×Z2×Z2×Z4. The three factors
of Z2 are the weak topological indices

νa ≡
∑

Γj :TRIM∧na=1

n−(Γj) (mod 2) (a = 1, 2, 3), (2)

where n−(Γi) is the number of occupied states with odd
parity at the TRIM Γj , and the summation is taken over
the TRIM on the plane na = 1. The factor of Z4 is the
strong topological index, defined as

µ1 ≡
1

2

∑
Γj :TRIM

(
n+(Γj)− n−(Γj)

)
(mod 4)

=−
∑

Γj :TRIM

n−(Γj) (mod 4), (3)

where n+(Γj) is the number of occupied states with even
parity at the TRIM Γj . Therefore, for systems with in-
version symmetry, topological phases are characterized
by the symmetry indicator XBS = (ν1, ν2, ν3, µ1) with
νa = 0, 1 and µ1 = 0, 1, 2, 3.

In Sec. II C, we will show that the gapless hinge
states appear in a three-dimensional insulator when
(ν1, ν2, ν3, µ1) = (0, 0, 0, 2). Here, for that purpose, let us
consider the numbers of occupied states with odd parity
at each TRIM in the case of (ν1, ν2, ν3, µ1) = (0, 0, 0, 2).
As shown in Fig. 1(a), one of the simplest examples
to realize (ν1, ν2, ν3, µ1) = (0, 0, 0, 2) is n−(Γ) = 2,
n−(Γj) = 0 (Γj 6= Γ), where Γ = (0, 0, 0). Another exam-
ple shown in Fig. 1(b) also shows the same set of topolog-
ical invariants (ν1, ν2, ν3, µ1) = (0, 0, 0, 2), but this case
can be reduced to the case of Fig. 1(a) by gauge trans-
formation of switching the inversion center. For exam-
ple, by shifting the inversion center R of the system to
R + ai/2 (i = 1, 2, 3), where ai are translation vectors,
the parity at the TRIM Γj on a plane ni = 1 is multi-
plied by (−1). Therefore, if we shift the inversion center
R to R + a3/2, Fig. 1(b) is transformed to (a). There-
fore, Fig. 1(b) is equivalent to Fig. 1(a). Although there
are many cases of patterns of odd-parity states at TRIM
with (ν1, ν2, ν3, µ1) = (0, 0, 0, 2) other than Fig. 1(a) and
(b), we will consider the case of Fig. 1(a) for simplicity in
this section. However, a cutting procedure, which is to be
discussed in the next subsection, can be applied to every
case with (ν1, ν2, ν3, µ1) = (0, 0, 0, 2) (see Appendix B).

B. Cutting procedure

In order to understand the relationship between the
Z4 topological index and the hinge states, we introduce
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FIG. 2. (Color online) Cutting procedure. (a) Our boundary
conditions for the cutting procedure. Each gray box represents
the entire system, and we show the copies of the system in the
figure to illustrate the boundary condition. Boundary condi-
tions change along the x1 and x2 directions by changing λ1

and λ2. We replace every hopping amplitude t for the bonds
that cross the boundary at xi = const by λit (i = 1, 2). (b)
Black points represent possible wave vectors in the cases of
periodic and anti-periodic boundary conditions in the x1 di-
rection. Here λ2 is set to be unity. When λ1 = 1 and λ2 = 1,
among the four TRIM, only k = (0, 0) is among the possi-
ble wave vectors. Likewise, when λ1 = −1 and λ2 = 1, only
k = (π, 0) is among them.

a cutting procedure, which is used in the appendix of
Ref. [6] in the context of the time-reversal invariant Z2

topological insulators. Here, we consider the system to
be large but finite, with periodic boundary conditions in
the x1 and x2 directions that are parallel to the primitive
reciprocal lattice vectors b1 and b2, respectively. We set
the system size as L1 ×L2, L1 = L2 = 2M + 1 (M is an
integer) for simplicity. We will discuss the case with an
even number of the system size in Appendix D. Here, the
length of the system along the xj direction (j = 1, 2, 3)
is measured in the unit of the lattice constant, and each
unit cell is inversion-symmetric with its inversion center
at xj = integer. Along the x3 direction that is parallel to
b3, we set the periodic boundary condition and set the
system size as L3 →∞. Thereby, the Bloch wave-vector
k3 in the x3 direction can be defined. In this subsection,
we focus on k3 = 0. That is, we will consider the four
TRIM Γj=(n1,n2,0) shown in Fig. 1(a).

Along the x1 and x2 directions, instead of the peri-
odic boundary conditions, we multiply all the hopping
amplitudes across the boundary between xi = −M and
xi = M by a real parameter λi. This means that
the boundary conditions for the finite systems in the
x1, x2 directions change by changing λ1, λ2, as shown
in Fig. 2(a). The case with λ1 = 1 corresponds to pe-
riodic boundary condition in the x1 direction and that
with λ1 = 0 corresponds to an open boundary condition
in the x1 direction. For any values of λ1 and λ2, the sys-
tem is inversion symmetric with its inversion center at
(x1, x2, x3) = (0, 0, 0).
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FIG. 3. (Color online) Energy spectra in changing λ1 = 1 →
−1 with λ2 being constant. The energy spectra are symmet-
ric with respect to λ1 ↔ −λ1, and states at λ1 and −λ1 have
opposite parity eigenvalues. (a-d) are four representative ex-
amples when λ2 = 1. (e) and (f) are two examples when
λ2 = −1.

C. Spectral flows in the band gap

In the following, we show existence of gapless hinge
states when (ν1, ν2, ν3, µ1) = (0, 0, 0, 2), i.e. the Z4 index
is nontrivial. In the cutting procedure with the parame-
ters λ1 and λ2, the hinge states appear at λ1 = λ2 = 0,
while the bulk topological invariants (ν1, ν2, ν3, µ1) de-
termine the parity eigenvalues of the states at (λ1, λ2) =
(1,±1), (−1,±1) as we show in the following. To relate
the information of wave-functions at (λ1, λ2) = (1,±1),
(−1,±1) with that at λ1 = λ2 = 0, we utilize symme-
try of the spectral flows under λ1 ↔ −λ1 and under
λ2 ↔ −λ2, as long as the surface is gapped.

When we consider the case with λ1 = 1, the wave-
vector in the x1 direction is

k1 =
2π

L1
m1 (−M ≤ m1 ≤M), (4)

because of the periodic boundary condition in the x1 di-
rection. Because L1 is an odd number, k1 can be 0 but
not π. When (λ1, λ2) = (1, 1), (k1, k2) can take a value
(0, 0), but not (π, 0), (0, π) or (π, π) as shown in Fig. 2(b).

Next, we consider the case with λ1 = −1. In this case,
wave functions are multiplied by −1 across the bound-
ary between x1 = M and x1 = −M , corresponding to
an anti-periodic boundary condition in the x1 direction.
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This anti-periodic boundary condition is converted into
the periodic boundary condition in the x1 direction by
a unitary transformation U1 = exp[iπx̂1/L1], where x̂1

is a position operator for the coordinate x1. Through
this transformation, the Bloch wave vector is shifted as
k1 → k1 + π

L1
due to this unitary transformation U1 (see

Appendix A). Thus, the Bloch wave vector in the x1 di-
rection is

k1 =
2π

L1
m1 +

π

L1
(−M ≤ m1 ≤M). (5)

In this case, because L1 is an odd number, k1 can be π
but not 0. When (λ1, λ2) = (−1, 1), (k1, k2) can take
a value (π, 0), but not (0, 0), (0, π), (π, π) as shown in
Fig. 2(b).

Now, we calculate N−(λ1, λ2), representing the num-
ber of occupied states with odd parity at k3 = 0. Inver-
sion operation Î changes (k1, k2, k3) to (−k1,−k2,−k3).
Each wave-function ψm(k) at non-TRIM points k =
(k1, k2, k3) with k3 = 0 can always be paired with one
at −k to construct two states, one with even-parity φ+

and the other with odd-parity φ−:

φ± ≡
1√
2

(
ψm(k)± Îψm(k)

)
, (6)

where Îψm(k) ∝ ψm(−k). Therefore, each non-TRIM
pair (k, −k) with k3 = 0 contributes 1 to N−(λ1, λ2).

On the other hand, a contribution to N−(λ1, λ2) from
the TRIM depends on λ1 and λ2. First, we consider
the case with λ2 = 1. When (λ1, λ2) = (1, 1), the
number of odd-parity states at TRIM that contributes
to N−(λ1, λ2) is n−(0, 0, 0), where n−(k1, k2, k3) is the
number of occupied states with odd parity at TRIM
Γj=(n1,n2,n3) = (n1b1 + n2b2 + n3b3)/2. Let ν be the
number of occupied bands. Then N−(λ1 = 1, λ2 = 1)
can be expressed as follows:

N−(1, 1) =
(L1L2 − 1)ν

2
+ n−(0, 0, 0). (7)

Similarly, when (λ1, λ2) = (−1, 1), among the TRIM only
the TRIM Γj=(1,0,0) = (π, 0, 0) contributes toN−(λ1, λ2).
From this, N−(λ1 = −1, λ2 = 1) can be expressed as
follows:

N−(−1, 1) =
(L1L2 − 1)ν

2
+ n−(π, 0, 0). (8)

Therefore, from Eqs. (7) and (8), the total change in
N−(λ1, λ2 = 1) between λ1 = 1 and λ1 = −1 can be
expressed as follows:[

N−(λ1, λ2 = 1)
]λ1=1

λ1=−1

=n−(0, 0, 0)− n−(π, 0, 0) = 2, (9)

where[
N±(λ1, λ2)

]λ1=a

λ1=b
≡ N±(a, λ2)−N±(b, λ2). (10)

That is, in the process of changing from λ1 = 1 to −1,
the number of occupied states with odd parity is reduced
by 2. In addition, we can show that the energy spectrum
is symmetric with respect to λ1 ↔ −λ1, and the bound
states |ψl(λ1)〉 and |ψl(−λ1)〉 have opposite parity eigen-
values (see Appendix A). Thus, as we show some exam-
ples in Fig. 3(a-d), two states with odd-parity move from
the valence bands for λ1 = 1 to the conduction bands
for λ1 = −1. In addition, two states with even-parity
move from the conduction bands for λ1 = 1 to the va-
lence bands for λ1 = −1. This means that the following
relation generally holds:[

N±(λ1, λ2 = 1)
]λ1=0

λ1=1
=
[
N∓(λ1, λ2 = 1)

]λ1=0

λ1=−1
. (11)

Now, we calculate the N+−(λ1, λ2) ≡ N+(λ1, λ2) −
N−(λ1, λ2) for the four points A (λ1 = 1, λ2 = 1), B
(λ1 = 0, λ2 = 1), C (λ1 = 1, λ2 = −1) and D (λ1 =
0, λ2 = −1) as shown in Fig. 4(a). We calculate the
differences of this value between (i) A-B, (ii) C-D and
(iii) A-C in the followings.

(i) First, we calculate the change in N+−(λ1, λ2) be-
tween the point A and the point B. From Eqs. (9) and
(11), we obtain the following relation.[

N+−(λ1, λ2 = 1)
]λ1=0

λ1=1

=
[
N−(λ1, λ2 = 1)

]λ1=0

λ1=−1
−
[
N−(λ1, λ2 = 1)

]λ1=0

λ1=1

=
[
N−(λ1, λ2 = 1)

]λ1=1

λ1=−1
= 2. (12)

(ii) Next, we analyze the case with λ2 = −1. In this
case, N−(λ1, λ2 = −1) can be expressed as follows:

N−(1,−1) =
(L1L2 − 1)ν

2
+ n−(0, π, 0), (13)

N−(−1,−1) =
(L1L2 − 1)ν

2
+ n−(π, π, 0), (14)

in the same way as in the case of λ2 = 1. Therefore, the
total change in N−(λ1, λ2 = −1) between the point C
and the point E (λ1 = −1, λ2 = −1), can be expressed
as follows: [

N−(λ1, λ2 = −1)
]λ1=1

λ1=−1

=n−(0, π, 0)− n−(π, π, 0) = 0. (15)

That is, the number of occupied states with odd parity
does not change in the process of changing from λ1 = 1 to
−1. Thus, the change of the energy spectra are as shown
in Fig. 3(e)(f) so as to satisfy N−(1,−1) = N−(−1,−1)
because states with even parity and odd parity are mu-
tually transformed by λ1 ↔ −λ1. From Eqs. (11) and
(15), the change in N+−(λ1, λ2 = −1) between the point
C and the point D, can be expressed as follows:[

N+−(λ1, λ2 = −1)
]λ1=0

λ1=1

=
[
N−(λ1, λ2 = −1)

]λ1=0

λ1=−1
−
[
N−(λ1, λ2 = −1)

]λ1=0

λ1=1

=
[
N−(λ1, λ2 = −1)

]λ1=1

λ1=−1
= 0. (16)
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(iii) In the above, we have considered the energy spec-
tra when we fix λ2 = 1 or λ2 = −1 and vary λ1. Similarly,
we also get the similar conclusion when we fix λ1 = 1 or
λ1 = −1 and vary λ2. Therefore, similarly to Eq. (9),
the total change in N−(λ1 = 1, λ2) between the point A
and the point C in Fig. 4(a), can be expressed as follows:[

N−(λ1 = 1, λ2)
]λ2=1

λ2=−1

=n−(0, 0, 0)− n−(0, π, 0) = 2. (17)

That is, two states with odd parity move from the valence
bands of λ2 = 1 to the conduction bands of λ2 = −1. In
the same way as when λ1 varies, we can show that the
energy spectra are symmetric with respect to λ2 ↔ −λ2,
and the bound states |ψ(λ2)〉 and |ψ(−λ2)〉 have opposite
parity. Therefore, two states with even-parity move from
the conduction bands of λ2 = 1 to the valence bands
of λ2 = −1. From this discussion, we conclude that the
number N+−(λ1, λ2) increases by 4 by changing from the
point A to the point C. This means that the following
relation holds:[

N+−(λ1 = 1, λ2)
]λ2=−1

λ2=1
= 4. (18)

To summarize (i)-(iii), from Eqs. (12), (16) and (18),
we obtain the following equation.[

N+−(λ1 = 0, λ2)
]λ2=−1

λ2=1
= 2. (19)

This equation is the main result of this subsection and
this is closely related to the appearance of hinge states
as described in the next subsection. In the next subsec-
tion, we will consider the energy spectrum when λ1 = 0
through the change of λ2 from λ2 = 1 to λ2 = −1, and
for this purpose Eq. (19) is important.

D. Appearance of hinge states

Here we consider the energy spectrum k3 = 0 when
λ1 = 0. From Eq. (19), we find that the number
N+−(λ1, λ2) ≡ N+(λ1, λ2) − N−(λ1, λ2) increases by 2
when λ2 is changed from λ2 = 1 to −1. Here we note
that the energy spectra are symmetric with respect to
λ2 ↔ −λ2 even at λ1 = 0, and the states |ψl(λ2)〉 and
|ψl(−λ2)〉 have opposite parities by assuming that no
gapless state appears in the surface. From this result,
we find that in this process of changing λ2, the exchange
of states with odd and even parity takes place once as
shown in Fig. 4(b). From this argument, we conclude
that even-parity states and odd-parity ones must be de-
generate at (λ1, λ2) = (0, 0) as shown in Fig. 4(b).

In the arguments so far, we considered the case with
k3 = 0. On the other hand, when k3 = ±∆, where ∆
represents a small non-zero real number, the wave-vector
k is not a TRIM. Therefore the states with even and odd
parity hybridize, and a gap opens at k when k3 = ∆.
Therefore, the energy spectrum is shown in Fig. 4(c) as
λ2 is changed from λ2 = 1 to λ2 = −1.
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FIG. 4. (Color online) Appearance of the hinge states. (a)
The differences in N+−(λ1, λ2) ≡ N+(λ1, λ2) − N−(λ1, λ2)
at the points A, B, C and D with respect to the point A
for k3 = 0. From this we conclude that N+−(λ1, λ2) at the
points B and D are different by two. (b) The energy spectrum
when λ1 = 0 and k3 = 0 with changing λ2 from 1 to −1. (c)
The energy spectrum when λ1 = 0 and k3 = ±∆, where
∆ represents a small real number. Because k3 is away from
k3 = 0, degeneracy between the even-parity and the odd-
parity states at k3 = 0 is lifted because of absence of inversion
symmetry for k3 = ±∆. (d) The energy spectrum when λ1 =
0 and k3 = π. In this case, states with even and odd parity
do not cross. (e) The band structure when (λ1, λ2) = (0, 0).
Two gapless states are degenerate at k3 = 0 corresponding to
the yellow point at λ2 = 0 in (b). This degeneracy is lifted
when k3 6= 0 corresponding to the yellow points in (c). These
two states move to conduction bands and valence bands from
k3 = ∆ to k3 = π, corresponding to (d). (f) An example of the
band structure crossing the Fermi level in a more complicated
manner than (e).

Next, we consider the spectrum at k3 = π, following
the discussion in Sec. II C. In contrast with k3 = 0, there
is no difference in the number of odd-parity eigenstates at
the four TRIM on k3 = π. Then, we can conclude that
states with odd parity and states with even parity are
not exchanged on k3 = π as shown in Fig. 4(d). Namely,
the degeneracy of states at (λ1, λ2) = (0, 0) is present
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FIG. 5. The numbers of hinge states at four hinges. (a)
Four hinges A,A′,B,B′ produced by the cutting procedure.
(b, c) Let ni (i = A,A′,B,B′) denote the number of hinge
modes at the i-hinge. We find that nA = −nA′ , nB = −nB′

and nA + nB is an odd number. One of nA(= −nA′) and
nB(= −nB′) is odd while the other is even. (b-1) and (b-2)
are minimal configurations. (c-1) and (c-2) are general ones.

only at k3 = 0 but not at k3 = π. Therefore gapless
states appear when (λ1, λ2) = (0, 0) as shown in Fig. 4(e).
These gapless states are hinge states because they appear
only when there are no bonds across the two boundaries
along the x1 and x2 directions (see Fig. 2(a)). Therefore,
this system is a SOTI.

From the above discussion, we can conclude the fol-
lowings for (λ1, λ2) = (0, 0). (i) The two hinge states are
degenerated at k3 = 0. (ii) By changing from k3 = 0 to
k3 = π, one of the degenerated states moves to the va-
lence band and the other moves to the conduction band.
Then a band structure of the hinge states of the SOTI
can be like Fig. 4(e). We note that Fig. 4(e) is only an
example, and the band structure can be different from
Fig. 4(e). In such cases, we can conclude from (i) and
(ii) that the number of states crossing the Fermi level
between k3 = 0 and k3 = π in the band structure of
the SOTI will always be an odd number (for example see
Fig. 4(f)). Note that we consider the case of Fig. 1(a)
as parity eigenvalues at TRIM in the arguments so far.
We extend the discussion so far to general cases of par-
ity eigenvalues at TRIM in Appendix B. In addition,
while we find that a pair of hinge states with positive
and negative velocities appears as a particular exam-
ple in this section, we conclude that in general an odd
number of the pairs of hinge states always appear when
(ν1, ν2, ν3, µ1) = (0, 0, 0, 2) from the discussion in Ap-
pendix. B.

When λ1 = λ2 = 0, the cutting produces four hinges,
and the hinge states exist at one of the four hinges. If one
hinge state lies on the hinge A with a positive velocity
along x3 in Fig. 5(a) as an example, the inversion sym-
metry imposes that the hinge A′ supports a hinge states
with a negative velocity along x3. It is also true for the

pair of hinges B and B′. From these considerations, we
conclude that the hinges A and A′ (and likewise B and
B′) have the same number of hinge states, and their hinge
states form pairs under inversion symmetry, i.e. having
opposite signs of velocities. Let ni (i = A,A′,B,B′) de-
note the number of hinge modes at the i-hinge. We define
this number to be the number of hinge modes with pos-
itive velocity minus that with negative velocity. Then
from the above argument, we conclude that nA = −nA′ ,
nB = −nB′ and nA + nB is an odd number. Then, min-
imal configurations for ni are shown in Figs. 5(b-1) and
(b-2). In general, we conclude that one of nA(= −nA′)
and nB(= −nB′) is odd while the other is even as shown
in Figs. 5(c-1) and (c-2).

So far we showed that (ν1, ν2, ν3, µ1) = (0, 0, 0, 2) leads
to existence of hinge states. Here we explain that in a
case with (ν1, ν2, ν3) 6= (0, 0, 0) i.e. a three-dimensional
Chern insulator, existence of hinge states does not follow.
For example, when (ν1, ν2, ν3) = (0, 1, 0), the system is
a Chern insulator, and there exist chiral surface states
on the x2-x3 surface. In this case, along the λ1 = 0 line
in Fig. 4(a), spectral symmetry under λ2 ↔ −λ2 does
not hold, because existence of the gapless surface states
invalidates the proof for the λ2 ↔ −λ2 symmetry in Ap-
pendix A 1. It physically means that the chiral surface
states hide hinge states if any. Thus, to summarize, when
(ν1, ν2, ν3) 6= (0, 0, 0), µ1 = 2 does not lead to the exis-
tence of hinge states.

III. TIGHT-BINDING MODEL

Here, we perform a model calculation to verify the
arguments in the previous section. We start from a
tight-binding model of a SOTI on a simple-cubic lattice
with inversion symmetry [26]. In order to construct the
model of the SOTI, we add a uniform Zeeman magnetic
field B = B(− sin θ, cos θ, 0) to the model of the three-
dimensional TI in Ref. [7]. By adding a Zeeman term
−τ0 ⊗B · σ to the model of the TI, we get a four-band
tight-binding model given by

H(k) =− t
∑
j

sin kjτx ⊗ σj

− (m− c
∑
j

cos kj)τz ⊗ σ0 − τ0 ⊗B · σ, (20)

where τj and σj (j = 1, 2, 3) are Pauli matrices, and τ0
and σ0 are the 2 × 2 identity matrices. In this model,
the term −τ0 ⊗B · σ breaks symmetry under the time-
reversal operator T = −iτ0 ⊗ σ2 but respects symmetry
under the inversion operator I = τ3 ⊗ σ0. To realize a
SOTI phase, we set t = c = 1, m = 2, B = 1/2 and
θ = π/4 in the following. We set the Fermi energy to be
EF = 0.

In this model, surface Dirac cones perpendicular to
either x1 and x2 axes are gapped by the uniform mag-
netic field. Between the surfaces with an inward magnetic
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FIG. 6. Band structures of the tight-binding model (20) with parameters t = c = 1, m = 2, B = 1/2 and θ = π/4. The
boundary condition in the x3 direction is periodic and that in the x1 and x2 directions are characterized by λ1 and λ2. Parameter
values for boundary conditions are (a) λ1 = 1, λ2 = 1, (b) λ1 = 1, λ2 = 0, (c) λ1 = 0, λ2 = 1 and (d) λ1 = 0, λ2 = 0. The
system size along x1 and x2 directions are L1 = L2 = 45.
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FIG. 7. Energy spectra with changing λ1 from λ1 = −1 to 1
for the model (20). Parameters are set as t = c = 1, m = 2,
B = 1/2 and θ = π/4. (a) λ2 = 1 and k3 = 0. (b) λ2 = −1
and k3 = 0. (c) λ2 = 0 and k3 = 0. (d) λ2 = 0 and k3 = 0.05.
(e) λ2 = 0 and k3 = 0.1. (f) λ2 = 0 and k3 = π.

field and those with an outward magnetic field, the signs
of the mass term of the surface Dirac cones are opposite.
Therefore, at the intersections of these two surfaces, gap-
less states necessarily appear. In this model, only the
Γ point [k = (0, 0, 0)] has two odd- parity states and
other TRIM have only even-parity states as in Fig. 1(a).

From these parity eigenvalues, we get the weak indices
ν1 = ν2 = ν3 = 0, and the strong index µ1 = 2.

Here we set a periodic boundary condition in the x3

direction. The system has a size L1×L2 along x1 and x2

directions, and we first set periodic boundary conditions
along the x1 and x2 directions with L = 2M + 1. In the
calculation we set the system size as L×L = 45×45. We
then replace the hopping amplitudes t and c for all bonds
across the boundary between x1 = −M and x1 = M by
λ1t and λ1c, where λ1 is real. In addition we similarly
replace the hopping amplitudes for all bonds that cross
the boundary between x2 = −M and x2 = M by λ2t and
λ2c, where λ2 is real.

First we calculate the band structures of the model
when (λ1, λ2)=(1, 1), (1, 0), (0, 1) and (0, 0). The results
are shown in Figs. 6(a-2), (b-2), (c-2) and (d-2) respec-
tively. In addition the schematic figures corresponding to
these results are Figs. 6(a-1), (b-1), (c-1) and (d-1). From
these results, we find that gapless states appear only in
Fig. 6(d-2). In Fig. 6(a) (λ1 = λ2 = 1), the system has
no boundary, and the eigenstates are bulk states and are
gapped. In Fig. 6(b) (λ1 = 1, λ2 = 0) and (c) (λ1 = 0,
λ2 = 1) the system has surfaces, and the results in (b-2)
and (c-2) show that the surface spectrum is also gapped.
In Fig. 6(d) (λ1 = λ2 = 0), the system has surfaces and
hinges. Therefore, the gapless states in Fig. 6(d-2) are
hinge states.

Next we calculate a change in the energy spectra from
λ1 = −1 to 1 when k3 and λ2 are fixed. The results
are shown in Fig. 7. When λ1 changes from λ1 = −1
to λ1 = 1, two states are interchanged between the con-
duction and the valence bands when λ2 = 1 and k3 = 0
(Fig. 7(a)) but not when λ2 = −1 and k3 = 0 (Fig. 7(b)).
The results in Figs. 7(a) and (b) correspond to Figs. 3(d)
and (f) respectively. Therefore, the results of this model
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FIG. 8. (Color online) Positions of hinge states. Blue lines represent an odd number of pairs of hinge states and red lines
represent an even number of pairs of hinge states. (a) Hinge states appear along x3 directions. (b, c) By introducing cutting
procedure along x2 and x3 directions, it is found that hinge states appear along x1 direction. (d-g) Hinge states along x1, x2
and x3 directions. The number of hinge modes toward the corner X of the system are defined as N1, N2 and N3 respectively.
Realizable positions of hinge modes can only be (d) and (g) because of charge conservation at the corner X.

calculation are consistent with the discussion in Sec. II C.
We discuss here the results for λ2 = 0 with various

values of k3. States are interchanged between the con-
duction and the valence bands in Fig. 7(c) (k3 = 0), but
not in Fig. 7(d) (k3 = 0.05) and (e) (k3 = 0.1). The re-
sult in Fig. 7(c) corresponds to Fig. 4(b) and the results
in Figs. 7(d) and (e) correspond to Fig. 4(c). Fig. 7(f)
is the energy spectrum when k3 = π. As mentioned in
Sec. II D, an interchange of states between the conduc-
tion and the valence bands does not occur. From the
above, we confirmed that all the results from the model
calculations are consistent with the discussion in Sec. II.

IV. POSITIONS OF HINGE STATES

In this section, we consider a crystal with a paral-
lelepiped shape with its edges along xi axis (see Fig. 8)
and discuss which hinges support gapless hinge states.
From the previous discussion, we find that pairs of hinge
states always appear in insulators with Z4 = 2 when
λ1 = λ2 = 0. Each pair consists of a hinge state with
positive velocity and one with negative velocity which
are related by inversion symmetry as shown in Fig. 5. In
addition, the number of the pairs is odd. When the sys-
tem size is very large, every state should be at one hinge
among the four hinges facing each other (see Fig. 5).
From the inversion symmetry of the whole system, when
one hinge state is at one hinge, the other hinge state
should reside at the hinge which is facing diagonally with
that hinge in Fig. 5. Therefore we conclude that gap-

less states appear at hinges of the system as shown in
Fig. 8(a). In general, in Fig. 8(a), an odd number of pairs
of hinge states appear in two hinges facing each other
(blue lines) and even number of pairs of hinge states ap-
pear at the other two hinges facing each other (red lines)
because the total number of the pairs is odd.

We have found appearance of hinge states along x3

direction by introducing the cutting procedure along x1

and x2 directions in the arguments so far. We similarly
find hinge states along the x1 direction by introducing the
cutting procedure along the x2 and x3 directions. From
this, we can consider two cases as shown in Figs. 8(b) and
(c) as patterns of positions and directions where hinge
states appear. We furthermore consider hinge states in
the x2 direction by introduce cutting procedure along the
x1 and x3 directions. Then, we can consider four cases
of Figs. 8(d-g).

Here we should discard unphysical cases among the
four cases of Figs. 8(d-g). In these figures, three hinges
meet together at each corner of the crystal. At each cor-
ner, the number of incoming hinge modes should be equal
to that of outgoing hinge modes, where “incoming” and
“outgoing” refer to the signs of the velocities of hinge
states. It is shown as follows. In equilibrium, a current
flows along the hinge modes, and at each corner the in-
coming current is equal to the outgoing current, because
otherwise a charge will be accumulated at each corner
in proportion with time. Then suppose we increase the
chemical potential by ∆µ within the gap. Each hinge

mode will acquire an additional current by e2

h ∆µ. For
the current conservation at each corner after the shift ∆µ,
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FIG. 9. Second-order topological insulator. (a) Let N1, N2

and N3 be the number of 2M1, 2M2 and 2M1 + 2M2 hinge
states respectively. One can attach two 2D Chern insulators
with same Chern number on two surfaces of opposite sides of
the crystal, while preserving inversion symmetry. By attach-
ing two 2D Chern insulators with Chern number C = 2M1

and C = 2M2 on x1x3- and x2x3-surfaces respectively, one
can make the number of the hinge modes at the red hinges to
be zero. (b) Hinge states form a closed loop. In addition, the
number of hinge states is odd.

the number of incoming hinge modes should be equal to
that of outgoing hinge modes. This argument is similar
to the one in Ref. [65] for proving that the chiral edge
currents are determined by a bulk orbital magnetization
in 2D insulating ferromagnet. From these discussions, we
conclude that the only possible positions of hinge states
are Figs. 8(d) and (g). Because Fig. 8(g) is reduced to
Fig. 8(d) by flipping the sign of x3, Fig. 8(d) is essentially
the only possibility for hinge modes.

In addition, we have some freedom in modifying the
hinge modes without closing the bulk gap. One can at-
tach two-dimensional Chern insulators on the surfaces of
the system, which modifies the number of hinge modes
at each hinge while keeping the bulk unchanged. This
discussion is similar to the one in Refs. [18, 24, 26].
Note that this operation should preserve inversion sym-
metry. Therefore, we should simultaneously attach two
2D Chern insulators with the same Chern number on
two surfaces of the opposite sides of the crystal. Then in
Fig. 9, one can make the number of the hinge modes
at the hinges with an even number of hinge modes
(shown in red) to be zero. To show this let us put
N1 = 2M1 and N2 = 2M2 (M1,M2: integer), and we
get N3 = −2(M1 +M2). Then we attach 2D Chern insu-
lators with Chern number 2M1 onto x1x3-surfaces, and
those with Chern number 2M2 onto x2x3-surfaces. As a
result, there is no longer a hinge state along the red lines,

and remaing hinge gapless states form a closed loop as
shown in Fig. 9(b). In addition, the number of hinge
modes is an odd number.

Thus, to summarize we have shown that the distribu-
tion of the gapleess hinge states is as shown in Fig. 9(b),
by using the freedom to attach 2D Chern insulators
while preserving inversion symmetry. In previous pa-
pers [24, 26], the same distribution has been proposed
for particular examples of SOTIs realized as Z2 topo-
logical insulators with magnetic field or magnetization.
However, it is not obvious whether it holds for general
SOTIs. Here, we have shown that hinge states appear as
shown in Fig. 9(b) when surfaces are gapped and Z4 = 2
without relying upon specific models.

V. CONCLUSION

In this paper, we give a general proof that any insu-
lators with inversion symmetry and gapped surface al-
ways have hinge states when Z4 topological index µ1 is
µ1 = 2. In the proof, we introduce the cutting procedure.
We change boundary conditions along two directions by
changing hopping amplitudes across the boundaries, and
study behaviors of gapless states through this change.
We then reveal that the behaviors of gapless states result
from the strong Z4 topological index. From this discus-
sion, we show that when the strong Z4 topological index
µ1 is µ1 = 2 and the weak topological indices ν1, ν2 and
ν3 are ν1 = ν2 = ν3 = 0, gapless states appear inevitably
at the hinges of three-dimensional insulators with gapped
surfaces. We also identify the only possible configuration
for the hinge modes as in Fig. 8(d). Together with a
freedom to attach 2D Chern insulators on surfaces, it
can always be reduced to Fig. 9(b) with an odd number
of chiral hinge states.
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Appendix A: Proof of E(−λ) = E(λ) for localized
states with opposite parities

In this appendix, we prove the following three propeties
regarding the cutting procedure with the cutting pa-
rameter λ: (i) For the boundary localized states, the
energy spectrum is symmetric with respect to the sign
change of λ, i.e. E(λ) = E(−λ). (ii) The bound-
ary localized states |ψ(λ)〉 and |ψ(−λ)〉 have opposite-
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parity eigenvalues. (iii) Through a unitary transforma-
tion Ux = exp[iπx̂/L], the Bloch wave vector is shifted
as kx → kx + π/L, and anti-periodic boundary condition
is converted into periodic boundary condition.

Here, we consider a one-dimensional periodic system
with the coordinate x. Let the system size in x-direction
be L = 2M + 1 with an integer M measured in the unit
of |a|. The positions of the unit cells are represented
by x = −M,−M + 1, · · ·M . For simplicity, at first, we
only consider the case where the hopping is limited up to
the nearest neighbor unit cells. Then the Hamiltonian is
expressed as follows:

H(λ) =


H0 H1 λH†1

H†1 H0
. . .

. . .
. . . H1

λH1 H†1 H0


=

M∑
x=−M

H0 ⊗ |x〉 〈x|

+

M−1∑
x=−M

(
H1 ⊗ |x+ 1〉 〈x|+ H.c.

)
+
(
λH1 ⊗ |−M〉 〈M |+ H.c.

)
. (A1)

Here, H0 and H1 are N0 ×N0 matrices, where N0 is the
number of states at each unit cell, coming from inter-
nal degrees of freedom. H0 and H1 represent the intra
unit-cell term and the nearest neighbor hopping term, re-
spectively. Note that this model can be easily extended
to two- and three-dimensional systems by adding the ma-
trices representing hoppings along the y and z directions
to H0 and H1 as internal degrees of freedom.

1. Proof of E(−λ) = E(λ) for localized states

Here, we define the projection operator P (l) as follows:

P (l) =



1
. . .

1 0 · · · 0
0 · · · 0 1

. . .

1


, (A2)

where 1 is a N0×N0 identity matrix, and 0 is a N0×N0

zero matrix. Here, P (l) is a 2lN0 × LN0 matrix, where l
is taken as the penetration depth of the localized states.
We define the projected Hamiltonian as follows:

H(l)(λ) = P (l)H(λ)(P (l))†. (A3)

Now, we assume that the boundary localized state is
well described by the projected Hamiltonian. In order
to show that the energy spectrum of the localized state

is symmetric, it is sufficient to show that thatH(l)(λ) and
H(l)(−λ) have same energy spectrum. In the following,
we show this for the general l.

As a simple example, we first consider the l = 1 case.
When l = 1, the projected Hamiltonian is calculated as
follows:

H(1)(λ) = P (1)H(λ)(P (1))†

=

(
1 0 · · · 0
0 · · · 0 1

)
H0 H1 λH†1

H†1 H0
. . .

. . .
. . . H1

λH1 H†1 H0



1 0

0
...

... 0
0 1


=

(
H0 λH†1
λH1 H0

)
. (A4)

We can show that H(1)(λ) and H(1)(−λ) have same en-
ergy spectrum. We can easily check the following relation
holds:

H(1)(−λ) =

(
1 0
0 −1

)
H(1)(λ)

(
1 0
0 −1

)
. (A5)

Therefore, H(1)(λ) and H(1)(−λ) are unitary equivalent,
and have same energy spectrum.

We then show that similar discussion holds true for
general l. In general, H(l)(λ) have the following form:

H(l)(λ) =

(
X λY †

λY X

)
. (A6)

Here, X and Y are lN0 × lN0 matrix shown as follows:

X =


H0 H1

H†1 H0
. . .

. . .
. . . H1

H†1 H0

 ,

︸ ︷︷ ︸
l blocks

(A7)

Y =


0
...

. . .

0
. . .

H1 0 · · · 0

 .

︸ ︷︷ ︸
l blocks

(A8)

H(l)(λ) and H(l)(−λ) are unitary equivalent,

H(l)(−λ) = UlH(l)(λ)U†l , (A9)

where Ul is an unitary operator, defined as

Ul =

(
1lN0

−1lN0

)
. (A10)

and 1lN0
is an lN0 × lN0 identity matrix. If |ψ(λ)〉 is

an eigenstate of H(l)(λ), Ul |ψ(λ)〉 is an eigenstate of
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H(l)(−λ). That is because

H(l)(−λ)Ul |ψ(λ)〉 = UlH(l)(λ)U†l Ul |ψ(λ)〉
= UlH(l)(λ) |ψ(λ)〉
= E(λ)Ul |ψ(λ)〉 . (A11)

Therefore, H(l)(λ) and H(l)(−λ) have the same energy
spectrum. In reality, the localized states at the bound-
ary have exponential tails into the bulk, and they are
not strictly restricted within a finite number of sites in
a thermodynamic limit. Nonetheless, by extending the
discussion on H(l)(λ) to a larger value of l, one can see
thatH(λ) andH(−λ) have asymptotically the same spec-
tra for localized states, when the system size becomes
large. We note that for delocalized states this proof of
E(λ) = E(−λ) is not valid, as we mentioned at the end
of Sec. II D.

2. Localized states |ψ(λ)〉 and |ψ(−λ)〉 with opposite
parity

Here, we show that the boundary localized states
|ψ(λ)〉 and |ψ(−λ)〉 have opposite parity eigenvalues.
H(l)(λ) is written in the basis consisting of 2lN0 states,
located at 2l unit cells at x = M,M − 1, · · ·M − l +
1,−M + l − 1, · · · − M + 1,−M with N0 representing
internal degrees of freedoms. We define the inversion op-
erator I for the eigenstate |ψ(λ)〉 of H(l)(λ), where the
inversion center for I is x = 0. By the unitary operator
Ul, states at unit cells from x = M to x = M − l+ 1 are
multiplied by 1 and those at unit cells from x = −M+l−1
to x = −M are multiplied by −1, if the system size L
is sufficiently large. Therefore, we obtain the following
relation.

UlIU
†
l = −I. (A12)

From this relation, if |ψ(λ)〉 have parity eigenvalue ξ of
the inversion operator I, we can show that Ul |ψ(λ)〉 have
parity eigenvalue −ξ because

IUl |ψ(λ)〉 = −UlIU†l Ul |ψ(λ)〉
= −UlI |ψ(λ)〉
= −ξUl |ψ(λ)〉 . (A13)

Because Ul |ψ(λ)〉 is the eigenstate ofH(−λ), we conclude
that |ψ(λ)〉 and |ψ(−λ)〉 have opposite parity eigenvalues.

3. Unitary operator Ux and anti-periodic boundary
condition

Here, we show that wave vector is shifted as kx →
kx + π/L through the unitary transformation Ux =
exp[iπx̂/L], and thereby the anti-periodic boundary con-
dition (λ = −1) is converted into the periodic bound-
ary condition (λ = 1). This unitary transformation

Ux is asymptotically equal to Ul if the system size is
sufficiently large and states are localized at the bound-
aries. The translational operator Tx is defined as Tx =∑M−1
x=−M |x+ 1〉 〈x| + |−M〉 〈M | . For λ = 1, the Hamil-

tonian is expressed as follows:

H(λ = 1)

=

M∑
x=−M

H0 ⊗ |x〉 〈x|+
M−1∑
x=−M

(
H1 ⊗ |x+ 1〉 〈x|+ H.c.

)
+
(
H1 ⊗ |−M〉 〈M |+ H.c.

)
= H0 ⊗

( M∑
x=−M

|x〉 〈x|
)

+
[
H1 ⊗ Tx + H.c.

]
. (A14)

For λ = −1, UxH(λ = −1)U†x is expressed as follows:

UxH(λ = −1)U†x

=

M∑
x=−M

H0 ⊗ |x〉 〈x| ei
π
L (x−x)

+

M−1∑
x=−M

(
H1 ⊗ |x+ 1〉 〈x| ei πL (x+1−x) + H.c.

)
−
(
H1 ⊗ |−M〉 〈M | ei

π
L ((−M)−M) + H.c.

)
=H0 ⊗

M∑
x=−M

|x〉 〈x|

+

[(
H1e

i πL
)
⊗
( M−1∑
x=−M

|x+ 1〉 〈x|+ |−M〉 〈M |
)

+ H.c.

]

=H0 ⊗
( M∑
x=−M

|x〉 〈x|
)

+
[
(H1e

i πL )⊗ Tx + H.c.
]

=H0 ⊗
( M∑
x=−M

|x〉 〈x|
)

+
[
H1 ⊗ T̃x + H.c.

]
, (A15)

where T̃x = ei
π
LTx. Let eik, eik̃ be eigenvalues of Tx, T̃x

respectively. k, k̃ take values as follows:

k =
2π

L
m (−M ≤ m ≤M), (A16)

k̃ =
2π

L
m+

π

L
(−M ≤ m ≤M). (A17)

By comparing Eqs. (A14) and (A15), we conclude that
UxH(λ = −1)U†x is unitary equivalent to H(λ = 1) with
k shifted to k+π/L. Therefore we conclude that, through
the unitary transformation Ux, the Bloch wave vector is
shifted as k → k+ π

L and the anti-periodic boundary con-
dition is converted into the periodic boundary condition.
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group 1
(b)

k 2

k 1(0, 0) (π, 0)

(π, π)(0, π)
1A

0 0

0 0

k 2

k 1(0, 0) (π, 0)

(π, π)(0, π)
1B

1 1

1 1

group 2
k 2

k 1(0, 0) (π, 0)

(π, π)(0, π)
2A

1 0

1 0

k 2

k 1(0, 0) (π, 0)

(π, π)(0, π)
2B

0 1

0 1

group 3
k 2

k 1(0, 0) (π, 0)

(π, π)(0, π)
3A

1 1

0 0

k 2

k 1(0, 0) (π, 0)

(π, π)(0, π)
3B

0 0

1 1

group 4
k 2

k 1(0, 0) (π, 0)

(π, π)(0, π)
4A

0 1

1 0

k 2

k 1(0, 0) (π, 0)

(π, π)(0, π)
4B

1 0

0 1

b2

b3

b1

 N ’   = 2 (mod 4)- N ’   =  0 (mod 4)-

N ’   =  2 (mod 4)-N ’   = 0 (mod 4)-

(a)

or

or

n  (mod 2)－n  (mod 2)－ n  (mod 2)－n  (mod 2)－

n  (mod 2)－n  (mod 2)－ n  (mod 2)－n  (mod 2)－

FIG. 10. General cases of parity eigenvalues at TRIM. (a)
We divide eight TRIM Γj = (n1b1 + n2b2 + n3b3)/2 into
two planes with n3 = 0 and n3 = 1. We can show that
N ′− = 2 for one plane and N ′− = 0 for the other plane. (b)
The number n−(k1, k2, n3) modulo 2 at TRIM on the planes
n3 = 0 and n3 = 1. Only combinations within the same
group are allowable for the two planes n3 = 0 and n3 = 1.
For example, if 1A is realized on the plane n3 = 0, only 1A
and 1B are allowed on the plane n3 = 1.

Appendix B: Proof of the existence of hinge states,
and general combinations of parity eigenvalues at

TRIM

In the main text, we have considered the case when
there are two odd-parity eigenstates at Γ point and no
odd-parity states at the other TRIM. In addition we have
assumed that the number of occupied bands is two in
the main text. In this appendix, we extend our theory
to an arbitrary number of occupied bands and general
combinations of parity eigenvalues at TRIM, while keep-
ing the strong Z4 index µ1 = 2 and weak Z2 indices
ν1 = ν2 = ν3 = 0.

1. Parity eigenvalues at TRIM in general cases

Here, we consider general combinations of parity eigen-
values at TRIM. First, we note that the total number of
odd-parity eigenstates at TRIM is 2 (mod 4) because the
strong Z4 index µ1 = 2 (mod 4). As shown in Fig. 10(a),
we divide the eight TRIM Γj = (n1b1 + n2b2 + n3b3)/2
into two planes n3 = 0 and n3 = 1. Here, let N ′−(n3)
be the total numbers of odd-parity eigenstates at four
TRIM on the plane n3 = const (= 0, 1).

We can consider many cases of combinations of parity
eigenvalues when µ1 = 2. From the strong index µ1 = 2,
the possible combinations of (N ′−(n3 = 0), N ′−(n3 = 1))
are (0, 2), (2, 0), (1, 1) and (3, 3) modulo 4. However,
the weak index is ν3 = 1 in the cases (1, 1) and (3, 3),
and these cases should be excluded. In this way, the
combinations of parity eigenvalues are restricted by the
condition ν3 = 0. Thus we obtain the following relation.

(
N ′−(n3 = 0), N ′−(n3 = 1)

)
=

{(
0, 2
)

(mod 4)(
2, 0
)

(mod 4),
(B1)

as shown in Fig. 10(a).

Next, let n−(k1, k2, n3) be the number of odd-parity
eigenstates at four TRIM for a fixed value of n3 = 0 or
n3 = 1, where k1 and k2 are wave-vectors along the b1
and b2 directions. There are eight patterns as combina-
tions of four n−(k1, k2, n3) (mod 2) at TRIM on plane
of n3 = 0 or n3 = 1 as shown in Fig. 10(b) because
N ′−(n3) = 0 and 2 modulo 4.

Let us consider combinations of these patterns for the
planes n3 = 0 and n3 = 1. Since the weak indices are
ν1 = 0 and ν2 = 0, the combinations of the patterns on
the plane n3 = 0 and the plane n3 = 1 are restricted.
From this, the eight patterns can be classified into four
groups as shown in Fig. 10(b), and only combinations
within the same groups are allowable for the combina-
tions of the two planes n3 = 0 and n3 = 1. For example,
if the pattern 1A in group 1 is selected on one plane
and the pattern 4A in group 4 on the other plane in
Fig. 10(b), the weak indices become ν1 = 1 and ν2 = 1,
which contradicts our assumption. After all, in order to
satisfy ν1 = ν2 = 0, only combinations within the same
groups are allowable. Note that the model considered in
section II and III are classified as 1A both on n3 = 0 and
n3 = 1 in Fig. 10(b).

Here we define a quantity δN(n3) ≡ n−(π, π, n3) +
n−(0, π, n3) − n−(π, 0, n3) − n−(0, 0, n3), which will be
directly related to hinge states later. δN(n3) repre-
sent the difference between the number of odd parity at
TRIM with k3 = 0 and k3 = π. Because N ′−(n3) =
n−(π, π, n3) + n−(0, π, n3) + n−(π, 0, n3) + n−(0, 0, n3),
δN(n3) can be expressed as follows:

δN(n3) = 2n−(π, π, n3) + 2n−(0, π, n3)−N ′−(n3).
(B2)

In addition, for all the groups in Fig. 10(b), we have

2n−(π, π, n3) + 2n−(0, π, n3)

=


0 (mod 4) for group 1

2 (mod 4) for group 2

0 (mod 4) for group 3

2 (mod 4) for group 4.

(B3)
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λ1

λ2

-1
-1

0

0

1

1

　N  (0, 1) － N  (0, 1) 
= N  (1, 1) － N  (1, 1) + n  (0, 0) － n  (π, 0)   

＋

＋

－

－ － －

　N  (0, -1) － N  (0, -1) 
= N  (1, -1) － N  (1, -1) + n  (0, π) － n  (π, π)   

＋

＋

－

－ － －

　N  (1, -1) － N  (1, -1) 
= N  (1, 1) － N  (1, 1) + 2n  (0, 0) － 2n  (0, π)   

＋

＋

－

－ － －

－＋

λ =01

E

E

λ2

F

0 1-1

BF A

D

(i)

(ii)

(iii)
C

FIG. 11. (Color online) The states with even- and odd-parity
eigenvalues are interchanged by varying λ2 from λ2 = 1 to −1
with λ1 = 0 because of the difference between the values of
N+−(λ1, λ2, n3) at the points B and D.

Therefore δN(n3) can be expressed as follows:

δN(n3) =


N ′−(n3) (mod 4) for group 1

N ′−(n3)− 2 (mod 4) for group 2

N ′−(n3) (mod 4) for group 3

N ′−(n3)− 2 (mod 4) for group 4,

(B4)

where we need N ′−(n3) = 0 or 2 (mod 4). As described
below, this result is important. From Eqs. (B1) and (B4),
on the two places n3 = 0 and n3 = 1, δN(n3) = 2 on one
plane and δN(n3) = 0 on the other plane; this is related
to the appearance of hinge states.

2. Cutting procedure in the general cases of parity
eigenvalues at TRIM

Here, we consider the cutting procedure again. Let
N+(λ1, λ2, n3) and N−(λ1, λ2, n3) be the numbers of
even- and odd-parity eigenstates below the Fermi level in
a system with the cutting parameters λ1 and λ2. In this
subsection, we show that δN(n3) is equal to the change
in N+−(λ1, λ2, n3) ≡ N+(λ1, λ2, n3) − N−(λ1, λ2, n3)
when λ2 varies from the point B to the point D in
Fig. 11 (see Eq. (B10)). For this purpose, we calcu-
late N+−(λ1, λ2, n3) at the point (i) C, (ii) B and (iii)
D in Fig. 11 in order. Finally, we calculate the change in
N+−(λ1, λ2, n3) when λ2 varies from the point B to the
point D.

(i) First we calculate the change in N+−(λ1, λ2, n3)
from the point A to the point C in Fig. 11. Therefore,
we consider the energy spectra when λ1 = 1 and k3 = 0
or π are fixed and λ2 varies. Here we conclude that in
changing from λ2 = 1 to λ2 = −1, N+−(λ1 = 1, λ2, n3)
is increased by 2n−(0, 0, n3)− 2n−(0, π, n3):[

N+−(λ1 = 1, λ2, n3)
]λ2=−1

λ2=1

=2n−(0, 0, n3)− 2n−(0, π, n3). (B5)

It is because in changing from λ2 = 1 to λ2 = −1,
n−(0, 0, n3) − n−(0, π, n3) states with odd parity shift
from the valence bands to the conduction bands, and
n−(0, 0, n3) − n−(0, π, n3) states with even parity shift
from the conduction bands to the valence bands.

(ii) Next, we calculate the change in N+−(λ1, λ2, n3)
from the point A to the point B in Fig. 11. First, the
change in N−(λ1, λ2, n3) from the point A to the point
F is equal to n−(0, 0, n3)−n−(π, 0, n3). Then, we obtain
the following relation.[

N+−(λ1, λ2 = 1, n3)
]λ1=0

λ1=1

=
[
N−(λ1, λ2 = 1, n3)

]λ1=0

λ1=−1
−
[
N−(λ1, λ2 = 1, n3)

]λ1=0

λ1=1

=
[
N−(λ1, λ2 = 1, n3)

]λ1=1

λ1=−1

=n−(0, 0, n3)− n−(π, 0, n3), (B6)

where we use the following relation:[
N±(λ1, λ2, n3)

]λ1=0

λ1=1
=
[
N∓(λ1, λ2, n3)

]λ1=0

λ1=−1
. (B7)

Eq. (B6) represents the change in N+−(λ1, λ2, n3) from
the point A to the point B.

(iii) From the same discussion, the change in
N+−(λ1, λ2, n3) from the point C to the point D is ex-
pressed as follows:[

N+−(λ1, λ2 = −1, n3)
]λ1=0

λ1=1

=n−(0, π, n3)− n−(π, π, n3). (B8)

From (i), (ii) and (iii), we are ready to calculate the
change in N+−(λ1, λ2, n3) between the points B and D.
By combining Eqs. (B5), (B6) and (B8), we obtain the
following result.[

N+−(λ1 = 0, λ2, n3)
]λ2=1

λ2=−1

=n−(π, π, n3) + n−(0, π, n3)

− n−(π, 0, n3)− n−(0, 0, n3). (B9)

This is δN(n3) defined in the previous subsection. There-
fore, from Eqs. (B4) and (B9) we obtain the following
relation: [

N+−(λ1 = 0, λ2, n3)
]λ2=1

λ2=−1

=δN(n3) =


N ′−(n3) (mod 4) group 1

N ′−(n3)− 2 (mod 4) group 2

N ′−(n3) (mod 4) group 3

N ′−(n3)− 2 (mod 4) group 4.

(B10)

From Eq. (B1), for any group in Eq. (B10), δN(n3) = 2
for one of the two planes of k3 = 0 and k3 = π, and
δN(n3) = 0 for the other plane. This means that the
eigenstates with even and odd parity are interchanged 1
(mod 2) times for one of the two planes k3 = 0 and k3 = π
by varying λ2 from λ2 = 1 to −1 when λ1 = 0. On the
other plane, the interexchanges of eigenstates with even
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and odd parity occur 0 (mod 2) times. This is the same
condition as in Sec. II D of the main text, where we show
that hinge states appear when the interexchange of states
occurs when k3 = 0 and the exchange does not occur
when k3 = π. Then, we conclude that hinge states appear
for general cases when µ1 = 2 and ν1 = ν2 = ν3 = 0. We
also conclude that the number of the hinge states is odd,
and the number of states across the Fermi level is odd
from k3 = 0 to k3 = π, from the same discussion as
Sec. II D of the main text.

Appendix C: Correspondence between
symmetry-based indicators and hinge states in

SOTIs with time-reversal symmetry

In the main text, we have considered a centrosymmet-
ric system in class A. Here we consider a centrosymmet-
ric system in class AII, that is, one with time-reversal
symmetry. For class AII, we can show that any insu-
lators with inversion symmetry and with gapped sur-
faces always have hinge states when Z4 = 2 by intro-
ducing cutting procedure similarly to class A. According
to Refs. [58, 59], the symmetry-based indicator for class
AII is found to be XBS = Z2 × Z2 × Z2 × Z4. Three Z2

factors are the weak topological indices, defined as

νAII
a ≡ 1

2

∑
Γj :TRIM∧na=1

n−(Γj) (mod 2), (C1)

where a = 1, 2, 3 and n−(Γj) is the number of occupied
states with odd parity at the TRIM Γj , and the summa-
tion is taken over the TRIM on the plane na = 1.. In
class AII systems, due to time-reversal symmetry, eigen-
states at the TRIM Γj are Kramers-degenerate with the
same parity eigenvalues. Therefore, n−(Γj) is an even
number. The Z4 factor is the strong topological index,
defined as

κ1 =
1

4

∑
Γj :TRIM

(
n+(Γj)− n−(Γj)

)
(mod 4)

= −1

2

∑
Γj :TRIM

n−(Γj) (mod 4), (C2)

where n+(Γj) is the number of occupied states with
even parity at the TRIM Γj . Therefore, in sys-
tems with inversion symmetry, topological phases are
characterized by the symmetry-based indicator XBS =
(νAII

1 , νAII
2 , νAII

3 , κ1). In the following, we show that hinge
states appear when (νAII

1 , νAII
2 , νAII

3 , κ1) = (0, 0, 0, 2) us-
ing the discussion similar to that in Appendix B.

Here, let N ′−(n3) be the total number of odd-parity
eigenstates at four TRIM on a plane n3 = const (= 0, 1).
First, we divide the eight TRIM Γj into two planes n3 = 0
and n3 = 1 as shown in Fig. 12(a) similarly to Ap-
pendix. B. For class AII, Eq. (B1) is modified as follows:(
N ′−(n3 = 0), N ′−(n3 = 1)

)
=

{(
0, 4
)

(mod 8)(
4, 0
)

(mod 8),
(C3)

group 1
(b)

(c)

k 2
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2 2
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k 2

k 1(0, 0) (π, 0)
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2 0

2 0

k 2
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k 2
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(π, π)(0, π)
3B
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k 2

k 1(0, 0) (π, 0)

(π, π)(0, π)
4A

0 2

2 0

k 2

k 1(0, 0) (π, 0)

(π, π)(0, π)
4B

2 0

0 2

b2

b3
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 N ’   = 4 (mod 8)- N ’  =  0 (mod 8)-

N ’   =  4 (mod 8)-N ’  = 0 (mod 8)-

(a)

or

or

n  (mod 4)－n  (mod 4)－ n  (mod 4)－n  (mod 4)－

n  (mod 4)－n  (mod 4)－ n  (mod 4)－n  (mod 4)－

λ1
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-1

0

0

1

1
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λ =01
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λ2
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FIG. 12. (Color online) Appearance of hinge states in SOTI
with time-reversal symmetry. (a) We divide eight TRIM Γj =
(n1b1+n2b2+n3b3)/2 into two planes with n3 = 0 and n3 = 1.
We can show that N ′− = 4 (mod 8) for one plane and N ′− = 0
(mod 8) for the other plane. (b) The number n−(k1, k2, n3)
(mod 4) at TRIM on the planes n3 = 0 and n3 = 1. Only
combinations within the same group are allowable for each
plane at constant n3 (= 0, 1). (c) Kramers pairs with even-
and odd-parity eigenvalues are interchanged by varying λ2

from the point B to the point D because of the difference
between the values of N+−(λ1, λ2, n3) at the point B and the
point D.

because κ1 = 2 and νAII
3 = 0.

Next, let n−(k1, k2, n3) be the number of odd-parity
eigenstates at four TRIM for a fixed value of n3 = 0
or n3 = 1. There are eight patterns as combinations
of four n−(k1, k2, n3) at TRIM on plane of n3 = 0 or
n3 = 1 as shown in Fig. 12(b) because N ′−(n3) = 0 or

4 (mod 8). In order to satisfy νAII
1 = νAII

2 = 0, only
combinations within the same groups are allowable as
discussed in Appendix B. From this, Eq. (B3) is modified
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as follows:

2n−(π, π, n3) + 2n−(0, π, n3)

=


0 (mod 8) for group 1

4 (mod 8) for group 2

0 (mod 8) for group 3

4 (mod 8) for group 4.

(C4)

Therefore, Eq. (B4) is also modified as follows:

δN(n3) =


N ′−(n3) (mod 8) for group 1

N ′−(n3)− 4 (mod 8) for group 2

N ′−(n3) (mod 8) for group 3

N ′−(n3)− 4 (mod 8) for group 4,

(C5)

where N ′−(n3) = 0 or 4 (mod 8). Eq. (B9) holds true for
class AII. Then, by combining Eqs. (B9) and (C5), we
obtain the following relation:[

N+−(λ1 = 0, λ2, n3)
]λ2=1

λ2=−1

=δN(n3) =


N ′−(n3) (mod 8) group 1

N ′−(n3)− 4 (mod 8) group 2

N ′−(n3) (mod 8) group 3

N ′−(n3)− 4 (mod 8) group 4.

(C6)

From Eq. (C3), for any group in Eq. (C6), δN(n3) = 4 for
one of the two planes of k3 = 0 and k3 = π, and δN(n3) =
0 for the other plane. Therefore, Kramers pairs with even
and odd parity are interchanged 1 (mod 2) times for one
of the two planes k3 = 0 and k3 = π by varying λ2

from λ2 = 1 to −1 when λ1 = 0 as shown in Fig. 12(c).
On the other plane, the interexchanges of Kramers pairs
with even and odd parity occur 0 (mod 2) times. This
discussion is the same as in Sec. II D when we replace a
state in Sec. II D with a Kramers pair. Then, we conclude
that hinge states appear when κ1 = 2 and νAII

1 = νAII
2 =

νAII
3 = 0 for class AII. These hinge states are helical

gapless states protected by time-reversal symmetry for
class AII, while hinge states are chiral gapless states for
class A.

Appendix D: Proof of existence of hinge states for a
system with even numbers of the system sizes L1

and L2

In the main text, we consider the system with odd
numbers of the system size L1 and L2 in the x1 and x2

directions. In this appendix, we discuss the spectral flows
via the cutting procedure in the case of a system with an
even numbers of the system size Li (i = 1, 2). We set the
system size in the x3 direction as L3 → ∞ and k3 fixed
to be 0 or π. Other cases with (L1, L2) = (odd, even) and
(even, odd) can be studied similarly, and we omit these
cases here.

First, the inversion operators and the inversion cen-
ters are different between the case with odd and even

(c)(a)

(b)

λ =12

k1

k2

(0, 0) (π, 0) (2π, 0)

(π, π)(0, π)

λ =12

k1

k2

(0, 0) (π, 0) (2π, 0)

(π, π)(0, π)

λ =11

λ =-11

t → λt1t 

t t 

t t 

t t 

t 

x = (L -1)/21 1

x = 01

x = -(L -1)/21 1

Inversion center

t → λt1

x = L /21 1

x = 01

x = -L /21 1

Inversion center

FIG. 13. (Color online) One-dimensional systems with (a)
odd values of the system size L1 and (b) even values of the sys-
tem size L1. (c) Black points represent possible wave vectors
in the cases of periodic and anti-periodic boundary conditions
in the x1 direction when L1 and L2 are even. When λ1 = 1
and λ2 = 1, the four TRIM are among the possible wave
vectors. On the other hand, no TRIM is among the possible
wave vectors when λ1 = −1 and λ2 = 1.

numbers of Li (i = 1, 2). Therefore, it is necessary to
distinguish the inversion operators in the even and odd
cases. Then let Ieven and Iodd be the inversion operators
in the cases of even and odd values of Li, respectively.
For example, the inversion centers are different in one-
dimensional systems with an odd and even values of L1

as shown in Figs. 13(a)(b). In the case of odd L1, the
inversion center x = 0 is at the center of a unit cell. On
the other hand, the inversion center is at the border be-
tween two neighboring unit cells in the case of even L1.
In one-dimensional systems, Ieven is related to Iodd as
follows.

Ieven = Tx1
Iodd, (D1)

where Tx1
is the translational operator in the x1 direc-

tion. In two-dimensional systems with even L1 and L2,
Ieven is related to Iodd as follows similar to the one-
dimensional case.

Ieven = Tx1
Tx2

Iodd, (D2)

ξeven(k1, k2) = e−ik1e−ik2ξodd(k1, k2), (D3)

where ξeven(k1, k2) and ξodd(k1, k2) represent eigenvalues
of Ieven and Iodd respectively at (k1, k2) ∈ TRIM. From
this, we find the following relations of n±(k1, k2, n3) in
the case with even and odd Li (i = 1, 2):

neven
± (0, 0, n3) = nodd

± (0, 0, n3), (D4)

neven
± (π, 0, n3) = ν − nodd

± (π, 0, n3), (D5)

neven
± (0, π, n3) = ν − nodd

± (0, π, n3), (D6)

neven
± (π, π, n3) = nodd

± (π, π, n3), (D7)
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where ν = nodd
+ (k1, k2, n3) + nodd

− (k1, k2, n3). When
(λ1, λ2) = (1, 1), the Bloch wave-vector ki (i = 1, 2) in
the xi direction is

ki =
2π

Li
mi

(
−Li

2
< mi ≤

Li
2

)
. (D8)

Therefore, (k1, k2) can take the values of the four TRIM
(0, 0), (π, 0), (0, π) and (π, π) as shown in Fig. 13(c). On
the other hand, when (λ1, λ2) = (−1, 1), the set of the
wave-vector k2 does not change, and k1 is given by

k1 =
2π

L1
m1 +

π

L1

(
−Li

2
< mi ≤

Li
2

)
. (D9)

From this, we find that (k1, k2) cannot take TRIM. Each
non-TRIM pair (k,−k) with k3 = const contributes 1
to N−(λ1, λ2, n3). From the above discussion, we obtain
the following relations:

N even
− (1, 1, n3) =

(
L1L2

2
− 2

)
ν

+ neven
− (0, 0, n3) + neven

− (π, 0, n3)

+ neven
− (0, π, n3) + neven

− (π, π, n3),

N even
− (−1, 1, n3) =

L1L2

2
ν. (D10)

From these relations and Eqs. (D4-D7), we obtain the
following equation.

[N even
− (λ1, λ2 = 1, n3)]λ1=1

λ1=−1

=nodd
− (0, 0, n3) + nodd

− (π, π, n3)

−
(
nodd
− (0, π, n3) + nodd

− (π, 0, n3)
)

(D11)

From similar discussion, the following equation holds.

[N even
− (λ1, λ2 = −1, n3)]λ1=1

λ1=−1 = 0. (D12)

In Appendix B, we considered general combinations
of parity eigenvalues at TRIM. In this case, the main
result remains the same, but it is necessary to make some
modifications. In the case of even Li (i = 1, 2), Eq. (B5)
in Appendix B is modified as follows:

[N even
+− (λ1 = 1, λ2, n3)]λ2=−1

λ2=1

=2nodd
− (0, 0, n3) + 2nodd

− (π, π, n3)

−
(
2nodd
− (0, π, n3) + 2nodd

− (π, 0, n3)
)
. (D13)

In addition, Eq. (B6) is modified as

[N even
+− (λ1, λ2 = 1, n3)]λ1=0

λ1=1

=nodd
− (0, 0, n3) + nodd

− (π, π, n3)

−
(
nodd
− (0, π, n3) + nodd

− (π, 0, n3)
)
, (D14)

and Eq. (B8) is modified as

[N even
+− (λ1, λ2 = −1, n3)]λ1=0

λ1=1 = 0. (D15)

From Eqs. (D13-D15), we obtain the following equation.

[
N even

+− (λ1 = 0, λ2, n3)
]λ2=1

λ2=−1

=nodd
− (π, 0, n3) + nodd

− (0, π, n3)

− nodd
− (0, 0, n3)− nodd

− (π, π, n3)

=N ′odd
− (n3)

− 2
(
nodd
− (0, 0, n3) + nodd

− (π, π, n3)
)
, (D16)

where N ′odd
− (n3) is the total number of odd-parity eigen-

states at four TRIM on a plane n3 = const (= 0, 1) in
the case with the odd system size. Therefore, we obtain
the following result for the four groups in Fig. 10:

[
N even

+− (λ1 = 0, λ2, n3)
]λ2=1

λ2=−1

=


N ′odd
− (n3) (mod 4) for group 1

N ′odd
− (n3)− 2 (mod 4) for group 2

N ′odd
− (n3)− 2 (mod 4) for group 3

N ′odd
− (n3) (mod 4) for group 4,

(D17)

where N ′odd
− (n3) = 0 or 2 (mod 4). From this, we find

that for any group, the change of N even
+− (λ1 = 0, λ2, n3)

in changing from λ2 = 1 to λ2 = −1, is 2 (mod 4)
for one of the two planes of k3 = 0 and k3 = π. This
change of N even

+− (λ1 = 0, λ2, n3) is 0 (mod 4) for the
other plane. This is the same conclusion of Appendix B
and the existence of gapless states is shown. In Sec. II,
we consider the special case with nodd

− (0, 0) = 2 and

nodd
− (π, 0) = nodd

− (0, π) = nodd
− (π, π) = 0. In this case,

Eq. (D16) is equal to Eq. (19). Therefore, it is not neces-
sary to modify the main result in Sec. II, that is Eq. (19)
in the case with an even number of Li (i = 1, 2).
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