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The symmetry considerations that imply a non-zero anomalous Hall effect (AHE) in certain
non-collinear antiferromagnets also imply both non-zero orbital magnetization and a net spin mag-
netization. We have explicitly evaluated the orbital magnetizations of several anomalous Hall effect
antiferromagnets and find that they tend to dominate over spin magnetizations, especially so when
spin-orbit interactions are weak. Because of the greater relative importance of orbital magnetization
the coupling between magnetic order and an external magnetic field is unusual. We explain how
magnetic fields can be used to manipulate magnetic configurations in these systems, pointing in
particular to the important role played by the response of orbital magnetization to the Zeeman-like
spin exchange fields.

I. INTRODUCTION

We have previously1 pointed out that spin-orbit in-
teractions induce an anomalous Hall conductivity i.e.
an antisymmetric contribution to the conductivity ten-
sor σαβ = ∂jα/∂Eβ , in some common antiferromagnets
(AFMs) with non-collinear magnetic order. Because the
anomalous Hall effect (AHE) is usually associated with
ferromagnetism, we refer to these systems as AHE AFMs.
One way to understand the finite anomalous Hall con-
ductivity of AHE AFMs is to view it as a time-reversal-
odd pseudovector σAH

α = εαβγσβγ/2 that only vanishes
in magnetic systems when required to do so by some lat-
tice symmetry. This idea of spatial symmetry controlled
AHE has also been extended to collinear AFMs2.

Since the total magnetization is also a time-reversal-
odd pseudovector, it must be nonzero in AHE AFMs.
Indeed, Mn3Ir, the prototypical AHE AFM identified in
Ref.1, has a finite magnetization3,4, as do other AHE
AFMs such as Mn3Sn and Mn3Ge5–8. Precisely speak-
ing the existence of a net magnetization makes these AHE
AFMs weak ferromagnets rather than ideal antiferromag-
nets, for which the total magnetization exactly vanishes.
It is also because of the nonzero total magnetization, that
the sign of the AHE can be flipped by reversing the mag-
netic field direction in experiments. However, the mi-
croscopic picture of magnetization in AHE AFMs is far
from clear. In particular, it is expected that typical AHE
AFMs should have vanishingly small total spin magneti-
zation due to the much larger exchange coupling than the
magnetic anisotropy of sublattice moments. As a result,
the orbital contribution to the total magnetization9–14 is
no longer negligible, and could play a key role in deter-
mining how AHE AFMs respond to external magnetic
fields.

Our goal in this work is to develop a quantitative de-
scription of manipulating the order parameter direction
of AHE AFMs coherently using magnetic fields coupled

to the orbital degrees of freedom of electrons, which is
appropriate for those AHE AFMs with dominating or-
bital magnetization over the spin contribution. To this
end, we first provide a general criterion, backed by first-
principles calculations, for searching for such orbital-
magnetization-dominant AHE AFMs. We then point
out, in the framework of relativistic spin density func-
tional theory (SDFT), that the magnetic field reorients
the order parameter through an unusual orbital-spin sus-
ceptibility, for which we give a convenient formula based
on linear response theory. With these preparations, we
finally explain our method for investigating field-induced
coherent order parameter switching in such AHE AFMs,
by keeping track of energy extrema evolution in the
configuration space, and illustrate the various unusual
switching behaviors by applying this approach to a toy
model mimicking Mn3Ir.

II. GROUND STATE ORBITAL AND SPIN
MAGNETIZATIONS

Orbital magnetization arises from circulating electron
currents. In a finite system it can be unambiguously de-
fined as the expectation value of − 1

2 j × r.10 In an ex-
tended system this definition of orbital magnetization
becomes ambiguous because the position operator is un-
bounded. Historically this conundrum posed both con-
ceptual and practical challenges, but have been fully
solved recently11–14. In particular, we now know that
there are two gauge-invariant contributions to the total
orbital magnetization of an extended system, due to the
magnetic moments of individual Bloch wave packets and
to the Berry phase modification of the electron density
of states in a magnetic field, respectively11,15.

To verify that orbital magnetization has a larger rel-
ative importance in AHE AFMs we have calculated
both orbital and spin magnetizations in Mn3Ir, Mn3Pt,



2

TABLE I. Ground state spin and orbital magnetization (in
mµB per formula unit) for some common AHE AFMs. The
partial orbital magnetizations M1

orb and M2
orb are respectively

the Bloch state orbital moment and magnetic-field-dependent
density-of-states contributions.

Mspin M1
orb M2

orb M tot
orb

Mn3Ir 26.9 -76.7 106.1 29.7

Mn3Pt 11.2 -17.0 29.4 12.2

Mn3Rh 2.4 -24.0 35.0 11.0

Mn3Sn 0.9 40.5 -42.5 -2.0

Mn3Ge 0.9 -17.5 35.2 17.7

Mn3Rh, Mn3Sn, and Mn3Ge, all AHE AFMs according
to previous work1,5–8, listed in Table I. The orbital mag-
netization Morb is calculated with the zero-temperature
expression given in e.g. Ref. 14 using Wannier inter-
polation of results from relativistic SDFT (see the Sup-
plemental Material16 and references17–26 therein), which
employs exchange-correlation energy functionals that re-
tain the structure of the non-relativistic limit27,28, but
adds corrections from spin-orbit coupling to the Kohn-
Sham single particle equations 29. We find that Morb

is at least comparable to the total spin magnetization
Mspin in size, and that it is much larger than the lat-
ter in certain materials, e.g. Mn3Rh. This is in sharp
contrast to conventional metallic ferromagnets such as
Fe in which orbital magnetization is more than one or-
der of magnitude smaller than spin magnetization. We
are also aware of earlier SDFT calculations showing the
importance of orbital magnetization in Mn3Sn30 prior to
the establishment of a gauge-invariant form of the orbital
magnetization in crystalline solids.

Interestingly, comparing Morb and Mspin across Table
I, we see that heavier elements have smaller Morb/Mspin

values. This trend can be understood by taking spin-
orbit coupling as a weak perturbation31–33, as we ex-
plain below. We consider first the atomic limit in which
spin-orbit coupling can be approximated by λsoL · S.
Here L and S are the orbital and spin angular momen-
tum operators that are proportional with appropriate g-
factors to the local orbital and spin magnetic moments.
It follows that magnetic order, which leads to a nonzero
spin density averaged over an atomic sphere surround-
ing each magnetic atom, results in an effective magnetic
field that couples directly to the local orbital moment.
We write this effective coupling as −Morb · H, where
Morb = −goµBL/~ and H = ~λsoSΩ̂/goµB , with S and

Ω̂ the magnitude and the direction of the local spin den-
sity, and go the appropriate g-factor. The orbital mag-
netization is then the orbital-orbital susceptibility ←→χ o,
a rank-2 tensor that is non-zero even in the absence of
spin-orbit coupling, times this effective magnetic field. It
follows that the orbital magnetization is linear in spin-
orbit coupling strength in the perturbative limit.

In the case of noncollinear antiferromagnets the local
orbital field H is usually not along the direction of the
total orbital magnetization. This can be understood as
a result of the anisotropy in the local←→χ o that is allowed
by symmetry. For example, the structure of Mn3Ir has a
four-fold rotational symmetry around an axis (taken as
ẑ) through a Mn atom and perpendicular to the square
formed by its four nearest neighboring Ir atoms (taken
as the xy plane). There are also two mirror planes per-
pendicular to x̂ and ŷ, respectively. These symmetry
operations will eliminate all off-diagonal elements of ←→χ o

and make χxxo = χyyo , but leave the ratio between χzzo and
χxxo unfixed. Thus even if n̂111 ·H = 0, with H parallel
to the local spin magnetization and exactly coplanar for
the three Mn sites in a unit cell, n̂111 · ←→χ o ·H 6= 0. It
is also easy to see that the contributions from the other
two sites in the unit cell are the same.

When the spin-canting that produces a non-zero to-
tal spin magnetization is due to site-dependent single-
ion anisotropies, one can also use a similar argument as
the one above to relate the total spin magnetization to
the effective field due to spin-orbit coupling. In this case
the total spin magnetization is induced by the effective
field H through a susceptibility ←→χ so that connects spins
and magnetic fields coupled to orbital degrees of freedom.
Since ←→χ so is clearly zero in the absence of spin-orbit
coupling, it must be at least linear in λso, and the spin-
canting must therefore be at least of 2nd order. A spe-
cial role of←→χ so is in the reorientation of the noncollinear
magnetic order parameters by external magnetic fields,
which will be discussed in detail below. Useful formulas
for ←→χ so that can be applied in model or first-principles
calculations are derived in Sec. IV.

The same conclusion for the spin canting can
be reached by relating ←→χ so to magnetocrystallline
anisotropy. Following Bruno33, we can write the spin-
orbit coupling term into an anisotropy energy

Eso = −1

2
H · ←→χ o ·H = −~2λ2

soS
2

2µ2
B

Ω̂ · ←→χ o · Ω̂. (1)

The anisotropy energy tensor is thus at least on the order
of λ2

so. For a ferromagnet with cubic symmetry the rank-
2 tensor ←→χ o is isotropic and one has to go to the 4th
order in λso. But for Mn3Ir the local symmetry with re-
spect to a Mn atom is not cubic, and as discussed above
χxxo = χyyo 6= χzzo . This means there is either an easy
axis (along ẑ) or an easy-plane (in xy plane) anisotropy.
For Mn3Ir it is the former. Since the antiferromagnetic
nearest neighbor coupling between Mn moments prefer a
coplanar arrangement of the moments, which is incom-
patible with the local easy axes, the local Mn moments
have to cant out-of-plane. The amount of canting is pro-
portional to the ratio between the anisotropy energy and
the nearest neighbor exchange coupling. Thus the spin
canting has to be at least ∝ λ2

so. Note that this argument
does not apply to spin canting due to the anisotropic
exchange interaction, or the Dzyaloshinskii-Moriya in-
teraction (DMI), which is linear in λso.34,35 However,
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FIG. 1. Dependence of net Mspin and Morb on spin-orbit
coupling strength in Mn3Ir. λ/λso is the ratio of spin-orbit
coupling strength to its realistic value.

it can be shown that in both the cubic (X = Ir, Pt,
Rh) and the hexagonal (X = Sn, Ge) Mn3X compounds
DMI only plays a minor role compared to magnetocrys-
talline anisotropy. For the cubic compounds the DMI
vectors for four nearest neighbor bonds connecting two
Mn sublattices cancel each other, while for the hexagonal
compounds the DMI disfavors canting36 and hence only
renormalizes the antiferromagnetic Heisenberg exchange
coupling between Mn spins.

Although the atomic limit considerations above do not
strictly apply to metallic AFMs, we expect that the gen-
eral trend should still hold. As an explicit check, we
calculated the total orbital and spin magnetizations of
Mn3Ir vs. spin-orbit coupling strength by artificially
varying the speed of light when generating the fully-
relativistic pseudopotentials. The results shown in Fig. 1
agree well with the qualitative picture explained above.
It follows that in an AHE AFM family of given sym-
metries, larger Morb/Mspin values should be expected in
materials with weaker, not stronger, atomic spin-orbit
coupling, if the DMI is not the dominant mechanism for
the spin canting.

III. MANIPULATING AFM ORDER WITH A
MAGNETIC FIELD

Having established the importance of orbital magne-
tization in AHE AFMs, below we discuss the order pa-
rameter reorientation induced by magnetic fields within
the relativistic SDFT formalism. Important differences
between the present formulation and the conventional
approach of solving the Landau-Lifshitz-Gilbert (LLG)
equation for a classical spin model with local Zeeman
coupling to external fields will be discussed at the end.

We first consider the simpler case of a ferromagnet in
which the order parameter is a vector that specifies the
spin-orientation Ω̂. Because the energy scales associated
with external magnetic fields are small, it is sufficient
to account only for the contribution to energy that is

of first order in H, namely the coupling of H to total
magnetization. Minimizing total energy in the presence
of a field then yields

0 = δEani(δΩ̂)− δM(δΩ̂) ·H, (2)

where Eani is the dependence of energy on order param-
eter direction in the absence of a field. When M is
purely due to spin its magnitude is essentially fixed at
the saturation magnetization Ms. Eq. (2) then simply
implies that the magnetization direction adjusts so that
the anisotropy field Hani ≡ −δEani/(MsδΩ̂) cancels the
external magnetic field. When M is dominated by the
orbital contribution, on the other hand, Eq. (2) must be
generalized to

Hani +
δMorb

MsδΩ̂
·H = 0. (3)

To go further, we discuss the meaning of Eq. (3) within
the framework of relativistic SDFT. For magnetic sys-
tems SDFT has the convenience of explicitly accounting
for the Zeeman-like exchange coupling between the mag-
netic condensate and the Kohn-Sham quasiparticle spins
in the exchange-correlation potential. Although the rel-
ativistic SDFT has some subtle disadvantages37, notably
a failure38 to capture the interaction physics responsible
for Hund’s second rule, it is regularly and successfully ap-
plied and is built into common electronic structure soft-
ware packages. Its practical success is likely due to the
fact that the degree to which local spin alignment reduces
interaction energies is not strongly altered by relativistic
corrections.

In this formalism Ω̂ enters the exchange-correlation po-
tential in the form of −∆exΩ̂·S ≡ −gµBHspin ·S/~, where
∆ex is the exchange field strength. Using a simplified no-
tation in which the variation of ∆ex within an atomic cell
is left implicit, we have

δMorb

MsδΩ̂
=

~∆ex

gµBMs

δMorb

δHspin
=

~∆ex

gµBMs

←→χ os, (4)

where g ≈ −2 is the Lande g-factor, and ←→χ os = ←→χ T
so

is the orbital-spin susceptibility discussed further below.
With this notation Eq. (2) becomes

Hani = − ~∆ex

gµBMs

←→χ os ·H. (5)

It follows that when the magnetization is orbitally dom-
inated, the anisotropy field must be balanced by an ad-
justment in Morb produced by the orbital-spin suscepti-
bility ←→χ os which, among the various magnetic suscepti-
bility contributions identified in solid state systems39–42,
is the one seldom addressed in the literature39,43,44. In
the next section we will discuss how ←→χ os can be calcu-
lated in the SDFT framework.

We now turn to the specific case of AHE AFMs, in
which it is convenient to view the magnetic sublattice de-
pendent spin-density directions Ω̂i (i labels the total N
magnetic sublattices) as the order parameter. Because
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the exchange coupling between local moments is strong,
the relative orientations between local moments on differ-
ent sublattices are normally nearly fixed. Then, as in the
case of a classical rigid body, the number of parameters
can be reduced to three for any N .45–48 The counterpart
of Eq. (2) for the noncollinear case is

0 = δEani(δω)− δM(δω) ·H, (6)

where ω represents the three variables parameterizing the
three-dimensional rotation group SO(3). For infinitesi-
mal rotations the three components of δω commute, and
can be chosen as infinitesimal rotation angles around the
three Cartesian axes δωα. It follows that

δEani

δωα
=
δMorb

δωα
·H = H ·

N∑
i=1

δMorb

δΩ̂i
· δΩ̂i
δωα

(7)

=
~∆ex

gµB
Hλ

N∑
i=1

(χios)λγεγαβ Ωiβ .

where Greek letters label x, y, z, ←→χ i
os is the total orbital

response to a local Zeeman field on sublattice i, which
can be evaluated by using Eq. (9) and projecting the
spin operator onto site i. The Levi-Civita symbol comes
from the antisymmetric infinitesimal rotation matrix in
Cartesian coordinates.

There are, however, exceptions for the applicability of
Eq. (7). One example is the inverse triangular order of
Mn3Sn, which has vanishing in-plane anisotropy if one
only considers the uniaxial anisotropy for each magnetic
sublattice. To account for such situations it is necessary
to relax the rigid body assumption. This can be done by,
e.g., including a few more parameters {νi} besides the
three (ω in Eq. (6)) characterizing the rigid body rotation

Ω̂. These parameters characterize the deformation of the
rigid body, and in the limit of large exchange coupling
should be much smaller compared to the other three.
The balance equation thus becomes

δEani
δωα

− δM

δωα
·H = 0, (8)

δ(Eex + Eani)

δνi
− δM

δνi
·H = 0,

which are in general hard to solve, but can sometimes
be simplified with additional constraints from symmetry.
One example is given in Ref. 50

With above preparations we propose the following
strategy for studying coherent magnetic switching in
AHE AFMs. Switching through domain nucleation and
growth will be discussed elsewhere. With a microscopic
Hamiltonian we can identify energy extrema that sat-
isfy Eq. (7). These correspond to local minima, maxima,
and saddle points in the SO(3) parameter space. Both
the positions in SO(3) space and the energies of these
extrema change smoothly with increasing external mag-
netic field. Whenever a minimum is converted to a saddle
point, magnetic switching to a new minimum can pro-
ceed. For numerical implementation one can discretize
the SO(3) space, calculate Eani, Morb, δEani

δω and ←→χ i
os at

each grid point, and search for the H-dependent energy
extrema. To complement the tools needed for such an
approach, in the next section we will give explicit formu-
las for the orbital-spin susceptibility, which will be used
in the model example in Sec. V.

IV. CALCULATION OF ORBITAL-SPIN
SUSCEPTIBILITY

The calculations described below apply a new method
that we have developed to evaluate←→χ os in crystals16. To
apply a uniform magnetic field to the orbital degrees of
freedom we consider a periodic vector potential A(r) =
B×q
q2 sin(q ·r), then take the q → 0 limit14,41 with q ·B =

0.49 It then follows from the linear response theory that
for a grand canonical ensemble

χαβos = −e~gµB
4

kBT εαγδ
∑
n

(9)

×Im

[∫
[dk] tr

(
G0v

γG0v
δG0σ

β
)]
,

where G0 is the Kohn-Sham thermal Green’s function, v
is the velocity operator, σ is the spin-space Pauli matrix
vector, n is a fermionic Matsubara frequency label. We
note that the susceptibility is in general ensemble depen-
dent. Conversion from the above result to that for the
canonical ensemble, for example, involves evaluating the
dependence of magnetization M on chemical potential µ
and that of µ on magnetic field H.16

To convert Eq. (9) to a form more suitable for model or
DFT calculations, we perform the Matsubara summation
and group like terms together16.

χαβos = i
e~gµB

4
εαγδ

∑
k

vγabv
δ
baσ

β
aa

Eba
f ′a (10)

+i
e~gµB

4
εαγδ

∑
k

[
vγaa(vδabσ

β
ba − vδbaσ

β
ab) + 3σβaav

γ
abv

δ
ba

E2
ab

−
vγabv

δ
bcσ

β
ca + vγabσ

β
bcv

δ
ca + σβabv

γ
bcv

δ
ca

EabEac

]
fa,

where a, b, c are band indices, b 6= a 6= c (but b = c is allowed), and repeated indices are summed over.
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fa = f(Ea) is the Fermi-Dirac distribution function, Ea
is the eigenenergy for band a at a given momentum,
f ′a = ∂f(Ea)/∂Ea. The first term can be viewed as a
correction to the g factor39 and is hence separated out.
But it has to be taken into account when we discuss the
magnetic field induced spin-density later. Eq. (10) can
be directly compared16 with the result obtained by Misra
and Kleinman using a different method (Eqs. (3.40) and
(3.46) in Ref. 39).

Eq. (10) is not particularly suitable for model calcula-
tions, because the energy differences in the denominators

could vanish when there are degeneracies in the occupied
states. It is thus useful to rewrite Eq. (10) to a differ-
ent form, in which such energy differences do not appear.
The result is

χαβos = i
e~gµB

4
(Παβ

surf + Παβ
sea,1 + Παβ

sea,2), (11)

where Παβ
surf is a Fermi surface term, and Παβ

sea,1, Παβ
sea,2

are Fermi sea terms. Their expressions are

Παβ
surf = −εαγδ

∑
k

f ′a
Eab

(vγaav
δ
abσ

β
ba + vγbav

δ
aaσ

β
ab + vγabv

δ
baσ

β
aa), a 6= b (12)

Παβ
sea,1 = εαγδ

∑
k

fab
E2
ab

(vγaav
δ
abσ

β
ba + vγbav

δ
aaσ

β
ab + vγabv

δ
baσ

β
aa), a 6= b

Παβ
sea,2 = −εαγδ

∑
k

vγabv
δ
bcσ

β
ca

(
fa

EabEac
+

fb
EbaEbc

+
fc

EcaEcb

)
, a 6= b 6= c 6= a

where fab = fa − fb. We now show that in the case of
insulators (where Πsurf can be ignored at low temper-
atures), only cross-gap energy differences appear in the
Fermi sea terms. Thus the degeneracies of filled bands
will not lead to diverging integrands. First it is obvi-
ous that Πsea,1 only involves cross-gap energy differences
Eab, because of the factor fab. To see that Πsea,2 also
has such a property we separately consider the situations
of (1) fa = fb = fc, (2) fa = fb = 1, fc = 0, plus per-
mutations of a, b, c, and (3) fa = fb = 0, fc = 1, plus
permutations of a, b, c. For (1) it is trivial to observe
that 1

EabEac
+ 1

EbaEbc
+ 1

EcaEcb
= 0. For (2) the terms in

the parentheses become − 1
EacEbc

, which will not diverge
since c is unoccupied while a and b are occupied, and
other permutations of a, b, c give similar results. For (3)
only the last term 1

EacEbc
in the parentheses is nonzero,

and it will never diverge since a, b are unoccupied while c
is occupied, and other permutations give similar results.

It is also interesting to make the connections between
χos and the orbital magnetization more explicit. For sim-

plicity we consider the insulating case at T = 0 so that
only the Fermi sea terms in Eq. (11) are relevant. By
repeatedly using the following identities

〈∂kγuak|ubk〉 =
~vγab
Eab

, a 6= b (13)

〈∂∆β
uak|ubk〉 = −

σβab
Eab

, a 6= b

∂kγHk = ~vγ , ∂∆β
Hk = −σβ ,

∂kγEa = ~vγaa, ∂∆β
Ea = −σβaa,

where ∆ is a fictitious exchange field coupled to σ
through Hex = −∆ · σ, we arrive at

Παβ
sea,1 = −εαγδ

~2

∑
k,a∈occu

∂∆β
[〈∂kγuak|∂kδuak〉Ea], (14)

Παβ
sea,2 = −εαγδ

~2

∑
k,a∈occu

∂∆β
[〈∂kγuak|Hk|∂kδuak〉].

Therefore

χαβos =
gµB

2
∂∆β

− ie
2~
εαγδ

∑
k,a∈occu

〈∂kγuak|Hk + Ea|∂kδuak〉

 =
∂Mα

orb

∂Bβs
, (15)

where Bs = 2∆/gµB is an effective Zeeman field that
only couples to spin degrees of freedom. Namely, the
orbital-spin susceptibility can be obtained directly from
taking derivative of the orbital magnetization formula

with respect to a uniform exchange field.

Before ending this section, we comment on the self-
consistent-field corrections to the orbital-spin suscepti-
bility within SDFT, when calculating the response to
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a real Zeeman field. Note the orbital-spin susceptibil-
ity used in, e.g. Eq. (7) is not the response to actual
Zeeman fields, but to order parameter re-orientation, for
which we do not need to include such corrections. Tak-
ing into account the orbital response to both the Zeeman
field and the associated change in the exchange field ∆
defined above, we have

δMorb =←→χ os ·
(

HZeeman +
2

gµB
δ∆

)
, (16)

δ∆ = − ∆

Ms

←→χ s ·
(

HZeeman +
2

gµB
δ∆

)
,

where we have assumed that only the direction of the
exchange field is significantly modified by the external
Zeeman field. The many-body orbital-spin susceptibility
within SDFT is therefore

←→χ SDFT
os = (17)

←→χ os ·

[
1− 2∆

gµBMs

(
1 +

2∆

gµBMs

←→χ s

)−1

· ←→χ s

]
.

V. MODEL CALCULATIONS FOR AHE AFMS

We now give an example of the procedure proposed
above using a toy model that mimics the magnetic struc-
ture of Mn3Ir. We consider a 1/4-depleted fcc lattice
(Fig. 2), with an s-orbital on each site, nearest-neighbor
hopping, and sublattice-dependent exchange fields whose
directions replicate the triangular antiferromagnetic or-
der of Mn3Ir. We add spin-orbit coupling Hso, being
careful to respect the C2 symmetry axis η̂ along bond-
dependent lines (see Fig. 2) that pass through the center
of each nearest neighbor bond:

Hso =
∑

〈im,jn〉αβ

itso(d̂im,jn × η̂mn) · σαβ c†imαcjnβ .(18)

Here ij label unit cells, mn label sublattices, αβ la-

bel spin components, d̂im,jn is a unit vector pointing
from site im to site jn, and σ is the vector formed
by three Pauli matrices. As discussed above the spin-
orbit coupling vector η̂mn is chosen to be parallel to
rcmn − (rm + rn)/2, where rcnm is the mean of all neigh-
bors of the bond mn. The band structure of this model is
illustrated in Fig. 2 (b). This s-d model allows us to cal-
culate Morb and ←→χ i

os, but not the full Eani that should
come from a microscopic Hamiltonian of the d electrons.
We thus supplement the model with a phenomenological
site-dependent uniaxial anisotropy of the exchange fields4

consistent with the crystal symmetry:

Eani = −
∑
im

K

2
(Ω̂im · n̂m)2, (19)

where Ω̂im is the direction of the local exchange field on
each site, and n̂m are the directions of the local easy axes
on the three sublattices. n̂1,2,3 = x̂, ŷ, ẑ. We follow the

(a) (b)

Γ        X       M           Γ       R            X       M

1
2

3

FIG. 2. (a) Structure of a s-d model resembling Mn3Ir with
its bands shown in (b). The smaller arrows in (a) represent
the C2 axes η̂mn in Eq. (18).

prescription given at the end of Sec. III: We calculate
Eani, Morb, δEani

δω , and ←→χ i
os for different configurations

of the exchange field directions Ω̂im obtained by rotating
them while fixing their relative orientations.

Consider the starting ground state configuration with
Morb along the (111) direction, and site-dependent ex-
change fields with 120◦ relative orientations in a perpen-
dicular plane. The eight equivalent (111) directions have
identical energy minima in the absence of a magnetic
field. We apply a field H along the (11̄1), with the ex-
pectation that with increasing H the system will even-
tually switch to a configuration with a parallel Morb.
Based on symmetry considerations we focus on the path
in SO(3) defined by rotation around the (1̄01) direc-
tion with angle θ. If the order parameter were that
of an ordinary ferromagnet, Eani would, in the absence
of a magnetic field, have four equivalent minima along
this path at θ = 0, arccos(−1/3) ≈ 109.47◦, 180◦ and
arccos(−1/3) + 180◦ corresponding to four of the eight
(111) directions. However, plotting our Eani vs. θ in
Fig. 3 (b) shows only two energy minima located at the
first two rotation angles. The other two orientations dif-
fer in the chirality of the three exchange fields and do
not have the same energy. Among the two remaining
minima, θ = arccos(−1/3) rotates the (111) plane nor-
mal to the (1̄11̄) direction. However, Morb is surprisingly
rotated oppositely to the (11̄1) direction. (Similar behav-
iors exist in Mn3Sn and Mn3Ge36). Thus the magnetic
switching induced by a field along (11̄1) corresponds to
reaching the minimum at θ = arccos(−1/3) through the
saddle point initially at θ ≈ 55◦.

Fig. 3 (c) shows the energies of these three extrema
as a function of H. As H increases, the energy of the
final θ = arccos(−1/3) state moves below that of the
initial minimum, and the latter eventually disappears
after merging with the saddle point. At this time the
magnetization configuration will switch to the final state
θ = arccos(−1/3).

Switching between time-reversed states for non-
collinear AHE AFMs is more complicated since it may
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(111)

(1-11)

(-11-1)

(-1-1-1)

(a)

(b)

(c)

FIG. 3. (a) Rigid counterclockwise rotation of the non-
collinear order parameter with respect to the (1̄01) direc-
tion. The unrotated structure has orbital magnetization along
(111). (b) Anisotropy energy vs. rotation angle. (c) Total
energy at three lowest extrema along the rotation path vs.
strength of an external magnetic field along (11̄1).

not be able to be achieved through a single rotation
around a fixed axis. We have already shown for the
model above that such a switching cannot be achieved
through a single π rotation with respect to the (1̄01)
axis. Actually it can be realized through a single π
rotation only when the rotation axis is parallel to the
ground state total magnetization. This switching path
has higher barriers, however, because it causes the local
moments to deviate more significantly from their local
easy axes. A more probable switching process consists of
three segments which rotate Morb from (111) to (1̄1̄1̄) by
going through two other equivalent (111) directions, e.g.,
(111) → (11̄1) → (11̄1̄) → (1̄1̄1̄). In general one needs
to consider the 3 degrees of freedom of SO(3), at least
locally, in order to determine the smooth switching path
connecting two time-reversed states. We emphasize that
this nontrivial switching path can also be manifested in
a static manner, through e.g. the structure of domain
walls separating time-reversed states in AHE AFMs.

Moreover, in the presence of a magnetic field the ideal-
ized rotation path discussed above will smoothly deform
and for sufficiently strong fields will switch directly. Fig-
ure 4 shows an example of field-induced deformation of
the switching path, which plots the modulus of δEδω along
the same path as in Fig. 3, but with the magnetic field
along (1̄1̄1̄) direction. One can see that at finite H the
minimum originally at (11̄1) shifts to larger θ. Such de-
formation is also relevant to the structure and dynamics
of magnetic domain walls driven by magnetic fields in
AHE AFMs.
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FIG. 4. Modulus of the function δE/δω vs. the rotation angle
at zero and finite magnetic fields along (1̄1̄1̄).

VI. DISCUSSION

We have been ignoring spin contributions to the cou-
pling with H. Taking the spin canting into account leads
to two additional effects in our theory: (1) The canting-
induced spin magnetization is nonzero and can depend
in a nontrivial way on the global orientation of the mag-
netic configuration. (2) In certain cases the magnetic
anisotropy energy depends critically on the spin canting.
Here we focus on the first effect since the 2nd has been
discussed at the end of Sec. III.

Both the external magnetic field and spin-orbit cou-
pling effects can lead to spin canting by competing with
the exchange coupling between localized spins. When the
former is much smaller than the latter, which is usually
the case for canted antiferromagnets, the canting-induced
spin magnetization in coherent order parameter switch-
ing is determined by minimizing the total energy while
keeping the direction of the total magnetization fixed. In
this case the argument of orbital magnetization domi-
nating over the spin magnetization in the limit of small
spin-orbit coupling still applies. Even if the Zeeman en-
ergy is not much smaller than the anisotropy energy, for
coherent rotation to occur it only has to be comparable
to the anisotropy energy, meaning the canting induced by
the Zeeman field is also as small as that due to anisotropy.
Therefore we can ignore the canting-induced spin magne-
tization throughout the switching process if the orbital
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magnetization is dominant in the ground state. More
generally, spin coupling to magnetic fields can be in-
cluded in our formalism in a similar way as the orbital
coupling, but through the spin-spin susceptibility that
can also be obtained microscopically.

Our SDFT formalism for discussing field-induced
switching is formally equivalent to the LLG equation in
the slow dynamics limit, which becomes a torque balance
equation. A major difference between our approach and
the conventional LLG-based method is how the effective
fields or torques are evaluated. To use the LLG equation,
a usual practice is to consider a classical Heisenberg-like
model, with the Heisenberg and anisotropic exchange
couplings, anisotropies, and coupling to external fields,
narrowed down using symmetry and fitted to experimen-
tal data. Our method does not rely on the assumption
of a Heisenberg-like classical spin model, and provides
the quantities appearing in the balance equation from
microscopic calculations. To certain extent the role of

orbital magnetization in coherent switching discussed in
this work can be represented by an effective g-tensor of
each local moment in the classical spin model. The g-
tensors are not only anisotropic but also have nontrivial
dependence on the direction of local moments. Such an
effect is not usually considered in phenomenological spin
models.
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