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We exhaustively construct instanton solutions and elucidate their properties in one-dimensional
anti-ferromagnetic chiral magnets based on the O(3) nonlinear sigma model description of spin
chains with the Dzyaloshinskii-Moriya (DM) interaction. By introducing an easy-axis potential and
a staggered magnetic field, we obtain a phase diagram consisting of ground-state phases with two
points (or one point) in the easy-axis dominant cases, a helical modulation at a fixed latitude of
the sphere, and a tri-critical point allowing helical modulations at an arbitrary latitude. We find
that instantons (or skyrmions in two-dimensional Euclidean space) appear as composite solitons in
di↵erent fashions in these phases: temporal domain walls or wall-antiwall pairs (bions) in the easy-
axis dominant cases, dislocations (or phase slips called meron) with fractional instanton numbers in
the helical state, and isolated instantons and calorons living on the top of the helical modulation at
the tri-critical point. We also show that the models with DM interaction and an easy-plane potential
can be mapped into those without them, providing a useful tool to investigate the model with the
DM interaction.

I. INTRODUCTION

Topological excitations (topological solitons and in-
stantons) play key roles in various systems from parti-
cle physics1–3 and cosmology4 to condensed matter sys-
tems5,6. Amongst various examples, magnets allow mag-
netic skyrmions and domain walls in spin systems7–10,
and in particular, chiral magnets with the Dzyaloshinskii-
Moriya (DM) interaction11,12 is a representative where
topological excitations play a pivotal role for applications
to nano-devices such as magnetic memories. Recent the-
oretical and experimental developments have confirmed
that there exists the so-called chiral soliton lattice phase
— aligning helical domain walls —in one-dimensional fer-
romagnetic spin chains13–15. More recently, a skyrmion
lattice in two-dimensional (2D) chiral ferromagnets and
associated peculiar transport phenomena have been ex-
perimentally observed16–19 (See e. g.20–23 for related the-
oretical works). Furthermore, magnetic monopoles have
been recently paid much attention. They appear for
unwinding a skyrmion line in a skyrmion lattice24 and
form a stable crystal in certain parameter region25. Anti-
ferromagnetic chiral magnets have been also studied both
in experimental and theoretical sides26–30.

One of recent interesting theoretical developments
might be the finding of a critical coupling at which the
strength of DM interaction and Zeeman magnetic field
or magnetic anisotropy are balanced31–34, analogous to
superconductors at the critical coupling between types
I and II. In this case, it allows so-called Bogomol’yi-
Prasad-Sommerfield (BPS) topological solitons35,36, i. e.
the most stable configurations with a fixed boundary
condition (or a topological sector), which were originally
found for magnetic monopoles and other topological soli-

tons in high energy physics and now are realized in su-
perconductors at the critical coupling.

Despite of such experimental and theoretical develop-
ments, instantons37,38 (see Refs.1–3) – classical solutions
of Euclidian field theory and one of the most crucial the-
oretical concepts to understand physical properties of
quantum systems –have never been studied thus far in
chiral magnets. They represent nonperturbative quan-
tum e↵ects coming from nontrivial saddle point solutions
of the Euclidian path integral. With the help of instan-
tons, we can understand several key results of physical
systems such as a ground-state property of non-abelian
gauge theory39–43 and nonlinear sigma models.

In this paper, we work out instantons in chiral mag-
nets. After presenting a phase diagram, we exhaus-
tively provide instanton solutions in one-dimensional
anti-ferromagnetic spin chains with the DM interac-
tion: temporal domain walls, domain wall-antidomain
wall pair (called bions), vortices or dislocations as
fractional instantons (called merons), and BPS instan-
tons and calorons at the critical coupling, correspond-
ing to the so-called Kaplan-Shekhtman-Aharony-Entin-
Wohlman (KSAE) limit44,45. The constructed instanton
solutions can also describe various skyrmion configura-
tions in two (spatial) dimensional chiral ferromagnets and
anti-ferromagnets with an anisotropic DM interaction in
one direction.

The organization of the paper is as follows: In Sec. II,
we introduce the model and clarify the classical ground
state phase diagram. In Sec. III, we construct various
instanton solutions away from the tri-critical point. In
Sec. IV, we discuss a simple BPS instanton and peri-
odic instanton (caloron) solutions at the tri-critical point.
In Sec. V, we show an equivalence theorem between the
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Fig. 1. Phase diagram of the O(3) nonlinear sigma model
with the DM interaction at the classical level.

OPM G/H ⇡0 ⇡1 ⇡2 ⇡3

(I) S1 0 Z 0 0
(a) Z2 Z2 0 0 0

Tri-critical pt. O(3)/O(2) ' S2 0 0 Z Z
(II) (III) (b)(c) 1pt 0 0 0 0

TABLE I. The OPMs and associated homotopy groups.

models with and without the DM interaction within our
model. Sec. VI is devoted to the summary and discus-
sion. In Appendices A and B, we present a derivation of
our field-theoretical model from a lattice spin model, and
the spatial-domain wall solution, respectively.

II. MODEL AND GROUND STATE

Magnetic spin texture in quantum spin-chain is de-
scribed in the continuum limit by a unit Néel vector
na (a = 1, 2, 3) with

P
a
nana = 1. The energy func-

tional for one-dimensional spin-chain involving the DM
interaction with the strength  in addition to the kinetic
term, easy-axis potential and staggered magnetic field is
given at low-energy as a form of the O(3) or CP 1 sigma
model:

E[n] =

Z
dx


(@xna)2

2
+ (n1@xn

2 � n2@xn
1)

+ µ
1� (n3)2

2
+Bn3

�
. (1)

For µ > 0, the potential favors for na to point to the
north (n3 = 1) or the south (n3 = �1) pole (easy-axis).
For µ < 0, it favors the equator (n3 = 0) (easy-plane). In
sharp contrast to the real magnetic field, which resutls in
the quadratic potential term in the e↵ective Lagrangian
(See e. g. Ref.46), the term Bn3 linearly coupled to the
Néel vector na is a staggered magnetic field, but, for sim-
plicity, we will call B as a magnetic field.

Since the DM interaction can be regarded as a back-
ground gauge field34, the energy can be rewritten by
defining a covariant derivative Dxna ⌘ @xna � ✏3abnb

as

E[n] =

Z
dx


(Dxna)2

2
+ (µ� 2)

1� (n3)2

2
+Bn3

�
. (2)

Since the first nonnegative term must vanish for a ground
state, we obtain47

Dxn
a = 0 (a = 1, 2, 3), (3)

which has the helical-state solution given by

n1 + in2 = Ae�ix, n3 = ±
p

1� |A|2 (4)

with A 2 C satisfying |A|  1. This is the spatially mod-
ulated state, where na rotates at a constant latitude of
the S2 target space with the wave number  along the
spatial direction x. The actual minimum of E[n] depends
on the value of the easy-axis potential µ and the magnetic
field B. By examining the minimum of the potential as a
function of n3, we find three critical lines emanating from
the tri-critical point at µ = 2, B = 0 as illustrated in
Fig. 1: the line (a) alongB = 0, µ > 2, the line (b) along
2�µ = B > 0, and the line (c) along 2�µ = �B > 0.
The ground state of the chiral magnet is helical states in
the region (I) the south pole in the region (II) and the
north pole in the region (III), respectively (See Fig. 1).
At the tri-critical point B = 0, µ = 2, all the heli-
cal states with |A|  1 become the ground states with
the same energy. It is interesting to observe that the
DM interaction tends to favor easy-plane configuration,
so that helical ground states can be ground states even
in the presence of the easy-axis potential with µ > 0.
In experiment, typical values of order  ⇡ 0.03(Å)�1,
µ ⇡ (0.01)(Å)�2 with vanishing B are realized in (2d)
material such as Ba2CuGe2O7

27,30. Note that these val-
ues corresponding to almost tri-critical point ones.
The order of phase transition for the critical lines are

as follows: The first-order phase transition occurs on the
line (a), since the global minimum of the energy jumps
from one local minimum to the other across (a). The
second-order phase transition occurs on the lines (b) and
(c), where the second derivative of the ground state en-
ergy density with respect to B is discontinuous. It is
also notable that the tri-critical point, which is a switch-
ing point of the first- and second-order transitions, has a
larger symmetry as we will discuss in detail later.
The topology of the order parameter manifold (OPM)

G/H is summarized in Table I: S2 at the tri-critical point,
two discrete points (the north and south poles) along the
line (a), S1 in the region (I), a point (north pole) in the
region (II) including the line (b), and a point (south pole)
in the region (III) including the line (c). The homotopy
class ⇡n(G/H) of OPM determines allowed types of in-
stanton solutions. For instance, ⇡1(S1) = Z in the region
(I) and ⇡0(Z2) = Z2 on the line (a) supports vortex and
domain wall solutions, both hosting instantons
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In order to explore instanton solutions for the anti-
ferromagnetic material48, we introduce the imaginary
time ⌧ and consider the following Euclidean 2D La-
grangian (i = 0, 1) (See Appeneix A for a derivation from
a lattice spin system):

L =
1

2
(@in

a)2 + (n1@xn
2 � n2@xn

1)

+
µ

2
[1� (n3)2] +Bn3.

(5)

Note that this Euclidean 2D model should also be useful
to describe the energy density of a 2+1D magnetic ma-
terial (both ferromagnetic and anti-ferromagnetic) which
has an anisotropic uniaxial DM interaction only in one
spatial direction x rather than two spatial directions. It is
also convenient to use the stereographic projection of the
target space na 2 S2 to a complex plane v 2 C through

v =
n1 + in2

1 + n3
, n3 =

1� |v|2

1 + |v|2 . (6)

The O(3) sigma model with the DM interaction becomes

L =
2{|@iv|2 + iv

$
@ xv̄ + µ|v|2}

(1 + |v|2)2 +B
1� |v|2

1 + |v|2 (7)

with v
$
@ xv̄ = v@xv̄�v̄@xv. The instanton number density

⇢Q is defined by

⇢Q =
1

4⇡
✏abcn

a@xn
b@⌧n

c =
1

⇡

@zv@z̄ v̄ � @z̄v@z v̄

(1 + |v|2)2 , (8)

where we used the complex coordinates z = x + i⌧, z̄ =
x� i⌧ . The integration of this quantity in the Euclidean
2D space yields the instanton number characterizing the
second homotopy group ⇡2. Below, we show that in-
stanton solutions exist in all the phases, sometimes as
composite objects even when the OPM does not have a
nontrivial ⇡2.

III. VARIOUS INSTANTON SOLUTIONS

In this section, based on the e↵ective Lagrangian (5)
and identified the classical phase diagram given in Fig. 1,
we work out possible instanton solutions; a temporal do-
main wall, bion, and meron. The discussion on the BPS
instanton at the tri-critical point will be given in the next
section.

A. Temporal domain wall on the line (a)

In this case the OPM consists of two points, sug-
gesting that there exists a domain wall solution con-
necting these two discrete ground states. Let us con-
struct a domain wall solution in the temporal direction,
regarded as an instanton, for the boundary condition

n3(⌧ = ±1, x) = ±1. For that purpose, we make a
Bogomol’nyi completion35,36 of the action as

Z
d2xL =

Z
dx


2|(@x + i)v|2 + 2|(@⌧ +

p
µ� 2)v|2

(1 + |v|2)2

� @⌧

p
µ� 2

1 + |v|2

�
. (9)

Since terms in the first line are positive semi-definite, the
surface term provides the lower bound of the energy:

Z
d2xL � �2

p
µ� 2

Z
dx


1

1 + |v|2

�⌧=1

⌧=�1
. (10)

The equality holds when the BPS equations

(@x + i)v = 0, @⌧v +
p
µ� 2 v = 0 (11)

are satisfied. This equation gives the following domain
wall solution with a complex integration constant C

v = Ce�ix�
p

µ�2⌧ , C 2 C, (12)

which has unit instanton number and action �2
p

µ� 2

per length �x = 2⇡/. This is the lowest energy configu-
ration satisfying the boundary condition. It is interesting
to note that as shown in Fig. 2 (a), helical states show
up only in the vicinity of the wall even though it is hid-
den in the ground states (n3 = ±1). Note that we can
also construct a spatial domain wall solutions with Q = 0
(See Appendix B).

B. Bions in the phases (II) and (III)

If the magnetic field is turned on (B 6= 0) in the region
(II) or (III), we find that the linear term in n3 allows non-
BPS wall-antiwall solutions, so-called bion solutions49,50.
To construct the bion solution, let us first put the ansatz

v = f(⌧)e�ix, (13)

with a real function f(⌧), and derive a functional form of
f(⌧). Substituting this ansatz, we rewrite the equation
of motion as

f 00(⌧)� 2f

1 + f2
f 0(⌧)2+(2�µ)

1� f2

1 + f2
f +Bf = 0. (14)

Since the system enjoys invariance under the Euclidean
time shift ⌧ ! ⌧ + a, the Euclidean energy

E = 2
f 0(⌧)2 + (2 � µ)f2

(1 + f2)2
�B

1� f2

1 + f2
, (15)

gives a conserved quantity, and hence it is independent
of the Euclidean time ⌧ . From this conservation law, we
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Fig. 2. (a) A temporal domain wall configuration of n inter-
polating two degenerate ground states, as an instanton solu-
tion. (b) Domain wall-antidomain wall pair (bion).

can obtain implicit forms of the solutions of the equation
of motion as
Z

df


(1 + f2)2

2

✓
E �B

1� f2

1 + f2

◆
� (2 � µ)f2

�� 1
2

= ⌧.

(16)
Let us then consider configurations which approach the
minimum of the potential in the limit ⌧ ! ±1. At
the minimum of the potential, the value of the conserved
quantity is E = ±B for B > 0 (region (II)) and B < 0
(region (III)), respectively. Substituting these values into
Eq. (16), we find a solution

f(⌧) =

 p
|B|
!

sinh!⌧

!sign(B)

, (17)

where we introduced ! =
p
µ� 2 + |B|. The general

single bion solution can be obtained by introducing po-
sition moduli parameters ⌧0 and x0 with the help of the
translational symmetry, which results in

v = e�i(x�x0)

"p
|B|
!

sinh!(⌧ � ⌧0)

#sign(B)

. (18)

These solutions play a vital role in nonperturbative ef-
fects and resurgence theory49–56 recently being exten-
sively considered in field theory57.

C. Merons in helical state (I)

In this case, the OPM is S1 at latitudep
(2 � µ+B)/(2 � µ�B). Therefore, we expect

to find a vortex characterized by a non-trivial winding
number around S1. It carries a fractional instanton
number58 as is known for skyrmions with easy-plane
potential21,59,60, and is sometimes called a meron. A
single-winding configuration takes the form

v = e�ix z

|z|h(|z|), (19)

where z = x + i⌧, z̄ = x � i⌧ are the complex coordi-
nates, and h(|z|) is a profile function satisfying the field
equation

0 = h00(|z|) + 1

|z|h
0(|z|)� 2h(|z|)

1 + h(|z|)2h
0(|z|)2

+


B +

1� h(|z|)2

1 + h(|z|)2

✓
2 � µ� k2

r2

◆�
h(|z|), (20)

and the boundary conditions h(0) = 0 and h(1) =p
(2 � µ+B)/(2 � µ�B). Numerically solving the

field equation we find a meron solution in Fig. 3. Fig. 3
(a) and (b) show the configuration of a meron, which
also exhibits a dislocation of the phase (or a phase slip)
as shown in Fig. 3 (c).

IV. INSTANTONS AT THE TRI-CRITICAL
POINT

In this section, after showing the general BPS instan-
tion solution at the tricritical point, we describe its de-
tailed properties living on a plane R2 (zero-temperature),
and a cylinder R ⇥ S1 (finite-temperature/ring-shaped
sample).

A. BPS bound and general solution

The richest array of instantons is obtained at the tri-
critical point µ = 2, B = 0, where the Euclidean 2D
action is bounded by the instanton number Q =

R
d2x ⇢Q

as
Z

d2xLcr � ±(4⇡Q+

Z
d2x@⌧n

3). (21)

The bound is saturated if and only if the BPS equation

@⌧na ⌥ ✏abcn
bDxn

c = 0 or @z̄v = �iv/2 (22)

is satisfied. Let us consider solutions with a nonnegative
instanton number Q (by taking the upper sign of the
bound). Hence all the BPS solutions are obtained as

v(x, ⌧) = e�ixw(z), (23)
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Fig. 3. (a) Profile of h(|z|). (b) Meron (µ = 3,  = 2, B = �1/2). (c) Meron as a dislocation or phase slip. Solid lines indicate
the contours with arg v = �⇡/2 (or Im (e�ixz/|z|) = �1) and arrows denote (n1, n2).

with an arbitrary holomorphic function w(z).
The BPS equation has the general l-instanton/caloron

BPS solutions given by a rational function of degree l

vinst = e�ix p(z)

q(z)
, vcal = e�ix p(e

i 2⇡z
L )

q(ei
2⇡z
L )

(24)

where p(z), q(z) are mutually coprime polynomials of de-
gree m, n with l = max(m,n).

A typical configuration of the single (l = 1) BPS in-
stanton is shown in Fig. 4(a). The caloron solutions
are periodic instantons in the periodicity interval x ⇠
x + L. A single (l = 1) BPS caloron61–63 for the case of
L/(2⇡) 2 Z is shown in Fig. 4(b).

B. The most general one instanton solution (Q = 1)
on the plane R2

The most general BPS solution with the unit instanton
charge Q = 1 is given by a rational function of degree
l = 1 : p(z), q(z) as polynomials of at most degree unity
without a common root. We can choose the following
parametrization as a convenient standard form for the
most general solution which has three complex moduli
parameters z1, z2,↵ 2 C, with z1 6= z2

v1inst = e�ix↵
z � z1
z � z2

. (25)

The Néel vector points to the north pole n3 = +1 at the
zero z = z1 of v(z, z̄), and to the south pole n3 = �1 at
the pole z = z2 of v(z, z̄).

One can define the contour of the Néel vector rotating
in the equatorial plane n3 = 0 around either z = z1
or z = z2 as the size of the instanton, since the energy
density is approximately localized in the region enclosed
by the contour. We find that the size and phase moduli
around z = z1 are given by (z1 � z2)/↵ if ↵ � 1, and
that the size and phase moduli around z = z2 are given
by ↵(z2 � z1) if ↵ ⌧ 1. In that sense, we can call ↵

as a dimensionless moduli parameter to determine the
size and the phase (the rotation angle in n1, n2 plane)
of the instanton, whereas the length parameter of the
instanton is given by |z1 � z2|. We note that the DM
interaction parameter  provides the period 2⇡/ of the
helical structure, which is visible in regions away from
the north (n3 = +1) and south (n3 = �1) poles of the

Fig. 4. Configurations of n for (a) single BPS instanton
solution: p(z)/q(z) = (z � z0)/(z + z0), and (b) single BPS

caloron solution (L = 2⇡): p(ei
2⇡z
L )/q(ei

2⇡z
L ) = ei

2⇡(z�z0)
L �1

within two periods (�L  x < L).
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Néel vector.
Fig. 5 shows the configuration of na of the Q = 1

solution (25) with a di↵erent parameter set controlling
the size modulus. One should note that the spacetime
volume of the figures in Fig. 5 is chosen to be �2⇡/ 
x, ⌧ < 2⇡/. Therefore the visible region of the helical
modulation is the largest in the case of (iii) |z1�z2|/↵ =
32, and the smallest in the case of (i) |z1 � z2|/↵ = 1.

In contrast, we have depicted the other extreme situa-
tion of Q = 1 BPS instanton solution with ↵ = 1 in Fig. 4
(a), where both the north pole n3 = +1 at z = z0 and
the south pole n3 = �1 at z = �z0 are equally visible,
and the energy density is spread equally around both of
these points. This solution satisfies the boundary condi-
tion n3 = 0 at infinity z = 1. This also illustrates the
fact that di↵erent boundary conditions generically select
BPS solutions with di↵erent values of moduli parameters.

For BPS solutions with higher values of the instanton
chargeQ = l, we find 2l+1 complex moduli parameters as
coe�cients of polynomials p(z) and q(z). They constitute
generalizations of positions of the north pole (n3 = +1)
and the south pole (n3 = �1) and the size and phase
moduli of a Q = 1 BPS instanton solution.

C. Instanton and caloron solutions on a cylinder
R⇥ S1

Another interesting family of instanton solution is ob-
tained when we consider the system living on the com-
pactified base space (x, ⌧) along one direction, or a cylin-
der R ⇥ S1. One can think of this compactification as
putting the system in a finite temperature situation for
the (imaginary) time-direction, or making a ring-shaped
sample of the spin chain for the spatial direction. In this
setup, one need to impose a boundary condition along the
compactified direction. While the most popular choice is
the periodic boundary condition, there is another theo-
retically interesting one; the twisted boundary condition,
which allows a system to have a fractional (half) instat-
nton number. Here we will demonstrate the half instan-
ton solution and caloron (periodic instanton) solutions
associated with the compactification.

Half instanton and caloron with time-

compactification: Let us demonstrate BPS instanton
solutions with the compacification along the ⌧ direction.
We here impose a general boundary condition with any
twisting angle 0  � < 2⇡ as

v(x, ⌧ + T ) = ei�v(x, ⌧), (26)

which can be translated into the boundary condition on
the holomorphic function w(z) with the same twisting
angle w(z + iT ) = ei�w(z). One can regard the twisted
boundary condition (26) as introducing the imaginary
chemical potential. Note that the case with � = 0 corre-
sponds to a usual periodic (thermal) boundary condition,
and � = ⇡ to an anti-periodic boundary condition, which
will be discussed below.

Let us first consider the anti-periodic boundary condi-
tion with � = ⇡, which allows us to have a half instanton
solution61–63. For this boundary condition, the holomor-
phic function w(z) needs to satisfy w(z + iT ) = �w(z),
and one can easily obtain simple solutions such as w =
e±⇡(z�z0)/T . Thus, we find a BPS solution for the an-
tiperiodic boundary condition

v(x, ⌧) = e�ixe±
⇡
T (z�z0), (27)

where a single complex moduli z0 2 C has a physical
meaning of the position and phase of the BPS solution.
One should note that the holomorphy dictates that the
boundary condition along the ⌧ direction implies the ex-
ponential behavior along the x direction. Depending
on the sign in the exponent, upper (lower) sign corre-
sponds to the solution satisfying the boundary condition
n3 = +1(�1) at x = �1 and n3 = �1(+1) at x = �1
at spatial infinity. Thus the solution is a spatial domain
wall, but a di↵erence with the usual domain wall is that
phase winds half along the domain wall world line in the
⌧ direction. It is interesting to note that the compact-
ification together with the boundary condition along ⌧
direction automatically dictates possible boundary con-
ditions at spatial infinity.
Since the solution winds along the ⌧ direction only by

half rotation because of antiperiodic boundary condition,
it has the half unit of instanton charge Q (with the sign).
Namely, the Néel vector na covers only half of the sphere
S2 in this solution. The more general BPS solution with
the antiperiodic boundary condition contains solutions
with half odd integer Q. Fig. 6 shows the configuration
of na of the half-instanton BPS solution in Eq. (27).
If we introduce a deformation potential proportional

to the Bn3 term, we can obtain an exact non-BPS bion
solution composed of these half instanton Q = 1/2 and
half anti-instantonQ = �1/2. The solution is of a similar
form as the bion solution in (18), and has been found
to play a vital role to understand the resurgence in the
CP 1 quantum mechanics and quantum field theory in
two dimensions49–57.
Furthermore, we can also construct a caloron solution

with the twisted boundary condition (26). For instance,
we can obtain a single Caloron solution centered at z0
with the size moduli a and twisting angle � as

v =
T

2⇡a
e�ix

�
e

2⇡
T (z�z0) � 1

�
e

(z�z0)�
T . (28)

When we impose the anti-periodic boundary condition
by choosing � = ⇡, the caloron sotution (28) shows an
interesting dependence on the compactification size T .
Fig. 8 shows configurations of na with di↵erent size of the
compactified direction61–63. We see that one-insanton-
like configuration in the large T case changes their shape
to split into the periodic configuration by taking smaller
values of the compactified size.

Caloron solution with spatial compactification: If
we choose the x direction to be compactified in contrast
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Fig. 5. Simple BPS one instanton solution (25) with di↵erent parameters with a fixed spacetime volume and z1 = 0.

Fig. 6. Half instanton solution (27) with the antiperiodic
boundary condition (26) with � = ⇡.

to the ⌧ direction, we encounter a complication when the
compactification period L is not an integer multiple of
2⇡/ (the intrinsic period of the helical state). We see
that the mismatch between the DM interaction period
2⇡/ and the compactification size L results in the in-
duced twisting angle for the holomorphic function w(z).
To focus on this point, let us consider the periodic bound-
ary condition for v(x + L, ⌧) = v(x, ⌧), which implies
that the physical Néel vector na is periodic. Since the
BPS solution is given by v = e�ixw(z), the holomorphic
function w(z) has to satisfy a twisted boundary condi-
tion w(z + L) = eiLw(z). We then obtain generic BPS
caloron solutions as

v(x, ⌧) = e�ixei
L
2⇡

2⇡z
L

p(e
2⇡iz
L )

q(e
2⇡iz
L )

. (29)

Depending on the boundary condition at a spatial infin-
ity, we have two types of solutions similarly to the half-
instanton solutions in Eq. (27). For instance, defining
[X] as the largest integer less or equal to X, we obtain
the simplest caloron with l = 1 with the position z0 and
size a moduli for the instanton as

v+(x, ⌧) =
L

2⇡ia
e�ixei(

L
2⇡ �[L

2⇡ ]) 2⇡z
L
�
e

2⇡i
L (z�z0) � 1

�
,

(30)

which satisfies the boundary condition n3 = �1 at ⌧ !
�1 and n3 = +1 at ⌧ ! 1, and also

v�(x, ⌧) =
L

2⇡ia
e�ixei(

L
2⇡ �[L

2⇡ ]�1) 2⇡z
L
�
e

2⇡i
L (z�z0) � 1

�
,

(31)
which satisfies the boundary condition n3 = +1 at
⌧ ! �1 and n3 = �1 at ⌧ ! 1. We note that
the instanton charge Q per unit periodicity is an inte-
ger for the caloron with the periodic boundary condition
v(x + L, ⌧) = v(x, ⌧), whereas (BPS bound for) the ac-
tion per unit periodicity is not an integer multiple of 4⇡,
as can be seen from Eq. (21). As will be discussed in
the next section, we can define a new variable n̂a whose
instanton charge multiplied by 4⇡ gives the BPS bound.

V. EQUIVALENCE THEOREM

Let us now show that there exists a one-to-one map-
ping between the above model (5) and the usual O(3)
sigma model. For that purpose, inspired by the helical
ground states (4), we define new variables64 n̂a as

n1 + in2 = (n̂1 + in̂2)e�ix, n3 = n̂3. (32)

In terms of the new variables, the O(3) sigma model with
the DM interaction can be rewritten into that without
the DM interaction LwoDM(n̂) = L(n) :

LwoDM(n̂) =
1

2
(@µn̂

a)2 +
µ� 2

2
[1� (n̂3)2] +Bn̂3. (33)

Note that the strength of the easy-axis potential is re-
duced from the original one. It is also interesting to see
that the BPS bound for the energy is identical to 4⇡
times instanton charge Q̂ in terms of the Néel vector n̂
of the O(3) sigma model without the DM interaction in
Eq. (21):

4⇡Q+

Z
d2x@⌧n

3 = 4⇡Q̂. (34)

From this equivalence theorem, we find that all in-
stanton solutions in the O(3) sigma model with the DM
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Fig. 7. Caloron solution (28) under the anti-periodic boundary condition (� = ⇡).

Fig. 8. Caloron solutions (31) under the periodic boundary condition along x direction.

interaction has one-to-one correspondence with those of
the O(3) sigma model without the DM interaction. This
indicates that the original model (5) possesses a kind
of hidden symmetry (known as modified symmetry65,66),
which enables us to compactly summarize our finding on
the ground states and instanton solutions (See Table I).
Nevertheless, it should be emphasized that the physical
variable na must be used to find the real magnetic texture
of chiral magnets.

VI. SUMMARY AND DISCUSSION

We have clarified possible instanton solutions for the
one-dimensional anti-ferromagnetic spin chain in the
presence of the DM interaction. Depending on the
phases, we have exhausted all possible instanton solu-
tions including temporal domain walls with the instan-
ton number density distributed in the temporal direction,
vortices (dislocations or phase slips) as merons and BPS
instantons and caloron at the critical coupling. We have
also shown that the model with the DM interaction is
equivalent to the model without the DM interaction.

Our results have implications both for theoretical and
experimental researches. The instanton solutions in chi-
ral magnets, which were not discussed before, give a novel

theoretical insight into the anti-ferromagnetic spin chains
and our methodology to obtain them based on the equiva-
lence theorem can be applied broadly in the related stud-
ies. The phase diagram in Fig. 1 with the variety of in-
stantons can help us to understand physics which would
be observed in future experiments on chiral magnets with
controllable DM interaction67–70 or easy-axis potential.

There are several interesting avenues related to this
work. While we have considered one-dimensional chiral
magnets in this paper, we can generalize our approach to
higher-dimensional systems31–34. In particular, the 2D
model allows a topologically conserved skyrmion current
and Hopf terms, thus involves rich theoretical structures.
Although we have only focused on the ground state at the
classical field level and instanton solutions interpolating
them, it is also interesting to consider generic quantum
aspects of the systems; e. g. a generalization of the Hal-
dane conjecture71,72 in chiral anti-ferromagnetic chains,
and deconfined quantum criticality in 2 + 1-dimensional
systems73–75. The possible ’t Hooft anomaly — field the-
oretical manifestation of the Lieb-Schultz-Mattis theo-
rem76,77 — together with semi-classics analyses includ-
ing resurgence theory in the sigma models49–56 will shed
light on the detailed quantum aspects of chiral magnets.
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Appendix A: Derivation of e↵ective Lagrangian
given in Eq. (5)

In order to discuss various instanton solutions, we rely
on the continuum field-theoretical description of the anti-
ferromagnetic spin chain, which leads to the Euclidean

2D Lagrangian for the O(3) nonlinear sigma model given
in Eq. (5). Starting from the lattice spin system with
the DM interaction, we here give a derivation of the ef-
fective Lagrangian (See e. g. Refs.78–80 in the absence of
symmetry breaking terms).
The Hamiltonian for a 1-dimensional anti-

ferromagnetic chiral magnet reads

H =
X

i

h
Jsi·si+1�D·(si⇥si+1)+(si)

tCsi+(�1)ib·si
i
,

(A1)
where J(> 0) denotes anti-ferromagnetic coupling, and
D the DM interaction, C a possible anisotropic po-
tential called the single-ion anisotropy, and b the stag-
gered magnetic field. Considering that a possible anti-
ferromagnetic Néel order leads to hsii = (�1)isn, we
parametrize the lattice spin variable with the lattice spac-
ing a as78–80

si = s


(�1)ini

q
1� a2`2

i
+ a`i

�
⌘ sNi. (A2)

Note that ni(t)·ni(t) = 1 and ni(t)·`i(t) = 0 are satisfied
to respect the normalization condition s2

i
= s2 with the

magnitude of the spin s. Substituting this to the Hamil-
tonian (A1), we perform an expansion with respect to
the lattice spacing a to obtain the continuum descrip-
tion. The leading-order expansion results in

H(n) =
X

x

hJs2a2

2

�
@xn(x)

�2
+ Js2a2`2(x)� s2aD ·

�
n(x)⇥ @xn(x)

�
+ s2nt(x)Cn(x) + sb · n(x)

i
+ · · ·

'
Z

dx
hJs2a

2

�
@xn(x)

�2
+ Js2a`2(x)� s2D ·

�
n(x)⇥ @xn(x)

�
+ a�1s2nt(x)Cn(x) + a�1sb · n(x)

i (A3)

where, in the second line, we neglect higher-order terms
(ellipsis in the first line) in powers of the lattice spacing
a. Taking account of the Berry phase term ![Ni], the
path-integral formula for the partition function Z(�) ⌘
Tre��H results in

Z(�) = N
Z

DniD`i exp

 
�
X

i

is![Ni]�
Z

�

0
d⌧H(n)

!
,

(A4)

with a normalization constant N . Substituting the above
parametrization to the Berry phase term, we obtain

s
X

i

![Ni]

= s
X

i

h
![(�1)ini] + a

Z
�

0
d⌧`i(t) ·

�![n]

�n(t)

����
n=(�1)ini

i

= s
X

i

(�1)i![ni] +

Z
�

0
d⌧dx`(x) ·

�
@⌧n(x)⇥ n(x)

�

where we have used ![�n] = �![n] with the peri-
odic boundary condition and the variational formula
�![n]/�n(⌧) = @⌧n ⇥ n to obtain the second line. As-
suming that the total number of sites is even, we can
further simplify the first term in this equation as

2NX

i=1

(�1)i![ni] =
X

i=1

Z
�

0
d⌧

�![n]

�n(⌧)

����
n=n2i

· �n2i(⌧)

=
1

2

Z
�

0
d⌧dx(@⌧n⇥ n) · @xn = 2⇡Q[n],

where we have defined the instanton number as

Q[n] ⌘
Z

�

0
d⌧dx⇢Q(n) with ⇢Q(n) =

1

4⇡
✏abcn

a@xn
b@⌧n

c.

(A5)
Performing the Gaussian integral for `, we obtain the
path-integral formula for the partition function as



10

Z(�) = N 0
Z

Dn exp

"
2⇡isQ[n]�

Z
�

0
d⌧dx

✓
1

2
(@in)

2 +  · (n⇥ @xn) +
1

2
ntMn+B · n

◆#
. (A6)

with n2 = 1, and we have rescaled the space and time so
that the coe�cient of the kinetic term is unity. We also
have renamed the coe�cients (coe�cient matrix M and
vector  and B) for the symmetry breaking terms. Since
the first term given by the instanton number is a total
derivative, it does not a↵ect the classical equation of mo-
tion. We also note that Q[n] takes only integer values
for a sphere as the base manifold (spanned by (⌧, x)), al-
though it causes a remarkable nonperturbative quantum

e↵ect depending on the value of the spin s as was conjec-
tured by Haldane: the integer spin case shows a gapped
symmetry-protected topological phase with the so-called
Haldane gap while the half-integer spin case shows a gap-
less conformal behavior. Let us first take  = (0, 0,)
as the most generic case if there are no potential terms
(M = B = 0). For the potential terms, we choose a spe-
cial configuration for the coe�cients M = (µ, µ, 0), and
B = (0, 0, B) as is often realized in experimental setups.
Then we obtain

Z(�) = N 0
Z

Dna exp

"
2⇡isQ[na]�

Z
�

0
d⌧dx

✓
1

2
(@in

a)2 + (n1@xn
2 � n2@xn

1) +
µ

2

⇥
1� (n3)2

⇤
+Bn3

◆#
. (A7)

As the action to obtain the classical equation of motion,
we take only the second term, which gives the e↵ective
Lagrangian in Eq. (5) in the main text.

Appendix B: Spatial domain wall on the line (a)

In a similar manner with a domain wall instanton in
the main text, we can construct a spatial domain wall so-
lution on the line (a). We impose a boundary condition
n3(⌧, x = ±1) = ±1 at the left and right spatial infini-
ties. For a ⌧ -independent configuration, we can make a
Bogomol’nyi completion35,36 of the energy to find

Z
dxL = 2

Z
dx


|(@x + ⌘)v|2

(1 + |v|2)2 + @x

p
µ� 2

1 + |v|2

�
(B1)

with ⌘ =
p
µ� 2 + i. Since the first term is positive

semi-definite, the surface term again provides the lower
bound of the energy:

Z
dxL � 2

p
µ� 2


1

1 + |v|2

�x=1

x=�1
. (B2)

The equality holds when the BPS equation

(@x + i)v +
p

µ� 2 v = 0 (B3)

is satisfied. This equation gives the following domain wall
solution with a complex integration constant C

v = Ce�ix�
p

µ�2x, C 2 C, (B4)

which is the lowest energy configuration satisfying the
boundary condition. This spatial domain wall solution
exhibits the helical modulation as illustrated in Fig. 9,
although it does not carry an instanton number (Q =
0) in contrast to the temporal domain wall solution in
Eq. (12) in the main text.

Fig. 9. Two spaitial domain wall configurations of n inter-
polating two degenerate ground states.
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