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We report a numerical observation where the infinite-temperature out-of-time-order correlators
(OTOCs) directly probe quantum phase transitions at zero temperature, in contrast to common
intuition where low energy quantum effects are washed away by strong thermal fluctuations at
high temperature. By comparing numerical simulations with exact analytic results, we determine
that this phenomenon has a topological origin and is highly generic, as long as the underlying
system can be mapped to a 1D Majorana chain. Using the Majorana basis, we show that the
infinite-temperature OTOCs probe zero-temperature quantum phases via detecting the presence of
Majorana zero modes at the ends of the chain that is associated with 1D Z2 topological order.
Hence, we show that strong zero modes also affect OTOCs and scrambling dynamics. Our results
demonstrate an intriguing interplay between information scrambling and topological order, which
leads to a new phenomenon in the scrambling of generic non-integrable models: topological order
induced pre-scrambling, paralleling the notion of prethermalization of two-time correlators, that
defines a time-scale for the restricted scrambling of topologically-protected quantum information.

I. INTRODUCTION

Out-of-time-order correlators (OTOCs) have become a
widely-appreciated tool to measure the correlation build-
up in space and time, and hence quantitatively charac-
terize information scrambling in interacting many-body
systems 1–5. Started off as a theoretical tool to under-
stand quantum information in a black hole6,7 its impact
quickly expanded to a wide variety of subjects including
but not limited to: quantum chaos8–12, many-body lo-
calization3,10,13–15, quantum integrability9,12,16,17, quan-
tum criticality18 and recently symmetry-breaking quan-
tum phase transitions19,20.

At temperature T = 1/β, an OTOC is defined as,

F (t) = Tr
(
e−βHW †(t)V †W (t)V

)
, (1)

where W and V are local quantum operators and H is
the Hamiltonian. At infinite temperature (T = ∞ and
β = 0), the Boltzmann weight e−βH becomes an identity
operator and thus the OTOC reads

F (t) =
1

M

M∑
n=1

〈
ψn|W †(t)V †W (t)V |ψn

〉
,

≈
〈
ψh|W †(t)V †W (t)V |ψh

〉
, (2)

Here we sum over a complete basis of the Hilbert space
of dimension M , while in the second line, we use a ran-
dom state |ψh〉 drawn from the Haar measure15,21 to ap-
proximate an infinite-temperature state in a correlation
function, e.g. Eq. 122–26.

The OTOC of a generic system is expected to decay
to zero fast where the rate of decay carries information
on the chaotic properties of the system; and saturate
at zero in long time dynamics. Saturation at zero indi-
cates that the system scrambles information completely,
whereas a finite saturation value points to a restricted

FIG. 1. The schematic of dynamic phase boundaries de-
termined by OTOC time-average F̄ with respect to control
parameter h and temperature T . The system experiences a
topological phase transition (TPT) defined at T = 0 temper-
ature from Z2 topologically ordered phase to a trivial phase.
The graphics with red-grids and solid-blue show how the topo-
logical phase survives in dynamics and at higher tempera-
tures for integrable and generic non-integrable models, re-
spectively. While integrable models recover zero-temperature
phase boundary at infinite temperature, non-integrable mod-
els experience a shift that tends to destroy order quicker than
at low temperature.

scrambling27. In this manuscript, we focus on the regime
starting shortly after the (initial) decay of OTOC and
lasts for a time interval of T . It has been recently found
that the OTOC saturation value at zero-temperature ex-
hibits order parameter-like behavior, and thus can di-
rectly probe the long-range quantum order and quan-
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tum phase transitions20. In contrast to the naive intu-
ition, where thermal fluctuations wash away low energy
quantum effects at high temperature, in this work we ob-
serve an emergent relation between infinite-temperature
information scrambling and zero-temperature Z2 topo-
logical order in the bulk in multiple model systems,
e.g. non-interacting, interacting and/or non-integrable.
The effect is robust where the qualitative features re-
main invariant regardless of microscopic details, e.g. in-
tegrability and symmetries. In particular, by setting
W and V as local degrees of freedoms localized near
the edge of the system, we find that the time-average
of OTOC F̄ = 1/T

∫
dtF (t) (or equivalently the sat-

uration value, if the OTOC saturates) behaves like an
order parameter (Fig. 1). It is worthwhile to empha-
size that the infinite temperature OTOCs are effective
tools for detecting chaos that is based on the entire en-
ergy spectrum8–12,15. Hence it is surprising and highly
not obvious that this correlator can also directly probe
zero temperature physics of the ground state, such as
quantum phase transitions. Then what is the underlying
physics that allows the infinite temperature out-of-time-
order correlator at the edge to accurately sense the bulk
ground state physics and capture the bulk phase transi-
tion? Is this a generic feature?

Through a careful analysis, we find that this connec-
tion arises universally as long as the quantum system can
be mapped to a Majorana chain (1D superconductor)28,
and F̄ value of edge operators serves as the Z2 topological
order parameter. It is known that Z2 topological order
results in a two-fold degeneracy for all energy eigenstates
of the entire spectrum; and recently it is pointed out that
this degeneracy structure of Z2 topological order has a
highly nontrivial impact on dynamics at any tempera-
ture, e.g. long coherence times for edge spins in Ref.29

while the zero modes surviving in the dynamics is dubbed
as strong zero modes, and pre-thermalization effect in
Ref.30. Our results extend this impact of Z2 topologi-
cal order to information scrambling and OTOCs, opens
up new avenues to dynamically detect and study topo-
logical order through utilizing information scrambling as
an order parameter. Paralleling the well-known prether-
malization effect appearing in simpler correlators30–32,
we find that a new time-scale appears in information
scrambling when Z2 topological order33 exists. We name
this phenomenon topologically induced pre-scrambling
and hence define the time-scale as pre-scrambling time.
Fig. 2 shows a cartoon picture of pre-scrambling for a
generic (non-integrable) model with solid-red line where
the system experiences restricted scrambling, F̄ 6= 0,
forming a plateau at τpresc for a period of time T af-
ter the first OTOC decay and preceding the full scram-
bling at τsc in a topological phase. On the other hand,
the purple-dotted line in Fig. 2 shows the expected rapid
OTOC decay until scrambling time τsc for a generic sys-
tem with no topological order. Pre-scrambling (green)
plateau in Fig. 2 survives at infinite-time in thermody-
namic limit for systems with extensive number of symme-

FIG. 2. The schematic of infinite-temperature OTOC evolv-
ing in time t for a quantum system with (solid-red line) and
without (dotted-purple line) Z2 topological order. A generic
system with Z2 topological order would exhibit topologically
induced pre-scrambling F̄ 6= 0 before fully scrambles at scram-
bling time τsc. We coin τpresc for the pre-scrambling time-
scale. Our study focuses on this pre-scrambling plateau (green
panel), where the OTOC time-average exhibits order param-
eter like behavior (Fig. 1).

tries, e.g. non-interacting and/or integrable limits, with
no full scrambling occurring. Such systems might demon-
strate F̄ 6= 0 in their trivial phases10,15,34, nevertheless it
is still possible to mark down the topological phase tran-
sition due to sharp transition signatures. We compare the
infinite-temperature dynamic phase boundary with zero-
temperature quantum phase boundary where topological
order starts to develop in Fig. 1 and observe that they
perfectly coincide with each other in integrable systems.
Away from the integrability, the dynamical phase bound-
ary significantly shifts away from the zero-temperature
phase boundary, although the qualitative trend of F̄ sur-
vives.

The dynamical detection of topological order has been
under intensive investigation29,30,35–37. Furthermore, the
topological insulators and superconductors have been
studied38–42 and classified43 according to their non-
equilibrium dynamics rather in an analogy to the clas-
sification tables for topological states of matter44 su-
perposed with the notion of dynamical quantum phase
transitions45–47. Thus, understanding if the information
scrambling has fundamental restrictions when topologi-
cal order exists is a puzzle left at the intersection of many
sub-fields.

In Sec. II, we are going to detail our numerical obser-
vation around its corresponding Majorana chain and dis-
cuss about the connection between infinite temperature
scrambling and T = 0 topological order with quantita-
tive arguments. Later in Sec. III, we are going to show
how the topological order is encoded in the saturation
regime of OTOCs based on the analytical calculations in
the non-interacting regime. In Sec. IV, we extend the dis-
cussion to interacting and/or non-integrable models and
demonstrate topologically induced pre-scrambling. Later
we show how topological order persists in two separate



3

contributions to the coherence times of the edge spins.
This will help us to explore if and how strong zero modes
affect the scrambling dynamics of OTOC different than
the dynamics of two-time correlators. Finally we discuss
the effect of pre-scrambling on dynamic phase diagrams.
We conclude in Sec. V and elaborate on possible ques-
tions to answer in the future.

II. DEMONSTRATION OF TOPOLOGICAL
ORIGIN

It turns out that the connection between infinite-
temperature information scrambling and quantum
phases at zero temperature has a robust topological ori-
gin. Let us demonstrate how the topological origin re-
veals itself in the dynamics of OTOCs with an example
on 1D XXZ chain,

H = J
∑
i

(
σxi σ

x
i+1 + σyi σ

y
i+1 +

Jz
J
σzi σ

z
i+1

)
. (3)

At T = 0, the model exhibits quantum phase transitions
between a gapped Ising phase |Jz| > 1 and a critical XY-
phase |Jz| < 1 where the spectrum is gapless48. We em-
ploy Haar-distributed random states |ψh〉 and compute
F̄ shown in Fig. 3.

If spin operators at the edge of the chain W = V =
σzedge are utilized (blue-circles), the infinite-temperature
OTOC saturation value behaves like an order parameter
of the zero-temperature quantum phase transition, i.e.,
F̄ ∼ 0 in the XY phase (|Jz/J | < 1) and increases mono-
tonically as we enter the Ising phases (|Jz/J | > 1). In
contrast, under periodic boundary conditions (yellow di-
amonds line) and for a bulk spin W = V = σzbulk (green
left-pointing triangles), the OTOC no longer differenti-
ates the two phases, and the transition point is smoothed
out consistent with predictions from Ref.20.

To demonstrate the role of topological order, we
rewrite the Hamiltonian of the XXZ model in the Ma-
jorana basis. First, via the Jordan-Wigner (JW) trans-
formation49

σzi = −
∏
j<i

(
1− 2c†jcj

)(
ci + c†i

)
, (4)

σxi = 1− 2c†i ci,

σyi = −i
∏
j<i

(
1− 2c†jcj

)(
ci − c†i

)
.

the spin Hamiltonian is mapped to

H = J
∑
i

[(
1− 2c†i ci

)(
1− 2c†i+1ci+1

)
−
(
ci + c†i

)
×
(
ci+1 − c†i+1

)
+
Jz
J

(
ci − c†i

)(
ci+1 + c†i+1

)]
, (5)

which can be written in terms of the Majorana fermions

FIG. 3. Long-time average of OTOC for XXZ model for
edge-spin operators W = V = σzedge in blue circles and its
(later explained) diagonal contribution in orange squares; for
bulk-spin operators σzbulk with periodic boundary chain (pbc)
in yellow diamonds and its diagonal contribution in purple
hexagons; with open boundary chain (obc) in green left-
pointing arrows and the diagonal contribution in light-blue
right-pointing arrows. System size is N = 14 and the time of
averaging is tJ = 800.

a2j−1 = cj + c†j and a2j = −i
(
cj − c†j

)
28:

H = −J
∑
i

(a2i−1a2ia2i+1a2i+2 + ia2i−1a2i+2)

+ iJz
∑
i

a2ia2i+1. (6)

In the Majorana basis, the spin system is mapped to an
interacting Majorana chain. The XY (Ising) phase is
mapped to a gapless (topological) phase, and the quan-
tum phase transition becomes a topological transition.
Same as the Kitaev chain, the topological phase in Eq. (6)
develops Z2 topological order and is characterized by two
Majorana zero-modes localized at the two ends of the
chain28.

The physics can be understood by considering the
Jz � J limit, where Eq. (6) converges to the Kitaev
model28 with two zero-energy Majorana modes γ1 = a1
and γ2 = a2N fully decoupled from the rest of the chain.
Away from the Jz � J limit, quartic terms in the Hamil-
tonian introduce interactions, but the zero-energy Majo-
rana modes at the two ends of the chain remain topolog-
ically protected for the entire topological (Ising) phase.
The existence of two Majorana modes at the two ends of
the chain (γ1 and γ2) indicates that a zero-energy non-

local fermion d = γ1+iγ2√
2

can be defined. Because of its

zero-energy nature, for an eigenstate of the Hamiltonian
|ψ0〉, another degenerate state |ψ1〉 = d |ψ0〉 must exist
with an opposite fermion parity. Therefore, in the topo-
logical phase, the edge modes are responsible of the de-
generate subspaces forming not only in the ground state,
but throughout the entire spectrum28,48. In other words,
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in contrast to an conventional (Landau-type) quantum
phase transition, where across the phase boundary the
ground state changes from non-degenerate (the disor-
dered phase) to degenerate (the ordered phase), Z2 topo-
logical order has a direct impact for the degeneracy of all
eigenstates in the entire energy spectrum, i.e. two-fold
degeneracy for the entire spectrum. The effect has a di-
rect impact on measurements and dynamical quantities
at any temperature29,30 and it is in sharp contrast to a
conventional phase transition that can only be detected
by zooming to the ground state at low-temperature. This
is the key reason why the infinite-temperature OTOC is
capable of detecting a zero-temperature topological or-
der, but not a regular Landau-type quantum order (un-
less it can be mapped into a topological order).

III. TOPOLOGICAL EDGE PHYSICS
ENCODED IN THE OUT-OF-TIME-ORDER

CORRELATORS

In this section, we study the non-interacting limit to
provide analytical arguments in the demonstration of
how infinite-temperature information scrambling of edge
spins encodes the existence or absence of Majorana zero
modes. Later we will mark the topological phase transi-
tion point via F̄ in this non-interacting limit.

A. Transverse-field Ising Model

We consider a non-interacting, hence analytically solv-
able model and directly compute the contributions of
Majorana zero-modes in the infinite-temperature OTOCs
with edge operators. The Hamiltonian for the transverse-
field Ising model with open boundary conditions is,

H = −J
N−1∑
j=1

σzjσ
z
j+1 + h

N∑
j=1

σxj . (7)

Eq. 7 has a critical point at h = 1 that separates a fer-
romagnetic ordered phase from a disordered phase. The
time-average of OTOC F̄ with σz1 at β = 0 is shown
with the lines with blue-circles and orange-diamonds for
N = 14 and N = 50, respectively in Fig. 4a. The simu-
lation with N = 50 spins is performed with matrix prod-
uct states (MPS) in a t-DMRG (time-dependent density
matrix renormalization group) method, (see Appendix A
for details). Here the error bars stand for the extend of
oscillations in time, as we time-average the real part of
the OTOC signal in a time interval of tJ = π

4 10 ∼ 7.85.

For an edge spin operator σz1 , F̄ behaves like an order
parameter, which is F̄ ∼ −1 in the disordered phase
(h > J) and increase monotonically in the ordered phase
(h < J). On the contrary, for a bulk spin operator, σz7 ,
this feature disappears (green-triangles in Fig. 4a). This
observation reflects that the physics captured by edge-

and bulk-spin operators are different; a similar observa-
tion to what we presented for the XXZ model earlier.
To further show how the real-time OTOC dynamics look
like, we contrast time-evolving OTOC F (t) of edge and
bulk operators in Fig. 4b. The OTOCs of the edge spin
converge to different values at large times, depending on
the value of h/J , while the OTOCs of bulk spins always
converge to 0 at large t, as long as h 6= 0. The h = 0
limit is trivial for information scrambling, because the
spin chain turns into the classical Ising model without
quantum fluctuations or non-trivial dynamics, and thus
information cannot scramble, F (t) = 1.

The results above can be easily understood by using
the Majorana basis, which transforms the spin Hamilto-
nian into a non-interacting Majorana chain

H = −iJ
N−1∑
j=1

a2ja2j+1 − ih
N∑
j=1

a2j−1a2j , (8)

where we used Eqs. (4). In contrast to the XXZ model
discussed above, Eq. (8) only contains quadratic terms,
hence non-interacting, and thus can be easily diagonal-
ized, which enables us to compute infinite-temperature
OTOC saturation values F̄ exactly. This exact solution
agrees perfectly with numerical simulations in Fig. 4a.
More interestingly, as will be shown below, the analytical
result exhibits that F∞ is solely contributed by Majorana
zero modes, while the contributions from all other finite
energy excitations fade away at large t.

B. Exact solution

We compute the OTOC of an edge spin using the
Majorana basis in this section. In the Majorana ba-
sis, the OTOC of Majorana fermions can be defined
as F2i−1,2i−1(t) = Tr (a2i−1(t)a2i−1a2i−1(t)a2i−1) /2N ,

where we set W = V = a2i−1 = ci + c†i . Since it
can be easily showed that the OTOC of edge Majorana
fermions must be identical to the OTOC of edge spins,

σz1 =
(
c1 + c†1

)
= γ1 and σzN = P

(
cN − c†N

)
= iPγ2,

where P =
∏N
j

(
1− 2c†jcj

)
is the parity operator, here

we focus on F11 with W = V = a1.
The Majorana-fermion OTOC F2i−1,2i−1(t) can be

conveniently computed by utilizing the Bogoliubov-de
Gennes (BdG) basis, as detailed in Appendix B. With
fermion operators defined for a space of double spec-
trum, we write the BdG Hamiltonian and calculate
F2i−1,2i−1(t) at site i,

F 2i−1,2i−1(t) =[
2N∑
α

(
|ψα,i|2 + ψα,iψ

∗
α,i+N

)
cos (Eαt)

]2
(9)

+

[
2N∑
α

(
|ψα,i+N |2 + ψα,i+Nψ

∗
α,i

)
cos (Eαt)

]2
− 1.
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FIG. 4. Transverse-field Ising model at infinite-temperature. (a) The OTOC time-average of the edge spin operators σz1 via
real-time OTOC dynamics (blue circles) at N = 14 and (orange diamonds) at N = 50 where we used MPS (see Appendix A)
for a time interval tJ = π

4
10 ∼ 7.85. The yellow-pentagrams show F11 based on Eq. (9) where the Majorana edge states are

extracted from HBdG matrix at N = 50 at infinite time limit for a comparison with other data. The green-triangles show the
OTOC time-average of the bulk spin operator σz7 at N = 14 for a time interval tJ = π

4
103 ∼ 800. (b) The OTOC dynamics F (t)

with respect to tJ . Blue-circle and orange-cross lines are the OTOC of edge σz1 operator for h = 0.1 and h = 0.9, respectively.
Red-diamond and purple-triangle lines are the OTOC of bulk σz25 operator for h = 0.1 and h = 0.9, respectively. All curves
are computed in t-DMRG for a system size of N = 50, averaged over 10 random product states to generate β = 0 results. The
error bars stand for 1σ variation of OTOC in this set of random states. (c) Robustness of order against changing the boundary
conditions: a strong field is applied to the first spin only for N = 13 and tJ ∼ 8 (blue circles); and to the edge fermions in the
non-interacting fermion chain for N = 50 and tJ →∞ (yellow squares). The edge modes shifted to the nearest site that is free
of pinning field, F̄ of σz2 spin (red-diamonds) and F̄33 of a3 Majorana fermion (purple asterisks), respectively.
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FIG. 5. (a) The second derivative of the OTOC time-average
d2F̄11(t → ∞)/dh2 pinpoints the phase transition point via
its maximum. (b) The system-size scaling of the phase tran-
sition point gives hdc ∼ N−0.7189 + 1.0069 with R2 = 0.9996,
meaning in the thermodynamic limit the OTOC pinpoints the
phase transition point as h∞dc = 1.0069.

where Eα and ψα are the eigenenergy and eigenstate of
the BdG Hamiltonian, while the sum goes over all en-
ergy eigenstates α = 1, . . . 2N . In the long-time limit,
only the non-oscillating terms (i.e., Eα = 0) contribute
to the saturation value of F2i−1,2i−1(t), i.e., only zero
modes need to be considered for t → ∞. For h < J
in the Ising ordered phase, the BdG Hamiltonian de-
scribes a topological superconductor with Majorana zero
modes at the two ends, and hence we only sum over the
two Majorana zero modes, e.g. α = mj. In the dis-
ordered phase (h > J), the BdG Hamiltonian describes
a topologically-trivial superconductor without any zero
modes. Thus in the absence of zero modes, Eα = 0,
F2i−1,2i−1(t) → −1, explaining F̄ approaching to −1 in

the Ising model results (Figs. 4). By calculating Eq. (9)
as t → ∞, we plot F11 = Fmj in Fig. 4a with orange-
pentagrams, which matches well with the Ising model
results. To conclude, the derived relation, e.g. Eq. (9)
rigorously proves that the saturation value of an OTOC
with Majorana fermions (W = V = a2i−1) is contributed
only by Majorana zero modes (Eα = 0), while the contri-
butions from any excited states (Eα 6= 0) vanish at long
times. Since the Ising model can be exactly mapped to
a 1D Majorana chain, the infinite-temperature OTOC of
the edge spins directly probes the presence or absence of
the Majorana zero modes. This is one of the key conclu-
sions in our manuscript.

Motivated by this observation, we pinpoint the phase
boundary of the topological phase transition in the fol-
lowing. Since the OTOC F11(t → ∞) has a continuous
transition from topologically non-trivial to trivial phase,
we focus on its second derivative d2F̄11(t→∞)/dh2 with
respect to external field h. The maximum of the second
derivative pinpoints the transition point, Fig. 5a. Then
the system-size scaling provides the transition point in
the thermodynamic limit as h∞dc = 1.0069 in a power-law
scaling hdc ∼ N−0.7189+1.0069 (Fig. 5b). For further de-
tails, see Appendix D. We note that the results obtained
in the non-interacting limit (Ising model) are valid at the
infinite time in the thermodynamic limit since topologi-
cally induced pre-scrambling plateau persists indefinitely
(Appendix D).
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C. Robustness against varying the boundary
conditions

Although the phenomenon discussed above relies on
utilizing edge degrees of freedom, all the key conclu-
sions are robust against any local perturbations and in-
dependent of boundary conditions. Because, the physics
is based on topological edge modes. To demonstrate
this robustness, we vary the boundary condition of the
transverse-field Ising chain by introducing a constant
magnetic field (along the x direction) for the edge spin
only, i.e. h1/J = h/J + 6 where h1 is the strength of the
transverse field for the first site, while the rest of the spins
have the same transverse field h. This strong field at the
edge site introduces a strong pinning to the first spin and
hence F̄ oscillates significantly, being featureless across
the phase boundary (blue-circles in Fig. 4c). However, if
we choose the spin operator at the second site instead, the
physics discussed above is recovered as shown in Fig. 4c
with orange-diamonds. This is because such a local field
cannot destroy the Majorana zero mode, which is topo-
logically protected by the nontrivial bulk. Instead, it can
only move the location of the zero modes, and thus, utiliz-
ing the second site, the conclusion remains the same. We
additionally show the results for non-interacting fermion
chain with an additive field affecting only the fermion at
the edge. Yellow-squares in Fig. 4c show F̄mj (Eq. (9)),
the OTOC of edge Majorana mode γ1 at the infinite-time
limit, hence demonstrating no transition point. Purple-
asterisks, on the other hand, show F̄33, the OTOC of
Majorana mode a3 at site i = 2 at the infinite-time limit,
which is observed to match with F̄ of the Ising model,
implying an agreement between numerics and analytics.

IV. THE INTERPLAY BETWEEN
TOPOLOGICAL ORDER AND SCRAMBLING

The default expectation for generic systems in 1D is
scrambling over a time interval where the OTOC decays
fast or slow but saturates to a residue close to zero, both
depending on the set of symmetries existing in the sys-
tem and the size of the Hilbert space10,13,15,34,50. An
exception to this observation is the models that pos-
sess a symmetry-breaking phase transition with a long-
range ordered phase at zero temperature regardless of the
interactions20 or the non-integrability19. However, could
order in such generic systems be captured at higher tem-
peratures, preferably at infinite temperature? Now we
systematically study the detection of topological order
in generic systems at infinite temperature, and show that
the machinery for the detection of the topological order
with simpler correlators can also be used for OTOCs.
In fact, this encourages us to devise a method to show
if and how the dynamical imprint of topological order
on information scrambling could differ from the one on
thermalization dynamics.
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FIG. 6. Coherence times of pre-scrambling plateau at (a)-
(b) ∆ = −0.1, (a) deep in the topologically non-trivial phase
h/J = 0.3 and (b) at h/J = 0.7; (c) ∆ = −0.5 at h/J = 0.3
showing negative pre-scrambling plateau values. N = 60 is
computed via t-DMRG with 25 random initial states to have
the infinite-temperature OTOC. (d) Pre-scrambling plateau
deep in the topologically non-trivial phase of XXZ model with
Jz/J = 10 persists indefinitely.

A. Coherence times of pre-scrambling plateaus

Z2 topological degeneracy does not only slow down the
scrambling process, but also temporarily freezes the dy-
namics for generic non-integrable models, causing topo-
logically induced pre-scrambling. Hence we observe that
the topological order has a profound effect on the dynam-
ics of systems29,30, suggesting a new time-scale for infor-
mation scrambling in our case. In this section, we explore
the coherence times of the pre-scrambling plateaus to un-
derstand the associated timescales in the thermodynamic
limit.

Fig. 6a shows how the coherence times of the pre-
scrambling plateau in a near-integrability model (∆/J =
−0.1) exponentially increase until around N = 15 where
the increase halts, suggesting that the curves of the sys-
tems with larger sizes possibly collapse on each other.
Better examples can be seen in Figs. 6b-6c of h/J = 0.7 of
near-integrability model and deep in the non-trivial phase
of the model with stronger interactions ∆/J = −0.5,
respectively. Therefore, pre-scrambling plateau has a
finite lifetime in generic systems, including the vicin-
ity of non-interacting limit. When the model becomes
integrable, pre-scrambling plateau persists indefinitely,
meaning that a system in thermodynamic limit never
scrambles. Fig. 6d shows the exponential increase of full
scrambling decay times in the XXZ model, thus imply-
ing that the observed scrambling is a finite-size effect.
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Similar behavior can be found for different Jz/J param-
eter (Appendix E), as well as the non-interacting limit
(Appendix C).

A natural question is how a generic system could host a
pre-scrambling plateau for mostly long but finite amount
of time. Finite coherence times of edge-spin two-time cor-
relators in generic systems have been recently based on
spectrum characteristics29. Hence these findings should
be applicable to information scrambling. The notion of
easy spin flips are introduced by Ref.29 to demonstrate
that these spin flip processes destroy the perfect pair-
ing of energy eigenstates that are caused by zero modes.
Such perfect pairing, meaning exponentially close eigen-
states, happen in the integrable case and is dubbed as
strong zero modes. When integrability breaking interac-
tions are introduced, due to the poles appearing in the
perturbation theory, also called resonances, degeneracies
are no longer exponentially close, but polynomially in
system size. Hence there is not perfect pairing anymore,
and strong zero modes turn into almost-strong zero modes
as called by Ref.29. The processes of easy spin flips are
the reason behind such a change in the degeneracy struc-
ture. Due to the poles in the perturbation theory, certain
basis states with spin flips are equally energetically favor-
able with the Kramer partner. When the external trans-
verse field is on, these states mix and one ends up with
eigenstates that are comprised of not only a state and
its Kramer partner as expected in a doubly-degenerate
spectrum, but a state, its easy spin partners and the
Kramer partners of all. These now polynomially close
eigenstates, depending on the external field strength as
well as where the poles are, could cause bigger regions of
degeneracy compared to double degeneracy. However we
stress on the fact that these degeneracies are, so to speak,
weaker than the degeneracies when there are no integra-
bility breaking interactions, hence they indeed deserve
the name almost-strong zero modes. Again we emphasize
that these eigenstates are still Kramer partners of each
other, as would be expected from a system that obeys Z2

symmetry. Hence the Z2 topological imprint is not lost,
but instead reduced to a signature that could survive
only for finite times. Such a profound effect on dynam-
ics by zero modes is shown with two-time correlators by
Refs.29,30. Hence our results are an intuitive extension
of this effect to the dynamics of information scrambling
and OTOCs. In this regard, our results demonstrate that
the scrambling could be slowed down in non-integrable
systems, introducing a two-step timescale to scrambling
dynamics, with the name pre-scrambling, analogizes with
prethermalization as the name correctly implies. This
encourages us to question how much OTOCs are re-
ally different than their simpler cousins, e.g. two-time
correlators. An immediate observation shows us that
Figs. 6a and 6b of the near-integrability model behave
considerably different: the former has a positive-valued
plateau, paralleling with the behavior of two-time corre-
lators, whereas the latter has a negative-valued plateau.
To better understand such distinct behavior appearing

in OTOCs and further elaborate on related questions,
we introduce a method in the next section.

B. Dynamical decomposition method

In this section, we develop a framework that can pro-
vide us more insight about detecting topological order
in generic systems via OTOCs, as well as the saturation
regime of OTOCs in general. Since we can already de-
rive the OTOC saturation value analytically in the non-
interacting regime (Sec. III B), we need a framework that
works in non-integrable models; a limit that is in gen-
eral not analytically tractable. This framework is an ap-
plication of dynamical decomposition to OTOC20 and
we aim to calculate F̄ with a term that becomes the
dominant contribution in F̄ and a correction to it, as
we move away from the non-interacting limit. Dynam-
ical decomposition method is previously utilized to find
a leading-order term in F̄ (of arbitrary bulk spins) at
zero-temperature to probe zero-temperature symmetry-
breaking phase transitions20. Here we generalize the
idea to infinite temperature and put forward a conjecture
in analogy to the Eigenstate Thermalization Hypothesis
(ETH), as explained in the following. Our motivation for
putting forward this method is two-fold: (i) this approach
provides us an approximated solution of the saturation
regime for a generic system; (ii) it also offers us a com-
mon ground to compare the saturation regime of OTOCs
with the saturation regime of two-time correlators to fur-
ther understand if they differ in reflecting the dynamics
of zero modes. We note why the point (ii) is interest-
ing for our purposes: OTOCs at infinite-temperature are
well-known probes of quantum chaos2,4,8,10,12,15, whereas
two-time correlators seem to be featureless to reflect such
property of the system11,13. Even though intuitively re-
lated, thermalization and scrambling seem to be different
from each other, motivated by their different timescales,
Refs.8,11,51. Hence finding where OTOC points to addi-
tional information about the system, and where it can be
reduced to two-point correlators, could prove useful to
understand the relations between scrambling and ther-
malization. In the cases where such a reduction is pos-
sible, reminding of Wicks theorem but for OTOCs, the
hope is that one can use two-point correlators instead of
OTOCs to determine the scrambling in an experimen-
tal setting, because implementing an OTOC protocol is
unarguably harder than measuring a two-point correla-
tion function5,9,15,52–54. In the opposite situation where
OTOCs provide additional information, we could know
how scrambling dynamics differ from thermalization, at
least for the model under study.

By utilizing the energy eigenstates as a complete basis
of the Hilbert space, OTOC at infinite-temperature can
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be written as

F (t) =
1

M

∑
α,β,γ,δ

WαβVβγWγδVδαe
i(Eα−Eβ+Eγ−Eδ)t

(10)

where Wαβ and Vαβ are defined as Wαβ = 〈ψα|W |ψβ〉
and Vαβ = 〈ψα|V |ψβ〉 with |ψα〉 and |ψβ〉 being the en-
ergy eigenstates with associated energies Eα, . . ., Eδ. To
keep the notation simpler, we do not explicitly specify
the degeneracies in Eq. (10).

In the long time limit (t → ∞), only the static terms
with Eα−Eβ +Eγ−Eδ = 0 contribute to the saturation
value, while the rest of the terms dephase. Then the
saturation value, and equivalently the long time-average
F̄ , of OTOC20 reads,

F̄ =
1

M

 ∑
Eα=Eβ ,
Eγ=Eδ

+
∑

Eα=Eδ,
Eβ=Eγ

−
∑

Eα=Eβ=
Eγ=Eδ

+
∑

Eα 6=Eβ 6=
Eγ 6=Eδ


×WαβVβγWγδVδα, (11)

where
∑
Eα=Eβ , Eγ=Eδ

implies that we take the opera-

tor matrix elements that satisfy the corresponding en-
ergy condition Eα = Eβ , Eγ = Eδ. Since we look for
a dominant contribution to Eq. (11) as the interaction
strength increases, the most suitable dynamical decom-
position is through a conjecture where F̄ is dominated by
the diagonal contribution. This corresponds to the con-
tribution with the energy condition Eα = Eβ = Eγ = Eδ
on the spectrum. A way to see why we expect our con-
jecture to hold is via remembering ETH. ETH, up to
exceptions55,56, holds for non-integrable systems whereas
it fails for integrable systems42. One of the conditions
of ETH is that the off-diagonal elements are suppressed
compared to diagonal elements of the local observable
written in the eigenbasis of the Hamiltonian. Therefore,
based on the literature of ETH, we know that a local
operator should dominantly populate its diagonal entries
when the Hamiltonian is non-integrable. In parallel with
this argument, we numerically observe that our conjec-
ture is indeed valid when an ansatz on the matrix el-
ements of W and V is satisfied. This ansatz demands
that the off-diagonal elements of the operators (in the
eigenbasis) are suppressed with respect to the diagonal
elements when the spectrum is explicitly degenerate; and
can be formulated as |WEα 6=Eβ

|2 � |WEα=Eβ
|2 for both

W and V , as well as |VEα 6=Eβ
|2 � |WEα=Eβ

|2 and vice

versa. When the ansatz is satisfied, F̄ simplifies to the
diagonal contribution Fdiag,

Fdiag =
1

M

∑
Eα=Eβ=
Eγ=Eδ

WαβVβγWγδVδα. (12)

We note that the operator ansatz is the generalization of
ETH’s aforementioned criteria57–59 to a degenerate spec-
trum. However, since we do not need to assume that the

diagonal elements of the operator matrix are a smooth
function of energy WEα=Eβ

= g(Eα), the other criteria

of ETH57 does not need to be followed, hence our conjec-
ture does not require thermalization. This is reasonable,
given that for a quantum system to thermalize strictly (in
ETH sense) the saturation value should be predictable by
the microcanonical ensemble in a narrow energy window
on the spectrum57. There is not such a requirement for
the saturation value of OTOCs. In conclusion, we can
anticipate that our conjecture should be applicable for
a wider range of systems e.g. including integrable but
interacting systems.

If W and V are Majorana operators, i.e. a2i−1, the
only contribution to Fdiag comes from the degenerate en-
ergy levels which contain two eigenstates with opposite
fermion parity. Since the two-fold degeneracy arises in
the entire spectrum, a finite Fdiag is expected in the topo-
logically non-trivial phase. However in the topologically
trivial phase, although it could arise accidentally for some
energy levels, two-fold degeneracy is generically not ex-
pected implying F̄diag ∼ 0. Hence F̄diag directly probes
topological degeneracy in any system with Z2 symme-
try. Our conjecture can be rigorously proven for two-
time correlation functions, where the off-diagonal contri-
bution does not satisfy the corresponding energy condi-
tion Eα − Eβ = 0 and thus, must vanish in long time.
Hence, the saturation value for a two-time correlator,

C̄ = Tr (W (t)W ) =
1

M

∑
Eα=Eβ

WαβVβα, (13)

already consists of only diagonal contribution with no
need to introduce an operator ansatz, unlike OTOC. For
OTOC, if the operator ansatz does not hold and hence
the conjecture fails, other contributions to F̄ might ex-
ist (Eq. (11)), which we call off-diagonal contribution.
Such cases, e.g. non-interacting model, clearly make the
saturation regime of OTOC distinct than the saturation
regime of two-time correlators, because the off-diagonal
contribution becomes comparable to the diagonal contri-
bution, and even dominates F̄ . On the other hand when
the conjecture holds, and hence off-diagonal contribution
sums up to∼ 0, Fdiag becomes the approximated solution
to F̄ ; and since Fdiag (Eq. (12)) is related to C̄ (Eq. (13)),
F̄ might be predicted by C̄.

How Fdiag relates to C̄ can be seen better in the non-
interacting limit. At infinite temperature, C̄ could be
utilized to straightforwardly come up with an analytical
expression for Fdiag: We calculate matrix elements of the
edge operator W ,

Wαβ

∣∣
Eα=Eβ

= 〈ψα| f(h)γ1

(
γ1 + iγ2√

2

)
|ψα〉

=
2f(h)√

2
=
√

1− h2, (14)

in the topologically non-trivial phase; Wαβ

∣∣
Eα=Eβ

= 0

otherwise. Here f(h) is a smooth function of magnetic
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field h, that can be extracted numerically for finite size
systems, whereas by using C̄36 we can determine an an-
alytical expression f(h) =

√
2(1− h2)/2 in the thermo-

dynamic limit. Hence Fdiag = (1 − h2)2 can be written,
while C̄ = 1− h236. See Appendix C for details and the
numerical demonstration of this relation.

Now we calculate F̄diag for three different scenar-
ios: i) strongly interacting but integrable case (XXZ
model), ii) non-integrable models with different interact-
ing strengths and iii) non-interacting limit; and numeri-
cally determine the bounds of our conjecture.

1. Strongly interacting but integrable case

We revisit the Fig. 3 of the XXZ model in Sec. II.
Fdiag is shown for an edge-spin σz1 (obc) with red-squares;
whereas the Fdiag of bulk-spins σz1 (pbc) and σz7 (obc) op-
erators are with purple-dots and light-blue right-pointing
triangles, respectively. We observe that the diagonal con-
tribution could be used to approximate F̄ at the edge in
the Ising phases, confirming the conjecture. Even though
this model has interactions between Majorana fermions
Eq. (6), it is still an integrable system which might ex-
plain why F̄ does not completely reduce to its diagonal
contribution in the long-time limit. However, the qual-
itative behavior is the same. The diagonal (and hence
topological) contribution in the XY-phase becomes zero
which is consistent with a gapless phase. Hence the sole
contribution in the XY-phase is the corrections, which
shows a steady non-zero residue F̄ 6= 0. This residue
seems to be a consequence of the rotational symmetry of
the system, [H,Sz] = 0 and could be expected to van-
ish away in the thermodynamic limit (Appendix F). Since
the topological order is not visible to bulk degrees of free-
dom, we see Fdiag ∼ 0 for bulk operators.

2. From non-integrable cases to non-interacting limit

A generic Ising model could be introduced as,

H = −J
N−1∑
j=1

σzjσ
z
j+1 −∆

N−2∑
j=1

σzjσ
z
j+2 + h

N∑
j=1

σxj , (15)

= −iJ
N−1∑
j=1

a2ja2j+1 + ∆

N−2∑
j=1

a2ia2i+1a2i+2a2i+3

− ih
N∑
j=1

a2j−1a2j , (16)

where ∆ is the next-nearest neighbor coupling between
spins in Eq. 15 and breaks the integrability of the model.
The strength ∆ introduces interactions between Majo-
rana fermions in Eq. 16. We focus on three differ-
ent ∆ values in our numerical analysis from weak to
strong integrability-breaking terms (i) ∆/J = −0.1, (ii)
∆/J = −0.5 and (iii) ∆/J = −2.

0 0.5 1 1.5
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0.5

1

(a)

0 1 2
-1
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0
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1
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FIG. 7. Comparison of F̄ and its diagonal contribution F̄diag
at different non-integrability breaking term strength ∆/J . (a)
For a time interval of tJ = 8× 102 and size N = 14, F̄ (red-
triangles) and F̄diag (green-squares) of ∆/J = −0.5; and F̄
(black-circles) and F̄diag (yellow-diamonds) of ∆/J = −2.
Hence F̄ ∼ F̄diag holds for a generic non-integrable sys-
tem. (b) F̄ (yellow-triangles) and F̄diag (green-squares) of
∆/J = −0.1 for a time interval of tJ = 2 × 103 and size
N = 14; and F̄ (black-circles) and F̄diag (red-diamonds) of
non-interacting fermion model for a size of N = 200 at the
infinite-time limit. At the vicinity of the non-interacting limit,
off-diagonal contribution starts to be significant.

As we increase the interaction strength, F̄ ∼ F̄diag as
expected from the conjecture. Fig. 7a compares the dy-
namic phase diagrams of ∆/J = −0.5 and ∆/J = −2
where time of averaging is fixed to tJ = 800 for a sys-
tem size of N = 14. On the other hand, at the vicin-
ity of the non-interacting limit ∆/J = −0.1, F̄ differs
from its diagonal contribution F̄diag considerably (yellow-
triangles and green-circles Fig. 7b). Consistently, the
operator ansatz in the non-interacting limit fails, lead-
ing to F̄ 6= F̄diag. Black-circles and red-diamonds in
Fig. 7b show F̄ and F̄diag calculated at N = 200 in the
infinite-time limit, respectively. Note that the difference
is the off-diagonal contribution, which increases towards
the phase boundary h/J → 1 and clearly is not bounded.
The off-diagonal contribution is robust, e.g. it does not
vanish at infinite-time in thermodynamic limit (Fig. 7b).
The off-diagonal contribution also shows up in a generic
model at near-integrability limit (∆/J = −0.1), seen in
the observation that F̄ diverges from F̄diag (Sec. IV A
and App. D).

3. Outlook

In conclusion, deep in the interacting and/or non-
integrable limit, our conjecture holds and hence F̄ ∼
F̄diag ∝ C̄. In near-integrability, OTOC starts to exhibit
distinct behavior from two-time correlators and this be-
comes more apparent in the non-interacting model. We
revisit Figs. 6a and 6b where the former is a point deep
in the non-trivial phase with F̄ ∼ F̄diag (Fig. 7b) and
hence shows similar behavior to C̄ with a positive-valued
plateau. Whereas Fig. 6b demonstrating a closer point
to hc gives F̄diag ∼ 0, hence the OTOC time-average
is mainly contributed by the off-diagonal contribution
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FIG. 8. Coherence times of the edge spins based on OTOC
of (a) ∆/J = −0.5 and (b) ∆/J = −2 closer to the critical
point in their respective topological phases at h/J = 1 for
different system sizes. The size N = 40 in both sub-figures
is calculated via t-DMRG by averaging 10 different random
product states.

|F̄ | � F̄diag ∝ C̄, resulting in a negative-valued plateau.

C. Effect of scrambling on dynamic phase diagrams

The topological transition for ∆/J = −0.5 and ∆/J =
−2 occurs at h/J ∼ 1.7 and h/J ∼ 3.78, respectively
(Appendix E). On the other hand, Fig. 7a demonstrates
the dynamic transition boundaries early on, hdc/J < 1.
Even though one might argue for finite-size effects, such
a dramatic shift begs for additional reasons. The ob-
servation that pre-scrambling plateau has a finite life-
time in a non-integrable model also suggests that the dy-
namic phase diagrams would significantly depend on the
interval of the time-averaging (Appendix D for demon-
stration). Hence it is not clear even if a dynamical
phase transition boundary could be well-defined. Given
such technical problems, instead of finite-size scaling to
mark a transition point, we aim to bound the dynamic
phase boundaries in these models. Figs. 8 demonstrate
very limited pre-scrambling plateaus whose lifetimes are
around tJ ∼ 20 for ∆J = −0.5 and ∆/J = −2 at
h/J = 1. The curves of multiple system sizes collapse on
each other in a computation performed with both ED (ex-
act diagonalization) and DMRG (density-matrix renor-
malization group). Hence we can state that the dynamic
phase boundary over a relatively long period of time is
bounded to hdc/J < 1, indeed suggesting a significant
shift from the zero-temperature phase boundaries.

Such phase boundary shifts, although more mild than
demonstrated here, in dynamical phase diagrams with
corresponding symmetry-breaking transitions and that
are initiated with polarized states in near-integrable Ising
chain have been recently discussed54. These shifts seem
to be linked to exciting the system to higher energy lev-
els when quenched from a polarized state. Hence we can
anticipate that working at infinite-temperature possibly
maximizes the amount of shift from the zero-temperature
phase boundary. Therefore, we lower the temperature to
zero and compute F̄ and its diagonal contribution which
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FIG. 9. (a) OTOC time-average of edge spin for the non-
integrable Ising model with ∆/J = −2 at zero temperature
and N = 30 system size. Blue-circles and orange-diamonds
show F̄ real-time average over tJ = N = 30 and the ground-
state subspace contribution Fgs. (b) The system-size scaling
of the critical point determined by Fgs as h∞dc = 3.7 ± 0.05.
All computations in (a)-(b) are done either with t-DMRG or
DMRG.

is simply the ground state contribution F̄gs in Fig. 9a
at N = 30 and over a time interval of tJ = 30. The
correspondence between F̄ and F̄gs motivates us to ap-
ply system-size scaling on F̄gs. Fig. 9b demonstrates this
system-size scaling which determines the critical point as
h∞dc = 3.7± 0.05. Therefore the dynamical phase bound-
ary is very close to h∞c ∼ 3.78(2) that is determined by
two independent methods (Appendix E). Hence the dy-
namical phase diagram based on OTOC matches fairly
well with the topological phase transition boundary in
low temperature, suggesting that the shift observed in
Fig. 7a is indeed an effect from the excited state spec-
trum. This is perhaps not too surprising, given the dis-
cussion on easy spin flips in Sec. IV A. Since increas-
ing the transverse field strength h (linked to spin flip
operator) enhances the effect of easy spin flips on the
spectrum29, the dynamical signature of the topological
order is lost well before the field value reaches the criti-
cal transition boundary hc.

In conclusion, we demonstrate the effect of almost-
strong zero modes on a dynamic phase diagram based on
OTOC showing significant shift in the phase boundaries.
Whether it is possible to find a functional dependence
of the hdc on temperature is an interesting question that
can be studied systematically in future studies.

V. CONCLUSIONS AND DISCUSSIONS

We put forward a numerical observation on the XXZ
model, where we showed the infinite-temperature OTOC,
namely a correlator that probes the quantum chaos in
interacting many-body systems, is also susceptible to
ground-state phase transitions. The origin of this ob-
servation is demonstrated to be Majorana edge modes
existing in the system with a systematic study of differ-
ent models. This suggests the appearance of strong zero
modes in the dynamics of information scrambling and
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OTOCs. We marked the topological phase transition
in the non-interacting limit via F̄ . We further numer-
ically studied the coherence times of the pre-scrambling
plateaus in the non-integrable models and demonstrated
the effect of pre-scrambling in dynamic phase diagrams.
We found that F̄ continues to be an order parameter
for the topologically non-trivial phase even in the non-
integrable limit where the dynamic phase boundary is
significantly altered by the temperature. The dynamical
decomposition of infinite-temperature OTOC into diago-
nal and off-diagonal contribution exhibits the differences
and similarities between scrambling and thermalization
dynamics affected by (almost-)strong zero modes.

The observations on finite topological order detected
via OTOC point to edge spins that remain local for
long times in generic systems. Hence the scrambling
of the edge spins with the rest of the system is negli-
gible when the Z2 topological order exists. Therefore, we
demonstrate how topologically-protected degrees of free-
dom fight against being scrambled, either completely pre-
venting (integrable systems) or restricting (generic sys-
tems) the operator spreading and thus exhibiting a clear
interplay between the topological order and scrambling.
Non-integrable systems at infinite temperature are al-
most always expected to scramble down to zero where
the decay rate depends on the symmetries existing in the
Hamiltonian. However, we see that this is not always
the case and the scrambling can be severely hindered by
the topological protection of information. Motivated by
these observations, we introduced a two-step scrambling
process with the new timescale being pre-scrambling time
τpresc and the associated process, topologically induced
pre-scrambling. Our conclusions in principle can be gen-
eralized to higher dimensions for topological states with
similar fraction excitations and topological degeneracy30,
although the numerical verification is yet to be found.

In principle, this probe allows experimental detec-
tion of topological states without a need to cool down
the system to ultra-low temperatures whether it is the
OTOCs, Eq. (12) or two-time correlators Eq. (13), when
the control parameter is sufficiently away from the zero-
temperature phase boundary. In particular, the infinite-
temperature OTOCs are experimentally more appealing
to zero-temperature OTOCs60, since it can be challeng-
ing to prepare a ground state as the initial state in certain
experimental platforms.

Although surprising, the interplay between informa-
tion scrambling and topological order is an intuitive ob-
servation. Beside the notion of strong-zero modes af-
fecting the thermalization dynamics30, the entanglement
entropy of a ground state has a universal topological con-
tribution in topologically non-trivial phases61–63. More-
over, the connection between OTOCs and the entangle-
ment entropy of the time-evolved states has been intro-
duced too34,64. Hence here we make another connection
that relates a dynamical quantity to a static property of
the Hamiltonian.
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Appendix A: Methods Explained

To determine the degeneracy in the spectrum, we need
to characterize the uncertainty in energy, ∆E. This
means that we define an energy window around each en-
ergy level with ∆E as [Em − ∆E,Em + ∆E] where we
assume that the states remain in this window are de-
generate with the state whose associated energy is Em.
This process defines an energy resolution and in a way
coarse-grains the energy spectrum.

As discussed in Ref.20, the energy resolution is re-
lated to the interval of the time-evolution. Longer time-
evolution translates to finer energy resolution, resolving
the smallest energy differences in the spectrum, T ∆E ∼
1, where T is the total time of the evolution. Hence any-
time we simulate a system with a finite time interval,
we define an energy resolution as ∆E = π

4T . In return,
the parameter ∆E determines the degenerate subspaces
in the spectrum and hence helps us to determine the di-
agonal contribution Fdiag in OTOC time-average. Note
that this reverse relation between the time interval and
energy resolution also implies that any degeneracy lifting
will be eventually captured by a long-time evolution.

We call an equation derived by the dynamical decom-
position as a framework equation. If the operator in the
eigenbasis Wαβ can be calculated analytically for an in-
tegrable system, that would present us the analytical ex-
pression of its OTOC saturation value. However, one can
numerically derive the matrix elements Wαβ too and use
them in the framework of dynamical decomposition. Any
brute force calculation of the OTOC saturation value re-
quires an estimation on the time-dependent part in the
dynamical Eq. 10, e.g. which energy pairs are equal to
each other. The energy resolution ∆E is used here to
define a threshold so that we could exert the degenerate
subspaces on the OTOC calculation. Crudely speaking,
this threshold determines whether the saturation value
is contributed by the found energy set {Eα, Eβ , Eγ , Eδ}.
In the end, the numerical incorporation of a finite en-
ergy resolution into our framework equation that ana-
lytically determines the saturation value, also provides
us the time-average of OTOC over any time interval up
to dramatic transient features20. Hence we equivalently
call F̄ both for long-time saturation value and the time-
average of OTOC.

When we numerically calculate the OTOC saturation
value, we do the summations in Eq. 11. This introduces
an approximation to the final OTOC saturation value in
our numerical result. We set a threshold where any term
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greater than the threshold is found and summed over.
We determine our threshold based on the dimension of
the Hilbert space, ∼ 1/M2, where M is the dimension
of the Hilbert space. This generally bounds the error on
the order of ∼ 10−2 (we remind the reader that |F | ≤ 1).

We utilize ITensor platform in C++ environment and
MPS (matrix product states) for our density matrix
renormalization group (DMRG) computations65. To pre-
pare infinite temperature states in MPS format, we aver-
age over random product states. We restrict the bond
numbers to m <∼ 100. Since the bond numbers in-
crease rapidly as the system evolves in time, this results
less accuracy for the later times. Therefore, we restrict
our time-evolution with MPS at infinite-temperature to
tJ <∼ 10. The t-DMRG of OTOC in low temperatures or
zero temperature present modest bond numbers, hence
we are able to simulate OTOC at zero temperature for
longer times.

Appendix B: Derivation of Fermionic OTOC

In order to (both analytically and numerically) solve
Kitaev chain, we double the Hilbert space of single-
particles and generate the BdG Hamiltonian. This
Hamiltonian gives us a symmetric spectrum around en-
ergy E = 0 where there are two states at E = 0 when the
chain is open due to the Majorana fermions at two ends.
Therefore, if we derive an equation for OTOC in terms of
single-particle states, via summing over only E = 0 states
(Majorana zero modes) due to Eq. (9), we can calculate
the OTOC in the infinite-time limit.

We work with the fermion operator in doubled space,

that is, in addition to di = ci we also have di+N = c†i ,
hence di has a dimension of 2N where N is the dimen-
sion of the free fermionic system without pairing terms.
Note that in addition to the familiar anti-commutation

relation
{
di, d

†
j

}
= δij , we have {di, dj+N} = δij and{

d†i , d
†
j+N

}
= δij . Hence, a Majorana operator can be

defined as a2i−1 = ci+c†i =
(
di + d†i + di+N + d†i+N

)
/2.

With this algebra in mind, we can derive

F2i−1,2i−1(t) =
1

2N
Tr (a2i−1(t)a2i−1a2i−1(t)a2i−1) .(B1)

After the substitution of di operators,

F2i−1,2i−1(t) =
1

2N
1

24
Tr

(
di(t)a2i−1di(t)a2i−1 + d†i (t)a2i−1d

†
i (t)a2i−1 + di+N (t)a2i−1di+N (t)a2i−1

+ d†i+N (t)a2i−1d
†
i+N (t)a2i−1 + 2

(
di(t)a2i−1d

†
i (t)a2i−1 + di(t)a2i−1di+N (t)a2i−1 + di(t)a2i−1d

†
i+N (t)a2i−1

)

+ 2
(
d†i (t)a2i−1di+N (t)a2i−1 + d†i (t)a2i−1d

†
i+N (t)a2i−1 + d†i+N (t)a2i−1di+N (t)a2i−1

))
. (B2)

Since the dimension of the Hilbert space is 2N+1, the
following identities hold:

Tr
(
did
†
i + d†idi

)
= 2N+1 → Tr

(
did
†
i

)
= 2N .

Tr
(
di+Nd

†
i+N

)
= Tr (didi+N ) (B3)

= Tr
(
d†id
†
i+N

)
= 2N .

Tr
(
did
†
i

(
d†idi + did

†
i

))
= 2N → Tr

(
did
†
idid

†
i

)
= 2N .

Tr
(
di+Nd

†
i+Ndi+Nd

†
i+N

)
= Tr (didi+Ndidi+N )

= Tr
(
d†id
†
i+Nd

†
id
†
i+N

)
= 2N .

Eq. (B2) takes a form of

F2i−1,2i−1(t) = (B4)

1

2N
1

24

2N∑
k,l

[
(Gik(t)Gil(t) +Gi+N,k(t)Gi+N,l(t)

+ 2Gik(t)Gi+N,l(t))Tr(dka2i−1dla2i−1) + h.c.

]

+
2

2N
1

24

2N∑
k,l

[
(Gik(t)G∗il(t) +Gik(t)G∗i+N,l(t))

× Tr(dka2i−1d
†
l a2i−1)

+
(
G∗ik(t)Gi+N,l(t) +G∗i+N,k(t)Gi+N,l(t)

)
× Tr(d†ka2i−1dla2i−1)

]
,
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in terms of the matrix elements of the single-particle
propagators G(t) = exp (−iHBdGt).

The term Tr(dka2i−1dla2i−1) is non-zero only when
k = l = i or k = l = i + N where in
both cases Tr(dka2i−1dla2i−1) = 2N+2. The term

Tr(dka2i−1d
†
l a2i−1), on the other hand, vanishes for

k = l = i and k = l = i + N , however survives
for k = l 6= i and k = l 6= i + N . In this case,

Tr(dka2i−1d
†
l a2i−1) = −2N+2. Note that none of these

terms survives if k = i, l = i+N and vice versa. There-
fore we end up with

F2i−1,2i−1(t) =
1

22

[
(Gii(t))

2
+ 2 (Gi,i+N (t))

2
+ (Gi+N,i+N (t))

2
+ 2 (Gii(t)Gi+N,i(t) +Gi,i+N (t)Gi+N,i+N (t)) + c.c

]
− 1

2

2N∑
k 6=i,k 6=i+N

(
|Gik(t)|2 + |Gi+N,k(t)|2 +Gik(t)G∗i+N,k(t) +G∗ik(t)Gi+N,k(t)

)
. (B5)

The unitarity condition reads
∑2N
k |Gik|2 = 1, then

2N∑
k 6=i,k 6=i+N

|Gik(t)|2 = 1− |Gii(t)|2 − |Gi,i+N (t)|2.(B6)

Furthermore, we utilize the relation
∑2N
k=1GikG

∗
i+N,k =

0 which leads to

2N∑
k 6=i,k 6=i+N

Gik(t)G∗i+N,k(t) = (B7)

−Gii(t)G∗i+N,i(t) − Gi,i+N (t)G∗i+N,i+N (t).

When these relations are utilized, one can write the final
result as

F2i−1,2i−1(t) = (Re (Gii(t)) + Re (Gi,i+N (t)))
2

(B8)

+ (Re (Gi,i+N (t)) + Re (Gi+N,i+N (t)))
2 − 1,

for OTOC for a Majorana fermion of type a2i−1. Given
Gij(t) =

∑
α exp (−iEαt) 〈ψα,j |ψα,i〉 where ψα,i means

the ith element of the eigenstate α of HBdG, this result
should eventually lead to the result stated in the main
text,

F 2i−1,2i−1(t) = (B9)[
2N∑
α=1

(
|ψiα|2 + ψiαψ

∗
i+N,α

)
cos (εαt)

]2

+

[
2N∑
α=1

(
|ψi+N,α|2 + ψi+N,αψ

∗
i,α

)
cos (εαt)

]2
− 1.

Appendix C: The relation between OTOCs and
two-time correlators

Eq. (13) shows that the saturation value of a two-time
correlator will always be governed by the diagonal ele-
ments in the operator W . Then Wαβ = 〈ψα|W |ψβ〉 can
be straightforwardly calculated in the non-interacting
limit. Here, |ψβ〉 and |ψα〉 are even and odd parity

states in a doubly-degenerate subspace that is dictated
by the Majorana zero modes. We note that |ψγ〉 =

d |ψα〉 = f(h)
(
γ1+iγ2√

2

)
|ψα〉, where f(h) is a function

of magnetic field h and f(h = 0) = 1/
√

2, however de-
creases as h→ 1. The quantity that we need to calculate
becomes 〈ψα|Wf(h) (γ1 + iγ2) |ψα〉 /

√
2. The effect ap-

pears when we use edge spins, hence

W = σz1 =
(
c1 + c†1

)
= γ1 (C1)

W = σzN =
∏
j<N

(
1− 2c†jcj

)(
cN + c†N

)
= P

(
cN − c†N

)
= iPγ2, (C2)

where P =
∏N
j

(
1− 2c†jcj

)
is the parity operator. Eqs.

C1-C2 show the operatorW in Ising, Dirac and Majorana
bases, respectively. If we work with the operator Eq. C1,

〈ψα| f(h)γ1

(
γ1 + iγ2√

2

)
|ψα〉 =

2f(h)√
2
, (C3)

where we utilized (γi)
2

= I and −iγ1γ2 |ψα〉 = − |ψα〉
since |ψα〉 is an odd-parity state. Similarly for Eq. C2,

if(h) 〈ψα|Pγ2
(
γ1 + iγ2√

2

)
|ψα〉 =

2f(h)√
2
, (C4)

where we additionally use P |ψα〉 = − |ψα〉. Given each
degenerate subspace contributes equally, we write C̄ =
2f(h)2. A simple functional form of Eq. 13 is calculated
as C̄ = 1− h2 for h < J and C̄ = 0 for h > J in Ref.36.
We substitute this analytical result into Eq. (13) and

obtain Wαβ =
√

1− h2 for h > J in the topologically
non-trivial phase. Hence we observe that the diagonal
contribution of OTOC is a direct dynamical probe of

topological order, giving a non-zero Fmjex =
(
1− h2

)2
in

the non-trivial phase.
To demonstrate how F̄diag of Ising model can match

with Eq. (14) of non-interacting fermionic system whose
calculation is purely based on Majorana zero modes, we
plot Fig. C1. Blue right-pointing triangles and orange
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FIG. C1. Diagonal contribution in the Ising model and non-
interacting fermionic model after dynamical decomposition
is applied. Purple-circles show the diagonal contribution
Eq. (12) at N = 14 in the Ising model (for a time inter-
val tJ = π

4
10 ∼ 7.85), while the blue right-pointing trian-

gles (N = 14) and red left-pointing triangles (N = 100)
show Eq. (12) for HBdG in non-interacting fermion system
at infinite-time limit. The exact form is derived from the
two-time correlators of Majorana fermions (solid-orange).

left-pointing triangles show F̄mjdiag numerically computed
via Majorana zero modes from BdG Hamiltonian for sys-
tem sizes of N = 14 and N = 100, respectively. Note
that F̄ isdiag of the Ising model (purple-squares) computed
at N = 14 for a time interval of tJ ∼ 8 matches well
with Fmjdiag at the same size, implying that F isdiag could

be used to detect the presence/absence of Majorana zero
modes. The difference between N = 14 and N = 100
sizes of F̄mjdiag shows how finite size effects show up near
the transition point due to the divergent length scale as-
sociated with the quantum critical point. Additionally
we compare F̄mjdiag at N = 100 with the analytically de-

rived result F̄mjex that is denoted by solid-orange line in
Fig. C1 and observe that they match perfectly.

Appendix D: Further results on the Ising Model

Fig. D1 shows that the pre-scrambling time-scale scales
with the system size in the Ising model. Hence, in the
thermodynamic limit, pre-scrambling continues to sur-
vive, giving a finite OTOC saturation (time-average)
F̄ 6= 0 at the infinite-time limit.

Fig. D2 shows the system-size scaling of fermionic
OTOC time-average at the phase transition point that
is also determined by OTOC itself. The scaling parame-
ters of the phase transition point was already given in
the main text. Here we provide the scaling parame-
ters of the OTOC amplitude with respect to system size:
F∞ ∼ N−1.5452 − 1, meaning the OTOC in thermody-
namic limit should saturate at F∞ = −1 in the transition
point.

Now we explicitly demonstrate how operator ansatz is
satisfied or violated in the integrable Ising model. For
this, we plot the matrix elements |Vβα|2 for various β in

10
0

10
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10
10

-1

-0.5

0

0.5

1

FIG. D1. Coherence time computation of the integrable Ising
model deep in the non-trivial phase h/J = 0.3. The coherence
times exhibit exponential increase with the system size which
implies that pre-scrambling lasts indefinitely.

40 100 200
10

-3

10
-2

10
-1

FIG. D2. The scaling of OTOC, F with the system size N
at the transition point determined by the second derivative
of the OTOC (see main text). The scaling parameters are:
F∞ ∼ N−1.5452 − 1 with R2 = 0.9994.

the spectrum at different h values in Fig. D3. Note that
|ψβ〉 and |ψα〉 in |Vβα|2 denote states sorted according to
their energies.

The first two subfigures (a)-(b) are for an edge spin
operator σz1 , whereas the rest (c)-(d) are for a bulk spin
operator. We sample the ground state (a)-(c) and a state
in the middle of the spectrum (b)-(d) in these subfigures.
Deep in the topologically non-trivial phase, h/J = 0.1,
we see that the operator ansatz is satisfied |VEα=Eβ

|2 �
|VEα 6=Eβ

|2 for an edge spin (blue-circles). For a bulk
spin, the operator ansatz is valid only in the ground state
subspace with Eα = Egs, the condition put forward by
Ref.20 for the dynamical detection of symmetry-breaking
phase transitions via OTOCs. This is how the edge spins
preserve the topological order in the OTOC throughout
the spectrum, while the bulk spins can preserve only the
symmetry-breaking order. Closer to the transition point,
e.g. h/J = 0.8, the order |VEα=Eβ

|2, expectantly, de-

creases while the off-diagonal elements |VEα 6=Eβ
|2 grow,

which is a signature of integrability at this special non-
interacting limit. Hence the operator ansatz, still in the
topologically non-trivial phase, breaks down explaining
how the OTOC saturation starts to be dominated by off-
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FIG. D3. The operator ansatz tested on the Ising model.
Matrix elements |Vβα|2 are plotted for (a) β = 1 (b) β = 2000
with respect to α for an edge operator σz1 (open boundary);
same β (c)-(d) for a bulk operator (periodic boundary) at a
size N = 12. Blue-circles, red-squares and orange-diamonds
stand for field strength h/J = 0.1, h/J = 0.8 and h/J = 1.5,
respectively for all subfigures.

diagonal contribution (Fig. 7b where F̄ 6= F̄diag in the
non-trivial phase). Note that this breakdown of the op-
erator ansatz in the ordered phase does not happen for
the bulk spin that is in its ground state, Fig. D3c. The
red-squares at h/J = 0.8, though clearly getting weaker
as we approach the transition point. The operator ansatz
in the topologically trivial phase, e.g. h/J = 1.5, contin-
ues to fail (compare orange-diamonds with blue-circles in
Figs. D3a-D3b). Eventually this causes a non-vanishing
OTOC time-average F̄ 6= 0 in the trivial phase, even
though this time-average has nothing to do with topo-
logical order (Sec. III B).

Appendix E: Further results on the non-integrable
Ising models

We first compare the scrambling dynamics of edge
(red-solid) and bulk (blue-dotted) spins in real time,
Fig. E1 in the regimes of near-integrability ∆/J = −0.1
and far from integrability ∆/J = −0.5. The edge and
bulk spins behave drastically different for significantly
long times, even though the size is considerably small,
N = 14. Hence, we can still observe the effect of zero
modes in non-integrable models, however as discussed in
the main text, in a weaker form than in integrable mod-
els.

Now we plot a dynamic phase diagram for a bulk spin
in Figs. E2 and observe it is drastically different than
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FIG. E1. Real time dynamics of OTOC with both edge
(red-solid) and bulk (blue-dotted) spins in non-integrable
transverse-field Ising model at h/J = 0.3 for (a) ∆/J = −0.1
and (b) ∆/J = −0.5 with size N = 14.

(a) (b)

FIG. E2. Non-integrable transverse-field Ising model. OTOC
time-average of bulk spins in (a) small integrability break-
ing term ∆/J = −0.1 in linear and logarithmic (inset) scales.
Red pentagrams, purple diamonds and light-blue crosses show
Fdiag whereas the blue circles, orange squares and green tri-
angles show F for N = 12, N = 13 and N = 14, respectively.
(b) The case of ∆/J = −0.5 integrability breaking term.
F̄ and F̄diag for N = 12 (blue-circles and red-pentagrams),
N = 13 (orange-squares and purple-diamonds) and N = 14
(green-triangles and light-blue crosses). All curves have open
boundary conditions and a time interval of tJ ∼ 800.

of an edge spin: as we increase the system size, both F̄
and Fdiag approach to zero for all h, and hence gets even
farther away from the transition point. Figs. E2a and
E2b show the OTOC of bulk spins in the models with
∆/J = −0.1 and ∆/J = −0.5, respectively.

The coherence times of the edge spins at ∆/J = −2
deep in the non-trivial phase (Fig. E3a) exhibit expo-
nential increase with the system size in Fig. E3b up to
an apparent odd-even effect. All different scaling samples
collapse at around ξ ∼ 1 for the exponent of the exponen-
tial scaling. While it is highly expected that this increase
should slow down with bigger system sizes, based on our
available data we cannot state that this behaviour is an
example of pre-scrambling, instead it looks like a finite-
size effect up until N = 15 system size. Hence it is not
always easy to extract a curve collapse to demonstrate
pre-scrambling in systems with small sizes.

Fig. E4 demonstrates the dependence of a dynamic
phase diagram on the interval of time averaging. The
data is for the model at near-integrability. The result
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FIG. E3. (a) Coherence times of the edge spins based on
OTOC at ∆/J = −2, deep in the topologically non-trivial
phase h/J = 0.3 and (b) the system-size scaling of the coher-
ence times in (a). Note that different curves correspond to
different threshold values η where we look for the times that
provide F (t) = η. ξ is the exponent in the exponential scaling
and all of them are around ξ ∼ 1.

0.5 1 1.5
-1

-0.5

0

0.5

FIG. E4. Demonstration of the time-dependence of the phase
diagram for the model with ∆/J = −0.1 at N = 14 system
size. Blue circles, orange diamonds, yellow squares, purple
triangles, green pluses, red pentagrams and black hexagrams
stand for tJ = 10, 20, 40, 60, 80, 100, 800, respectively.

with blue-circles that is computed in a short time inter-
val of tJ = 10 converges to the OTOC of non-interacting
limit, while increasing the averaging time from tJ = 10
to later times causes the phase diagram to change sig-
nificantly. Hence in the short-time limit, the coherence
times of the pre-scrambling plateau are significantly con-
tributed not only by the diagonal contribution, but also
the off-diagonal contribution. This additional contribu-
tion, that is specific to OTOC, in fact survives until very
long times, e.g. t >∼ 2 × 103 (Fig. 6b in main text).
However, farther away from the non-interacting limit the
off-diagonal contribution vanishes faster, whereas the di-
agonal contribution remains for longer times.

We mark the ground state phase transition point in
the model with ∆/J = −2 via (i) minimizing the energy
gap at the transition point; and (ii) Binder cumulant. We
first present (i): The scaling parameters for the transition
point read hc ∼ N−1.2467 + 3.7746 where the transition
point in the thermodynamic limit is found h∞c = 3.7746
with R2 = 0.9997. The scaling parameters for the energy
gap read ∆E ∼ N−0.9775 with R2 = 0.9999. So the
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FIG. E5. The scaling parameters for the ground state phase
transition of the model with ∆/J = −2, calculated via
DMRG. (a) The system-size scaling of the critical point,
giving h∞c = 3.7746 in the thermodynamic limit. (b) The
system-size scaling of the energy gap, giving an exponent of
∼ −1 and showing that the gap closes in the thermodynamic
limit.
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FIG. E6. The Binder cumulant calculated for the Ising model
with ∆/J = −2. The system size scaling gives h∞c = 3.782.

system-size scaling exponent for the energy gap is close
to −1. See Figs. E5 for the scaling figures. (ii) Fig. E6
shows the system size scaling of Binder cumulant,

U =
3

2

(
1− 1

3

〈
S4
z

〉
〈S2
z 〉

2

)
, (E1)

where Sz =
∑N
i σ

z
i , the total magnetization operator.

This method marks the phase boundary as h∞c = 2.782.

Appendix F: Further results on the XXZ model

Fig. F1 shows long-time dynamics of OTOC in the gap-
less phase of the XXZ model and how the time-average
of this signal scales with the system size. We see the scal-
ing has a form of Re(F̄ ) ∝ N−ξ where ξ ∼ 0.9. Hence in
the thermodynamic limit we expect F̄ → 0 in the gapless
phase.

Fig. F2 shows pre-scrambling time scales exponentially
increase with the system size, a similar figure to Fig. 6d
in the main text, however much closer to the transition
boundary. The exponential increase in system size im-
plies that the scrambling is a finite-size effect, hence in
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FIG. F1. (a) The saturation value for long times and different
system sizes (N = 8 to N = 14) are plotted for the gapless
phase of the XXZ model. (b) The system size scaling of the
saturation value where the error bars show the extend of the
oscillations around the average of the signals in (a). The
scaling has a form of Re(F̄ ) ∝ N−ξ where ξ ∼ 0.9.
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FIG. F2. The coherence times of pre-scrambling in the gapped
phase of the XXZ model, Jz/J = 5 for different system sizes.
The exponential increase in the pre-scrambling time intervals
with the system size suggests that the scrambling seen is a
finite-size effect.

thermodynamic limit, pre-scrambling plateau should per-
sist, giving F̄ 6= 0 in the topologically non-trivial gapped
phase.
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15 C. B. Dağ and L.-M. Duan, Phys. Rev. A 99, 052322
(2019).

16 C.-J. Lin and O. I. Motrunich, Phys. Rev. B 97, 144304
(2018).

17 E. Iyoda and T. Sagawa, Phys. Rev. A 97, 042330 (2018).
18 H. Shen, P. Zhang, R. Fan, and H. Zhai, Phys. Rev. B 96,

054503 (2017).
19 M. Heyl, F. Pollmann, and B. Dóra, Phys. Rev. Lett. 121,
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