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Recent progress in topological mechanics have revealed a family of Maxwell lattices that exhibit
topologically protected floppy edge modes. These modes lead to a strongly asymmetric elastic wave
response. In this paper, we show that how topological Maxwell lattices can be used to realize non-
reciprocal transmission of elastic waves. Our design leverages the asymmetry associated with the
availability of topological floppy edge modes and the geometric nonlinearity built in the mechanical
systems response to achieve the desired non-reciprocal behavior, which can be further utilized to form
a phonon diode via the addition of on-site pinning potentials which blocks the linear transmission
and only allow the signal to transmit in one way. Finally, the non-reciprocal wave transmission can
be switched on and off via topological phase transitions, paving the way to the design of cellular
metamaterials that can serve as tunable topologically protected phonon diodes.

I. INTRODUCTION

Over the past decade, significant progress on the de-
velopment of mechanical analogs of topological states
of matter has fueled the new field of “topologi-
cal mechanics” [1–5]. A plethora of applications of
topological mechanical metamaterials have been pro-
posed, such as uni-directional transport using chi-
ral edge modes [1, 4, 6–12], transformable topological
materials[13], structures with programmed buckling or
fracturing patterns[14, 15], mechanical laser[16], aperi-
odic topological metamaterials[17, 18], geared topological
metamaterials[19], and dislocation-localized softness[20].

A particularly interesting potential application of topo-
logical metamaterials is to obtain a phonon diode, i.e., a
device that only allows sound transmission in one direc-
tion. The main requirement to achieve this goal is to
break reciprocity. Within linear elasticity, systems with
time-reversal symmetry exhibit reciprocity[21]. Accord-
ing to Maxwell-Betti’s theorem[22–24], reciprocity im-

plies that u
j,(1)
B /F iA = u

i,(1)
A /F jB , where i, j = x, y, z are

Cartesian components, F iA is the i-th component of the

external force exerted at input point A and u
j,(1)
B is the

j-th component of the linear elastic response probed at
output point B. In the remainder of this paper, we define

the quantity χ
(1)
out,A = u

j,(1)
B /F iA as the linear transmis-

sion susceptibility. To achieve non-reciprocal transmis-
sion one needs to 1) break spatial inversion symmetry
and 2) either break time-reversal symmetry, or include
nonlinear effects. Major efforts have been devoted to
the development of strategies to violate reciprocity by
breaking time reversal symmetry. For example, several
active metamaterial configurations have been proposed
for uni-directional edge wave propagation, such as sys-
tems of coupled gyroscopes[6, 7, 25, 26], chiral active flu-
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ids and plasma[27, 28], dynamic phononic lattices[29],
spatio-temporally modulated metamaterials[30–37] and
active-liquid metamaterials[38, 39].

An alternative route to break reciprocity in mechani-
cal systems consists of leveraging the intrinsic nonlinear-
ity of their elastic response. Recent implementations in-
clude nonlinear self-demodulation processes obtained by
coupling elastically distinct layers of metamaterials[40–
42], unidirectional guiding of strongly nonlinear transi-
tion waves in a bistable lattice[43], static non-reciprocal
elastics[44], acoustic switching and rectification[45–47]
and broadband acoustic diodes[48]. In this paper, we
present a new approach for non-reciprocal wave trans-
mission in lattice systems, in which the task of breaking
space inversion symmetry is accomplished through the
activation of topological floppy edge modes. The nonlin-
ear response requirements are fulfilled by the natural ge-
ometric nonlinearity of the lattice deformation, the mar-
riage of which with the topological edge modes give rise
to large amplitude second harmonics. The main advan-
tage of the proposed design stems from the topological
protection of the edge modes, which endows the non-
reciprocal phenomena with robustness against potential
defects and disorder.

Maxwell lattices are central-force lattices with aver-
age coordination number 〈z〉 = 2d (d is the spatial di-
mension), which puts them on the verge of mechani-
cal instability[2, 17, 49, 50]. They host topologically
protected edge modes at zero frequency (floppy modes)
which are governed by the topology of the equilibrium
and compatibility matrices and therefore ultimately de-
pend on the lattice geometry[2]. The topological edge
modes lead to strongly asymmetric edge stiffness, which
has been shown to result in asymmetric wave propaga-
tion characteristics, whereby certain edges allow waves
to propagate into the bulk, and others localize energy at
the boundaries[51]. Despite this asymmetry, the trans-
mission of linear elastic waves is still reciprocal, meaning

that the linear transmission susceptibilities χ
(1)
out,A and
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χ
(1)
out,B between points A and B in space are equal, in

accordance with Maxwell-Betti’s theorem.
To achieve non-reciprocal transmission in phonon

diodes, we first localize linear excitations on lattice
boundaries by driving the lattice with frequency ω in the
band gap ∆. These localized modes do not propagate
in space and cannot transmit elastic stress. On top of
this, we propagate second harmonic bulk modes whose
intensity are controlled by the amplitude of the bound-
ary linear excitation. The generation of higher harmonics
in mechanical systems with multi-modal dispersive be-
havior and the resulting opportunities for unconventional
wave manipulation and functionality enrichment in elas-
tic metamaterials have been the object of a number of
recent studies[52–59].

In this paper we show that second harmonic modes
in topological Maxwell lattices are strongly nonrecipro-
cal, due to the contrast in stiffness between floppy and
non-floppy edges, which is a topologically protected prop-
erty. Further, we demonstrate that, by blocking the lin-
ear (first harmonic) modes via on-site pinning poten-
tials (which can be realized by placing the lattice on
a soft substrate), the system works as a phonon diode,
in which transmission (with frequency doubled) is effec-
tively observed in only one direction. Finally, we revisit
the notion that topological kagome lattices can be re-
versibly transformed between different topological states
with contrasting edge state landscapes through a trans-
formation, known as the “Guest mode”, which involves a
soft strain of the whole lattice. As a result, these lat-
tices can be switched between strongly non-reciprocal
and nearly reciprocal states through simple reversible op-
erations.

II. NON-RECIPROCITY IN 1D TOPOLOGICAL
MECHANICAL CHAIN

We start our discussion by revisiting the 1D topological
mechanical chain introduced in[2], as shown in fig.1(a).
This is the simplest lattice with topologically protected
floppy edge modes that give rise to contrasting boundary
rigidity. The chain consists of rigid rotors connected to
fixed pivot points separated by lattice constant a. The
pivot points as well as the rotors are labeled from 0 to N .
The other ends of the rotors feature particles of mass m,
and neighboring particles are connected with harmonic
springs. The chain is subjected to open boundary condi-
tions (OBC) at rotors 0 and N . The equilibrium config-
uration is such that rotors form an angle θ̄ relative to the
upward and downward normals. The angular displace-
ments are denoted as u = (rδθ0, rδθ1, ..., rδθN ), where
δθn = θn − θ̄. The system consists of N + 1 degrees of
freedom and N constraints, leaving only one topological
floppy mode localized on the right boundary.

Now we imagine driving the chain by a monochro-
matic harmonic force F ext

g (t) = Feiωt applied at the
left (right) end, i.e., on rotor g = 0 (g = N), while

F ext
n (t) = 0 elsewhere. F is assumed small enough that
δθn � 1, ∀n = 0, ..., N , which validates perturbation
theory. We denote Fext

g = (F0, F1, ..., FN ) as the ar-
ray of external forces and, as we mentioned previously,
Fext

0 = (F, 0, ..., 0) and Fext
N = (0, 0, ..., F ). By expanding

u = u(1) + u(2) + O(F 3) in orders of F , we can solve
for the linear elastic mode u(1) and for second harmonic
mode u(2), respectively.

We define the input linear response function as χin =

|u(1)in |/Fin, where u
(1)
in is the linear displacement of the ro-

tor that is being driven. We also define χ
(1)
out = |u(1)out|/Fin

(χ
(2)
out = |u(2)out|/Fin), where u

(1)
out (u

(2)
out) is the linear dis-

placement (second harmonic displacement) at the bound-
ary rotor opposite to the driven side.

To the linear order, Newton’s equation of motion is

mü(1)
g = Fext

g −Du(1)
g − ηu̇(1)

g , (2.1)

where η is the damping coefficient, m is the particle mass,
and the lower index g indicates that the force is applied
at the left end if g = 0 (right end if g = N). The dynami-

cal matrix is D = KCTC, where Cij = c1δij−c2δi,j+1 is
the compatibility matrix, and c1, c2 are coefficients deter-
mined by lattice geometry (see Appendix.B). In the static
limit, the linear elasticity is captured by the compatibility
matrix C: the floppy mode is localized on the right (left)
end if |c1| > |c2| (|c1| < |c2|). The topological protec-
tion of this floppy mode arises from the winding number
of the compatibility matrix in the complex plane, and
is therefore invariant against continuous deformations to
the geometry of this 1D chain unless the gap closes[2].
Without losing generality, in the rest of this paper we al-
ways let c1 > c2 > 0 by allowing rotors to tilt rightwards
with θ̄ > 0, so the edge floppy mode is localized on the
right end of the chain. Following this convention, it is

convenient to denote χin+ = |u(1)N |/FN , χin− = |u(1)0 |/F0,

and χ
(1,2)
out+ = |u(1,2)0 |/FN , χ

(1,2)
out− = |u(1,2)N |/F0, where +

(−) indicates that external driving is applied at the soft
(rigid) end.

Above zero frequency, the dispersion relation of
the bulk phonon mode reads ω = [(c1 − c2)2 +
4c1c2 sin2

(
1
2ak

)
]1/2, where k is the wave number. Lin-

ear elastic waves driven by external excitations with
c1− c2 < ω < c1 + c2 are bulk modes. χin+ and χin− are
at the same order of magnitude. As ω falls below c1− c2,
linear modes localize on lattice boundaries. χin+/χin−
monotonically increases to infinity as ω approaches the
static limit (see Appendix.B for details). Although the
stiffness differs dramatically (by orders of magnitude)
on opposite boundaries, the linear elastic transmission

is still reciprocal, meaning that χ
(1)
out+ = χ

(1)
out− as a man-

ifestation of Maxwell-Betti’s theorem. We verified this
equality both analytically and numerically, as shown in
fig.1(d).

Interestingly, higher order harmonics with ω(n) = nω
that are nonlinearly generated by the edge modes are
bulk modes as long as c1 − c2 < ω(n) < c1 + c2. In what
follows, we study whether these second harmonic modes
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FIG. 1. Nonreciprocal wave propagation in a 1D nonlinear topological chain. (a) 1D topological mechanical chain[2] subjected
to open boundary conditions with one floppy mode localized on the right edge. The “positive (negative)” direction is marked
with green (red). We apply a harmonic force F exteiωt with magnitude F ext = 10−5 and frequency 1

2
(c1−c2) < ω = 0.5 < c1−c2

on both edges to excite linear edge modes and second harmonic bulk waves. (b) Band structure ω = ω(ak) of the 1D chain.
(c) Input-end local response function χin. We denote the bulk wave region with yellow. (d) Reciprocal transmission of linear

waves with χ
(1)
out+ = χ

(1)
out−. (e) Non-reciprocal transmission of second harmonic waves with χ

(2)
out+ � χ

(2)
out− in the frequency

region 1
2
(c1 − c2) < ω < min( 1

2
(c1 + c2), c1 − c2) marked in grey. We plot the output second harmonic susceptibility χ

(2)
out(2ω)

versus the input driving frequency ω. (f) Input-end response excited by a Guassian tone burst with carrier frequency ω = 0.5.

(g) Output-end response featuring carrier frequency ω(2) = 2ω. (h) Non-reciprocal transmission of second harmonic driven by
Guassian tone burst.

carry non-reciprocal characteristics. The Newton’s equa-
tion of motion for second harmonic modes is

mü(2)
g = f(2)(u(1)

g )−Du(2)
g − ηu̇(2)

g , (2.2)

where f(2)(u
(1)
g ) is the second harmonic effective driv-

ing force generated by the linear displacement u
(1)
g , as

defined in Eq.(2.1) (see Appendix.B for details). Since

the effective driving is quadratic in u
(1)
g , it triggers sec-

ond harmonic modes with amplitude |u(2)n | ∝ |u(1)in |2 and
frequency 2ω. External excitations with 1

2 (c1 − c2) <

ω < min ( 1
2 (c1 + c2), c1 − c2) excite linear edge modes as

well as second harmonic bulk waves. For a given magni-
tude of excitation F , the input-end linear response mea-
sured at the right edge is far greater than its counterpart
measured at the left edge (χin+ � χin−). As a result,
the global wave amplitude experienced by the chain is
much greater when the chain is driven from the right,
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FIG. 2. Nonreciprocal wave propagation in a 2D nonlinear topological kagome lattice. (a) Topological kagome lattice, with unit
cell shown in the inset, where A, B and C label the sites and (~a1, ~a2) are the primitive vectors. The floppy modes are localized
on the top boundary. Total floppy modes amplitude on each site is shown by the size of the orange disks on the site. The
lattice consists of 40× (40− 1) unit cells and an additional layer of 40 C-sites at the bottom boundary. The lattice is subjected
to periodic boundary condition in ~a1 and open boundary conditions on the top and bottom sides. The supercell strip used in

our analysis is marked with cyan. (b) Supercell band structure, where k1 = ~k ·~a1. The dispersion branch of topological floppy
modes is marked with red. In (c), (d), (e) and (f) we employ both of analytic calculations (curves) and Newtonian Mechanics
simulations (dots) to measure the input local response function χin and the output linear (second harmonic) susceptibilities

χ
(1)
out (χ

(2)
out). (c) Strongly asymmetric edge response function χin(ω, k1) with χin+(ω, k1) � χin−(ω,−k1) for waves below the

bulk band (ω . 0.06). The lattice is driven by a monochromatic excitation force which is spatially periodic in ~a1, with the
wave number k1 for the top boundary (−k1 for the bottom). (d) Reciprocal transmission curves of linear elastic waves with

χ
(1)
out+(k1) = χ

(1)
out−(−k1), where the external driving force amplitude F ext = 10−8. (e) Non-reciprocal transmission curves of

second harmonic waves with χ
(2)
out+(2ω, 2k1) � χ

(2)
out−(2ω,−2k1), where the external force amplitude F ext = 10−4. It is worth

of emphasizing that for ω . 0.04, the one-way transmission of second harmonics is comparable to that of linear elastic modes
in (d). (f) Non-reciprocal transmission of linear and second harmonic modes with monochromatic point driving force. The
transmission of second harmonic waves is less non-reciprocal compared to (e) since the point shaking force has all k1 wave
number components. The first harmonic modes are bulk modes since long wavelength components are in the band.

leading also, in return, to significantly stronger second

harmonics generation, i.e., |u(2)
g=N | � |u

(2)
g=0|. Through

analytical and numerical calculations we can show that

χ
(2)
out+ � χ

(2)
out−, meaning that the transmission of sec-

ond harmonics is non-reciprocal, as reported in fig.1(e).
This non-reciprocity result can be generalized to the n-

th harmonic mode: we obtain that χ
(n)
out+ � χ

(n)
out− if

1
n (c1 − c2) < ω < min ( 1

n (c1 + c2), c1 − c2). We note
that, besides the low-frequency regime ω < c1 − c2, lin-
ear modes with high frequencies ω > c1 + c2 can also
localize on edges. However, they are not of interest in
this paper, because the associated nonlinear harmonics
are also edge excitations which cannot propagate across
the lattice and therefore cannot contribute to transmis-
sion.

It is interesting to ask whether non-reciprocity still
holds if the monochromatic harmonic excitation is re-

placed by a tone burst excitation with carrier frequency
ω and Gaussian amplitude modulation, having the form

F ext(t) ∼ F exteiωt−(t−t0)
2/τ2

, where the parameter τ
controls the spread of the Gaussian and t0 denotes the
trigger time of the packet. Since, in Fourier space, the in-
put signal is a Gaussian function with full width at half
maximum ∆ω = 2

√
ln 2/ωτ , we expect that the trans-

mission of nonlinear modes is still non-reciprocal. This
conjecture is verified by numerical analysis as shown in
fig.1(g).

It is important to note that the key ingredient to
achieve non-reciprocity is the contrast in rigidity be-
tween opposite edges, and not the topological protec-
tion of the edge modes. In principle, any system with
asymmetric boundary stiffness, whether this is topologi-
cal or not, can realize non-reciprocity if such asymmetry
is used in conjunction with nonlinear elasticity[44]. How-
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ever, topologically protected floppy modes enjoy the ad-
ditional attribute of being robust against disorder, noise,
and stochastic damage. More interestingly, topological
lattices are switchable, meaning that the topological po-
larization can be changed via simple, reversible opera-
tions that modify their geometry. For example, the 1D
chain discussed above can be flipped to have the op-
posite topological polarization by propagating a soliton
through the chain[60]. As we shall discuss in section IV,
2D topological kagome lattices can undergo a geometric
change through a soft strain of the whole lattice, called
the “Guest mode”[61], to manipulate topological phases,
control floppy mode localization[13] and thus boundary
stiffness. Consequently, the transmission of nonlinear
waves can be switched from non-reciprocal to recipro-
cal by reconfiguring the lattices from their topological to
their non-topological form.

III. NON-RECIPROCITY IN TOPOLOGICAL
KAGOME LATTICE

Having established non-reciprocity for a 1D topological
chain, we now ask if the same is true for a 2D topolog-
ical lattice[2]. To this end, we consider the topological
kagome lattice shown in fig.2(a). The lattice is ideal,
i.e., it consists of point masses connected by nearest-
neighbor linear springs. The unit cell contains one equi-
lateral and one isosceles triangles, which are constructed
from 6 bonds and 3 nodes marked by A, B and C. The
side length of the equilateral triangle and the longer edge
of the isosceles triangle are l0, while the shorter edge is
l0/
√

3. The twist angle of the isosceles triangle is 5◦

counterclockwise, which makes the longer edge of isosce-
les triangle inclined by 5◦ relative to the bottom edge of
equilateral triangle (marked AB in fig.2(a)). ~a1 and ~a2
are the lattice primitive vectors. The lattice, spanning
the area |N1~a1× (N2−1)~a2| in real space, is composed of
N1×(N2−1) unit cells and an additional layer of C-sites
at the bottom edge of the lattice to complete the trian-
gles. It is subjected to periodic boundary condition in
~a1 and open boundary conditions at the top and bottom
edges.

We start by introducing a supercell analysis of this

lattice. For convenience we denote k1 = ~k · ~a1 and
k2 = ~k · ~a2 as the wavenumbers along the primitive
vectors. We further decompose the lattice in supercell
strips directed along ~a2, as marked in cyan in fig.2(a),
and we apply Bloch’s conditions along ~a1. Within a
supercell, the unit cells are labeled from 1 to N2 − 1
going from top to bottom, and the C-sites on the bot-
tom layer are labeled as N2. The internal nodal dis-
placements of unit cell n2 (with 1 ≤ n2 ≤ N2 − 1) are
denoted as un2

= (uxn2A
, uyn2A

, uxn2B
, uyn2B

, uxn2C
, uyn2C

).
The displacement field of supercell strip is therefore de-
noted as u = (u1,u2, ...,uN2

). The lattice is driven by
a monochromatic harmonic force acting vertically and
with amplitude varying periodically in the ~a1 direction,

i.e., ~F ext
n1,g(t) = eiωt−ik1n1 ~FC with ~FC = (0, F ) at the

top boundary (bottom boundary) of C-sites labeled by

g = 1 (g = N2) and ~F ext
n1,n2

(t) = 0 otherwise. F is as-
sumed to be small such that all |~un1n2,A|, |~un1n2,B | and
|~un1n2,C | � l0, validating perturbation theory. By ex-

panding u = u(1) +u(2) +O(F 3), we can solve Newton’s
equation of motion for the linear mode u(1) and for sec-
ond harmonic mode u(2), as detailed in the Appendix.

The analysis of wave propagation in the 2D lattice fol-
lows the steps used for the 1D chain, albeit with the addi-
tional wavenumber k1 describing spatial variation in the
horizontal direction (with periodic boundary conditions).
Specifically, the dynamical matrix of this super cell strip
is D = KC†(k1)C(k1). C(k1) is the compatibility ma-
trix given by Cij(k1) = C1(k1)δij + C2(k1)δi+1,j , where
C1(k1) and C2(k1) are intra-cell and inter-cell compati-
bility matrices, respectively (see Appendix.C for details).
To the linear order of displacement, Newton’s equation of
motion is the same as Eq.(2.1), where η and m are damp-
ing coefficient and particle mass, respectively, and g indi-
cates that the input force is applied at the layer of C-sites
indexed g = 1 at the top (layer of C-sites indexed g = N2

at the bottom) of the lattice. The static system is charac-

terized by the polarization vector ~RT , which is a topolog-
ical invariant. Mechanical lattices with a well-defined po-
larization exhibit topological floppy edge modes exponen-

tially localized at the boundary towards which ~RT points.
The configuration of fig.2(a) has a polarization vector
~RT = ~a1 − ~a2. The floppy modes are therefore localized
on the top edge, making this edge much softer than the
bottom one. We use lower index + (−) to indicate that
the external signal is applied where the floppy modes
are localized (opposite to the floppy mode localization).

It is therefore convenient to denote χin+ = |uy,(1)1 |/F y1
and χin− = |uy,(1)N2

|/F yN2
as the soft edge and rigid edge

linear response functions, respectively. Similarly, we

denote χ
(1)
out+ = |uy,(1)N2

|/F y1 (χ
(2)
out+ = |~u(2)N2

|/F y1 ) and

χ
(1)
out− = |uy,(1)N2

|/F y1 (χ
(2)
out− = |~u(2)N2

|/F y1 ) as the linear
(second harmonic) transmission susceptibilities driven by
external forces applied at the soft and rigid boundaries,
respectively.

Linear wave propagation is governed by the supercell
band structure which stems from the eigenvalue prob-
lem det(D −mω2I) = 0. The band structure is gapped
except for the trivial translational zero mode point at
k1 = 0. Given the wave number k1 of the applied force,
the linear response is a bulk mode if ω > ∆(k1), where
∆(k1) is the lowest bulk eigenvalue in the band structure,
and χin+ and χin− are of the same order of magnitude.
As ω falls below ∆(k1), linear modes localize on the soft
boundary of the lattice. χin+/χin− monotonically in-
creases to infinity as ω approaches zero. Despite the con-
trasting boundary stiffness at low-frequencies, the linear

elastic transmission is still reciprocal, i.e., χ
(1)
out+(k1) =

χ
(1)
out−(−k1), similar to what we obtained for the 1D topo-

logical chain. We validate this equality through analyti-
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cal and numerical calculations, as shown in fig.2(d).
While linear modes can localize on the lattice

boundaries, nonlinearly generated components with

(ω(n), k
(n)
1 ) = (nω, nk1) can be bulk waves as long as

ω(n) > ∆(k
(n)
1 ). The equation of motion for the second

harmonic mode is given by Eq.(2.2). External excitations
with frequency 1

2∆(2k1) < ω < ∆(k1) generate linear
boundary modes and second harmonic bulk waves. More-
over, given the same magnitude F of external force, the
input-end frequency response function of the floppy edge
is far greater than that of the hard edge (χin+ � χin−),
which renders second harmonic bulk modes excited at the
floppy edge much greater than those excited at the hard

edge, i.e., |u(2)
g=N2

| � |u(2)
g=1|. The transmission of sec-

ond harmonics is therefore strongly non-reciprocal, with

χ
(2)
out+ � χ

(2)
out−, which is verified numerically as shown

in fig.2(e). We note that because of the strong local-
ized linear excitations for small frequencies ω . 0.04
[fig.2(c)], this asymmetric transmission of second har-
monic modes could be as great as the linear reciprocal
transmission [fig.2(d)]. This conclusion can be general-
ized to the non-reciprocal transmission of n-th harmonic

mode with χ
(n)
out+ � χ

(n)
out− if 1

n∆(nk1) < ω < ∆(k1).
While, so far, the analysis has followed almost verba-

tim the same steps of the 1D problem, one important
difference is that the 2D lattice phonon band depends on
k1 (the wave number in the horizontal direction imposed
along the boundary). Thus, the width of the gap ∆ and
the resulting availability of nonreciprocal propagation de-
pend on the choice of k1. In particular, the lattice always
has translational zero modes since limk1→0 ∆(k1) → 0.
As a result, if we drive the system with a point force
applied at a given location on the boundary (which os-
tensibly excites all values of k1), we are bound to observe
weaker signatures of non-reciprocity. In other words, the
differences in behavior observed by exciting the soft and
hard edges will be vastly reduced, as the long wavelength
components of the excited linear waves are in both cases
bulk modes that do not display asymmetry. Moreover,
despite the strong non-reciprocity, this kagome lattice
cannot be, strictly speaking, defined as a proper phonon
diode. This is because the linear mode, which is recipro-
cal and always transmitted both ways, is much stronger
than the second harmonic mode and always dominates
the total response, completely overshadowing any asym-
metry in the nonlinear response. In order to mitigate the
aforementioned issues, in the next section we propose an
evolution of the lattice design meant to work as a proper
phonon diode for all wavenumbers.

IV. NON-RECIPROCITY IN KAGOME
LATTICE WITH ON-SITE POTENTIAL

We consider a modification of the topological kagome
lattice discussed in section III, where a weak on-site
pinning potential is added to every mass point i, with

Vi = 1
2K
′~u2i and K ′ � K. This operation, which prac-

tically elastically connects each site to a fixed ground
point, can be thought of as the equivalent model of plac-
ing the lattice on a soft substrate (or soft elastic founda-
tion). It penalizes particles from moving away from their
rest positions, and therefore eliminates the lattice trivial
translational zero modes. Since the weak pinning rigidly
shifts the band up by ∆′ =

√
K ′/m, now the signals

with frequency below ∆′ will excite edge modes. The
weak pinning does not change the landscape of asym-
metric boundary stiffness of the lattice, meaning that
χin+ � χin− still holds as long as ω < ∆′. Thus, linear
edge modes are still preferentially localized on the soft
boundary.

The fundamental consequence of having a full low-
frequency gap is that, as long as 1

2∆′ < ω < ∆′, an
external excitation that is periodic along the boundary
will excite linear edge modes and second harmonic bulk
modes for any arbitrary wavenumber k1. Consequently,
the non-reciprocal behavior will be observed in the re-
sponse to a point excitation prescribed at a given location
on the boundary, thus eliminating the limitation of the
previous configuration. As shown in fig.3(d), the second
harmonic positive transmission is indeed stronger than
the linear transmission for a point excitation. We can
conclude that the topological lattice with pinning poten-
tial is now a well-defined phonon diode.

These results still hold when finite bending stiffness
at the hinges is included[51]. In fig.3(e) our numeri-
cal results indeed show that, when bending stiffness is
introduced by adding the contribution of next-nearest-
neighbor (NNN) interactions, the non-reciprocal trans-
mission is still significant. Finally, the results also
hold for a Gaussian tone burst excitation F ext(t) ∼
F exteiωt−(t−t0)

2/τ2

. The numerical analysis results re-
ported in fig.3(i) show that the transmission is still non-
reciprocal, similar as the result of 1D topological mechan-
ical chain.

V. LATTICE RECONFIGURATION AND
NON-RECIPROCITY SWITCHING

An interesting feature of Maxwell lattices with spring-
mass interactions is that they can undergo uniform soft
deformations, in which all the unit cells are twisted in the
same fashion while leaving the bond lengths unstretched.
Such uniform deformation, known as the “Guest mode”,
can manipulate the geometrical parameters that controls
the topological phase of the kagome lattice and, con-
sequently, its polarization and the rigidity established
on opposite boundaries[13]. Starting from the unit cell
configuration in fig.2(a), by uniformly rotating all the
isosceles triangles counterclockwise by 30◦ relative to the
hinges on the equilateral triangles, the lattice enters a
non-topological phase, as shown in fig.4(a). The total
number of floppy modes remains the same, but, instead
of being all localized on the top edge, they localize on
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FIG. 3. One-way propagation of second harmonic waves in a topological kagome lattices with on-site pinning potentials.
(a) Schematic illustration of the lattice with on-site potential. (b) Band structure of supercell strip with on-site potential

K′ = K/100, which fully gapped the spectrum at low frequency. We mark the edge mode excitation with red at ω =
√
K′/m,

and the frequency range where second harmonics 2ω are in the band with green. In (c), (d), (e), (h) and (i) we employ
Newtonian Mechanics simulations to measure the input local response function χin and the output susceptibility χout against
point shaking force at an arbitrary C-site on top or bottom. (c) Asymmetric stiffness of the boundary at which the point
harmonic excitation is applied (with force amplitude F ext = 10−4). (d) Non-reciprocal transmission of second harmonic modes.
The transmission susceptibility in the positive direction (i.e., transmission from soft edge to hard edge), marked in blue, is
much larger than that in the negative direction marked in red, and also much larger than the first harmonics (dashed lines).
(e) Non-reciprocal transmission of second harmonic modes calculated including bending stiffness κ = 10−5K. (f) Input-end
displacement time history for monochromatic point excitation in the form of Gaussian tone burst (frequency spectrum in the
inset). (g) Output-end displacement time history for tone burst excitation where the frequency is twice of the input wave
frequency. (h) Input-end frequency response for tone burst excitation. (i) Output linear and second harmonic transmission
susceptibilities for tone burst excitation. The result is very similar to fig.3(d), confirming the robustness of the results in
transitioning from steady-state to transient regimes of excitation.

both lattice boundaries with nearly comparable stiffness.

The discussions of reconfiguration above applies di-
rectly to the case where there is no substrate. It is clear
that by reconfiguration, the second harmonics transmis-
sion changes by orders of magnitude, whereas the linear
transmission is always open. Similar to what has been
discussed in Sec IV, substrate can be used to open a gap

and block the linear transmission, making the system a
true diode. In order to allow the substrate and the re-
configuration to be realized in the same system, we have
the following two proposals. First, by preparing a double-
layered lattice in which the top and bottom layers work as
the kagome lattice and the substrate, respectively, we can
reconfigure both layers together. We fix the bottom sub-
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FIG. 4. Near-reciprocal wave propagation in non-topological kagome lattice, which is related to the topological kagome lattice
by a soft-strain reconfiguration. (a) Kagome lattice in the non-topological regime. The floppy modes amplitude shown by the
size of the orange disks on each site are localized on both the top and the bottom boundaries. (b) Supercell band structure
of non-topological kagome lattice. (c) Different from the topological kagome lattice, the edge response functions χin(ω, k1)
are significantly more symmetric between top and bottom boundaries. We drive the lattice with spatially periodic harmonic
force with wave numbers k1 = +π,+π/2,+π/4 on top boundary (k1 = −π,−π/2,−π/4 on bottom). (e) Almost reciprocal
transmission of second harmonic waves with various wavenumbers (force amplitude F ext = 10−4). The second harmonic

transmission χ
(2)
out+(2ω, 2k1) is always comparable to χ

(2)
out−(2ω,−2k1).

strate while letting the top lattice capable of propagating
waves to serve as the acoustic diode. The second design is
to place the kagome lattice on a continuous board. The
kagome lattice can be detached and re-attached to the
soft board for lattice reconfiguration.

Consequently, given an external force excitation with
amplitude F and frequency 1

2∆′ < ω < ∆′, the transmis-
sion of any nonlinearly generated second harmonics is
reciprocal, because the linear modes driven from oppo-
site lattice boundaries, which are ultimately responsible
for second harmonic generation, have the same order of
magnitude. In conclusion, through uniform soft twist-
ing modes that allow reversible reconfiguration between
topological and non-topological phases, Maxwell lattices
have the ability to switch between reciprocal and non-
reciprocal transmission regimes of nonlinear elastic waves
without the need to physically disassemble and reassem-
ble the system.

VI. DISCUSSION AND CONCLUDING
REMARKS

In this paper we have studied the connection between
the non-reciprocity and topology in Maxwell lattices.
Here, the conditions required for the establishment of
non-reciprocal behavior come from the interplay between
two factors: on one hand, the availability of floppy edge
modes, which yield large boundary deformations and
trigger a nonlinear response; on the other hand, the topo-
logical polarization, which guarantees asymmetry across
the lattice.

Different from the previous work by Coulais et. al.[44],
who studied static non-reciprocal elasticity in both of
topological and non-topological quasi 1-dimensional (1D)
mechanical metamaterials, our design focuses on non-
zero frequencies. The concept is developed first using a
1D topological mechanical chain and subsequently gen-
eralized to 2D topological kagome lattices[2], paving the
way to applications in realistic mechanical metamateri-
als. The foundational argument of the proposed con-
cept is that topological floppy edge modes produce con-
trasting stiffness on opposite lattice boundaries. We find
that signals with frequency ω < ∆, where ∆ is the on-
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set of a (partial or total) bandgap, excite edge modes.
These modes localize asymmetrically, leading to larger
deformation that promotes second harmonic generation
at the floppy edge. Second harmonic contributions are
bulk modes if ω > 1

2∆, and, in these conditions, they
can propagate through the medium. Finally, because
of the asymmetry mentioned above, such transmission
is highly non-reciprocal. Interestingly, this second har-
monic transmission could be as large as linear transmis-
sion since the amplitudes of second harmonics A(2) ∝ A2

grow faster than linear amplitudes.

By adding an on-site pinning potential to every parti-
cle, the band structure of the topological kagome lattice
is shifted up by ∆′. In these conditions, external sig-
nals with 1

2∆′ < ω < ∆′ excite linear modes that remain
localized at the edges and second harmonic bulk modes
that propagate across the lattice. Hence, the second har-
monic positive transmission is greater than the funda-
mental mode transmission and is therefore not trivially
overshadowed by the linear response. With this improved
configuration, this effect is found to be true for any ex-
ternal harmonic excitation applied at the edges, regard-
less of the wavenumber established along the boundary.
Consequently, the result also holds for point excitations,
which represent realistic conditions in practice. We have
concluded that the lattice with on-site pinning potential
fulfills all the requirements to be labeled a phonon diode.
In addition, one can control the geometry of the Maxwell
lattice through a Guest mode to switch between topo-
logical and non-topological phases. This lattice recon-
figuration allows us to manipulate reciprocal and non-
reciprocal transmission of elastic waves without disas-
sembling or reassembling the structure.

The idea of nonlinear bulk waves driven by linear edge
modes is not limited to second harmonics. One can ob-
serve n-th order harmonic bulk modes at the output end
as long as the input frequency satisfies the condition
1
n∆ < ω < 1

n−1∆ (n ≥ 2), while all lower-order har-
monics are localized on the boundaries and cannot prop-
agate. A methodological problem to be considered in per-
forming such an extension is associated with the intrinsic
limitations of perturbation theory. Since the amplitude
of the output signal becomes exponentially small when
the order increases, i.e., A(n) ∼ An, higher-order har-
monic bulk modes become progressively more difficult to
be observed. It would thus be interesting to study these
phenomena in regimes of strong nonlinearity which in-
validate perturbation theory. This kind of study would
likely present new challenges arising from the interplay
between topological states of matter and nonlinear chaos
dynamical theory.

It is worth exploring experimental realization of
the proposed nonlinear phonon diode. In a recent
experiment[51], Ma et.al. studied the specimen of topo-
logical kagome lattice manufactured via a water jet cut-
ting from a sheet of acrylonitrile butadiene styrene. The
ideal hinges that appear in the theoretical models are
replaced by ligaments capable of supporting bending de-

formation, which is ubiquitous in realistic physical struc-
tures. This experimental system provide a natural setup
to test our theory.

Finally, our investigation so far has been limited to 1D
and 2D topological Maxwell lattices. An analogous study
of non-reciprocal transmission in 3D topological lattices
appears to be possible as a natural extension within the
proposed framework. This would open the doors to a
broader range of engineering applications and will be one
of the next directions in our research.

This work was supported by the National Science
Foundation (Grant No. NSF-EFRI-1741618).

Appendix A: Reciprocity of linear elastic systems
with time reversal symmetry

With time reversal symmetry, the transmission of lin-
ear elastic modes is reciprocal, meaning that the trans-
mission susceptibilities from point A to point B and from
point B to point A are equal. This is the essence of the
Maxwell-Betti’s theorem[22–24]. In this section we ver-
ify this theorem by considering a d-dimensional general
lattice based on spring-mass interactions. Within linear
elasticity, the Newton’s equation of motion is

m~̈un = −η~̇un − ~∇nV + ~F ext
n (t), (A1)

where n denotes a lattice site, η is the damping co-

efficient, V is the lattice potential energy, ~∇n =∑d
i=1 êi∂u(i)

n
, and ~F ext

n is the external driving force. We

rewrite the displacement field as a Nd-dimensional vec-
tor u = (~u1, ~u2, ..., ~uN ), and rewrite the external driving
as a Nd-dimensional vector Fext. The linear elastic mode
can be calculated as

u(ω) = G(ω)Fext(ω), (A2)

where G(ω) =
[
D + (−mω2 + iηω)I

]−1
is the frequency

response function, and D is the dynamical matrix. By
using an orthogonal transformation S that relates un to
the normal modes uα through uα =

∑
n Sαnun, we can

express the normal modes as follows,

uα(ω) = GαF
ext
α (ω), (A3)

where Gα(ω) = [εα+(−mω2 + iηω)]−1, and εα is the αth

eigenvalue of the dynamical matrix D. We plug in the
driving force at point A to calculate the displacement at
B, with uB(ω) =

∑
α SαBGα(ω)SαAF

ext
A (ω). Similarly,

we plug in the driving force at B to calculate displace-
ment at A with uA(ω) =

∑
α SαAGα(ω)SαBF

ext
B (ω). It is

evident that uA(ω)/F ext
B (ω) = uB(ω)/F ext

A (ω), meaning
that the transmission of linear modes is reciprocal in real
space in any elastic system with time reversal symmetry.
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Appendix B: Analytical calculation of linear and
second harmonic modes in 1D topological

mechanical chain

As shown in fig.1(a), the 1D topological mechanical
chain consists of rigid bars of length r, free to rotate
about hinges separated by the distance a, creating re-
peated 2-site unit cell of length 2a. A mass point m
is attached to the end of each bar, and the neighboring
ends are connected by harmonic springs with spring con-
stant K. The equilibrium configuration is such that each
rotor makes an angle θ̄ relative to the upward or down-
ward normals. The angular displacement of rotor n is
un = rδθn. We label the rotors from 0 to N , with open
boundary conditions at rotors 0 and N . We apply an
external angular driving along the tangential direction of
rotor g with F ext

n (t) = Feiωtδng. F is not large, making
angular displacements of all rotors un � r, which further
validates perturbation theory. It is convenient to rewrite
the external force as F → λF , where λ � 1. The full
Newton’s equation of motion is

mün,g = (~Tn−1 − ~Tn) · t̂n + F ext
n − ηu̇n,g, (B1)

where the lower index g indicates that the elastic mode is
in response to the external driving at rotor g. The open
boundary conditions at rotor 0 and rotor N are given by

~T−1 = ~TN = 0, (B2)

where ~Tn = Tnn̂n is the tension in bond n connecting
sites n and n+ 1. n̂n is the unit vector of bond n, and t̂n
is the tangential unit vector of rotor n. We expand the
tangential component of bond tension in orders of un/r,

denoted by (~Tn−1 − ~Tn) · t̂n = f
(1)
n + f

(2)
n +O(u3). The

leading order is

f (1)n = m[c1c2(un+1 + un−1)− (c21 + c22)un], (B3)

with

c1,2 =

√
K

m

(a± 2r sin θ̄) cos θ̄√
a2 + 4r2 cos2 θ̄

, (B4)

where θ̄ > 0 is assumed in this paper, leading to c1 > c2.
The second order term is

f (2)n (un) = mr−1
(
C1u

2
n−1 + C2un−1un + C3u

2
n

)
+ mr−1

(
C4u

2
n+1 + C5un+1un + C6u

2
n

)
, (B5)

with C1,2,3,4,5,6 being constants determined by the geo-
metric parameters of the chain. In our calculations, we
choose a = 2r and θ = π/4. The coefficients are given by

2C1 = C5 =
K

4m
(−1 +

√
2)

2C4 = C2 =
K

4m
(−1−

√
2)

C3 =
K

24m
(5−

√
2) C6 =

K

24m
(5 +

√
2). (B6)

We denote u = (u0, u1, ..., uN ) as the angular displace-
ment of the particles, and expand it in orders of λ, with
u = u(1) + u(2) + O(λ3), where u(1) and u(2) are linear
and second harmonic modes, respectively. We further
denote Fext = (λF, 0, ..., 0)T (Fext = (0, 0, ..., λF )) as the
external driving force driven at rotor g = 0 (g = N),

and denote f(2)(u(1)) = (f
(2)
0 , f

(2)
1 , ..., f

(2)
N ) as the second

harmonic effective feedback force generated by the linear
elastice modes. By expanding Eq.(B1) up to the second
order of λ, one obtains

mü(1)
g +mü(2)

g +O(λ3) =
(
Fext −Du(1)

g − ηu̇(1)
g

)
+
(
f(2)g (u(1)

g )−Du(2)
g − ηu̇(2)

g

)
+O(λ3), (B7)

where D = K[(c21 + c22)δij − c1c2(δi,j+1 + δi,j−1)] is the
dynamical matrix. By matching the equations of motion
in orders of λ, we solve for the linear mode

u(1)
g (ω) = G(ω)Fext(ω), (B8)

and for the second harmonic mode

u(2)
g (2ω) = G(2ω)f(2)g (u(1)

g ), (B9)

subjected to the open boundary conditions at rotors 0
and N . The frequency response function of the 1D chain
is

G(ω) = [D + (−mω2 + iηω)I]−1. (B10)

The dispersion relation of the only bulk phonon mode
is ω(k) = [(c1 − c2)2 + 4c1c2 sin2 (ak/2)]1/2, where k is
the wave number. The band has lower limit ∆ = |c1−c2|
and upper limit ∆′ = |c1 + c2|. Thus, the linear mode is
a bulk mode if ∆ < ω < ∆′, while it is an edge mode if
ω < ∆. According to Eq.(B8), the generic solution for a
linear mode is

u(1)n,g = agλ
n
1 +Agλ

n
2 0 ≤ n ≤ g

u(1)n,g = bgλ
n
1 +Bgλ

n
2 g ≤ n ≤ N, (B11)

where λ1,2 are given by

λ1,2 =
1

2

(
−γ ±

√
γ2 − 4

)
, (B12)

with γ = ω2

c1c2
− c1

c2
− c2

c1
− iηω

c1c2
. Through Eq.(B8) and

Eq.(B11) we can solve for ag, Ag, bg, Bg. We let g = 0
and g = N to obtain the linear modes when the external
driving is applied in at rotors 0 and N . Given the defini-

tion of local response function, χin(ω) = |u(1)in (ω)|/Fin(ω)
at rotor 0 (rigid end, χin−) and rotor N (soft end, χin+),
the local response functions are given by

χin+(ω) = (mc1|c1 − c2λ1|)−1

χin−(ω) = (mc2|c2 − c1λ1|)−1, (B13)

where we have used limN→∞ |λ2/λ1|N = 0 when ω <
c1 − c2. The ratio χin+/χin− tells which end of the 1D
chain has greater displacement in response to external
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loading. In the limit of η → 0, analytical calculations
reveal that

χin+/χin− > 1, ω < ω∗,
χin+/χin− < 1, ω∗ < ω < c1 − c2,

(B14)

where ω∗ = (c21 − c22)/
√

2(c21 + c22). As long as ω < ω∗,
the response linear edge mode of the right end is greater
than that of the left side. The linear transmission sus-
ceptibility, defined by χ

(1)
out(ω) = |u(1)out(ω)|/F (ω), is given

by

χ
(1)
out−(ω) = χ

(1)
out+(ω) =

1

m

λ−N−11 (λ2 − λ1)

ω2 − iηω
(B15)

The fact that the linear transmission susceptibilities are
equal is testament to the reciprocity of linear waves.

We further study the second harmonic modes based
on Eq.(B9). To calculate the second harmonic mode dis-

placement u
(2)
g , we notice that u

(2)
g =

∑N
g′=0 u

(2)
g′g, where

u
(2)
g′g is the displacement field of the chain in response

to external force f
(2)
g′g applied at a single rotor g′. The

displacement field is given by

u
(2)
g′g(2ω) = G(2ω)f

(2)
g′g(2ω), (B16)

where we denote the external driving at rotor g′ as aN×1

vector f
(2)
g′g = (0, 0, ..., f

(2)
g′g , ..., 0). The generic solution of

Eq.(B16) is of the following form

u
(2)
n,g′g = cg′gµ

n
1 + Cg′gµ

n
2 0 ≤ n ≤ g′

u
(2)
n,g′g = dg′gµ

n
1 +Dg′gµ

n
2 g′ ≤ n ≤ N, (B17)

where µ1,2 satisfy

µ1,2 =
1

2

(
−ν ±

√
ν2 − 4

)
, (B18)

with ν = 4ω2

c1c2
− c1

c2
− c2

c1
− 2iηω

c1c2
. Through Eq.(B16) and

Eq.(B17) we solve for cg′g, Cg′g, dg′g, Dg′g to determine

u
(2)
g′g(2ω). Finally, given the definition of second harmonic

transmission susceptibility, χ
(2)
out = |u(2)out(2ω)|/F (ω), we

obtain

χ
(2)
out+ =

1

F

N∑
g′=0

(cg′,g=N + Cg′,g=N )

χ
(2)
out− =

1

F

N∑
g′=0

(
µN1 dg′,g=0 + µN2 Dg′,g=0

)
, (B19)

The second harmonic transmission susceptibility is deter-

mined by f
(2)
g′g, which in turn is proportional to the square

of linear elastic waves amplitude. This consideration is
essential in explaining how the asymmetric local response

function χ
(1)
in+ � χ

(1)
in− results in the non-reciprocal trans-

mission of second harmonic modes (χ
(2)
out+ � χ

(2)
out−).

Appendix C: Analytical calculation of linear and
second harmonic modes in a 2D topological kagome

lattice

In this section we calculate linear and second harmonic
modes in a 2D topological kagome lattice. The unit
cell is shown in fig.2(a) and consists 6 bonds, with rest
lengths li and unit vector directions n̂i = (cos θi, sin θi),
i = 1, 2, ..., 6. We define the 2× 2 “dynamical matrix” of
bond i, as

Di = Kn̂in̂i i = 1, 2, ..., 6 (C1)

~a1 and ~a2 are primitive vectors. The lattice has periodic
boundary condition in ~a1 and open boundary condition
in ~a2, leaving the top and bottom boundaries open.

The compatibility matrix of the quasi-1D strip of
deformed kagome lattice is Cij(k1) = C1(k1)δij +
C2(k1)δi+1,j , where C1(k1) and C2(k1) are intra-cell and
inter-cell compatibility matrices, respectively:

C1 =


cos θ1 sin θ1 − cos θ1 − sin θ1 0 0

0 0 cos θ2 sin θ2 − cos θ2 − sin θ2
− cos θ3 − sin θ3 0 0 cos θ3 sin θ3
−eik1 cos θ4 −eik1 sin θ4 0 0 0 0
eik1 cos θ5 eik1 sin θ5 − cos θ5 − sin θ5 0 0

0 0 cos θ6 sin θ6 0 0

 ,C2 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 cos θ4 sin θ4
0 0 0 0 0 0
0 0 0 0 − cos θ6 − sin θ6

 . (C2)

We simplify the lattice to a quasi-1D strip by apply-
ing Bloch condition along ~a1 to obtain a finite supercell
strip with N2 unit cells. Thus, the elastic wave un1n2 =

eik1n1un2
, with k1 = ~k · ~a1. We denote the displacement

of cell n2 as un2
= (uxn2A

, uyn2A
, uxn2B

, uyn2B
, uxn2C

, uyn2C
),

and further denote the displacement of the entire strip
as u = (u1,u2, ...,uN2

). To fully gap the band structure

of the lattice, we introduce an on-site potential 1
2K
′uuT

by embedding the lattice on a soft substrate.

Before calculating the elastic waves, we first derive the
tension of a bond connecting two sites i and j. The bond
rest length is l0 and it’s unit vector is n̂ = (cos θ, sin θ).
We denote the relative displacement of the bond as
∆~uij = ~uj − ~ui, and expand the tension in orders of
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it, with ~Ti = ~Fi + ~fi +O(∆u3ij). The leading order term
is

~Fi = K(n̂n̂)∆~uij (C3)

and the second order ones are

fxi =
K

4l0

[
6 cos θ sin2 θ(∆uxij)

2

−[3 sin(3θ)− sin θ]∆uxij∆u
y
ij − 2 cos θ(3 sin2 θ − 1)(∆uyij)

2

]
(C4)

fyi =
K

4l0

[
6 sin θ cos2 θ(∆uyij)

2

+[3 cos(3θ) + cos θ]∆uxij∆u
y
ij − 2 sin θ(3 cos2 θ − 1)(∆uxij)

2

]
(C5)

Eqs.(C4, C5) are useful to derive the effective second
harmonic feedback force.

We now apply an external driving at cell g of the strip,
denoted as F ext

n1n2
(t) = eiωt−ik1n1F yCδn2g. Thus, we fur-

ther denote the external force as a 6N2-dimensional vec-
tor Fext

g = (Fext
1 ,Fext

2 , ...,Fext
N2

). We assume F yC is not too
large, rendering all displacements |~uA,B,C | � li=1,2,...,6,
which further validates perturbation theory. Thus, we
expand u in orders of F yC , as u = u(1) + u(2) + O(F 3),

where u(1) and u(2) are linear and 2nd harmonic modes.
We define the frequency response function as

G(ω, k1) = [D(k1) + (−mω2 +K ′ + iηω)I]−1 (C6)

where D(k1) = KC†(k1)C(k1) is the dynamical matrix
of the supercell strip. Thus, the linear mode is

u(1)
g (ω, k1) = G(ω, k1)Fext(ω, k1). (C7)

The 2nd harmonic mode is

u(2)
g (2ω, 2k1) = G(2ω, 2k1)f(2)(u(1)

g ), (C8)

where f(2)(u
(1)
g ) = (f1, f2, ..., fN2) is the second harmonic

effective feedback force generated by the linear mode

u
(1)
g , as shown in Eqs.(C4, C5).

The generic form of linear mode u
(1)
g is given as follows:

u(1)
n2,g =

4∑
α=1

agαλ
n2
α φα 1 ≤ n2 ≤ g

u(1)
n2,g =

4∑
α=1

bgαλ
n2
α φα g + 1 ≤ n2 ≤ N2, (C9)

where λα, α = 1, 2, 3, 4 are the eigenvalues of [D(k1, λ) +
(−mω2+K ′+ iηω)I], and φα are the corresponding 6×1
eigenvectors. D(k1, λ) is the following 6× 6 matrix,

D(k1, λ) =

 D1 + D3 + D4 + D5 −D1 − e−ik1D5 −D3 − λe−ik1D4

−D1 − eik1D5 D1 + D2 + D5 + D6 −D2 − λD6

−D3 − λ−1eik1D4 −D2 − λ−1D6 D2 + D3 + D4 + D6

 . (C10)

agα and bgα, α = 1, 2, 3, 4 are constants determined by
the open boundary condition at cell 1,

(D4e
ik1 ,D6,−D4 −D6)

·
(
u
(1)x
0,gA, u

(1)y
0,gA, u

(1)x
0,gB , u

(1)y
0,gB , u

(1)x
1,gC , u

(1)y
1,gC

)T
= 0, (C11)

and the open boundary condition at cell N2,

(D3,D2,−D2 −D3)u
(1)
N2,g

= 0. (C12)

Together with Eq.(C7), we solve agα and bgα to obtain

the linear mode u
(1)
g .

We then calculate the second harmonic mode based on
Eq.(C8). However, it is not easy to solve u

(2)
g , because the

effective second harmonic feedback force, f(2)g (2ω, 2k1) is
applied at every cell. In order to simplify this problem,

we consider the mode u
(2)
g′g(2ω, 2k1) in response to the

second harmonic effective feedback force f
(2)
g′g applied at

a single cell g′,

u
(2)
g′g(2ω, 2k1) = G(2ω, 2k1)f

(2)
g′g(2ω, 2k1). (C13)

The generic form of u
(2)
g′g(2ω, 2k1) is given by

u
(2)
n2,g′g

=

4∑
β=1

cg′gβµ
n2

β ϕβ 1 ≤ n2 ≤ g′

u
(2)
n2,g′g

=

4∑
β=1

dg′gβµ
n2

β ϕβ g′ + 1 ≤ n2 ≤ N2, (C14)

where µβ , β = 1, 2, 3, 4 are the eigenvalues of [D(2k1, µ)+
(−4mω2+K ′+2iηω)I], and ϕβ are the corresponding 6×
1 eigenvectors. cg′gβ and dg′gβ are constants determined
by the boundary condition at cell 1

(D4e
ik1 ,D6,−D4 −D6) ·(

u
(2)x
0,g′gA, u

(2)y
0,g′gA, u

(2)x
0,g′gB , u

(2)y
0,g′gB , u

(2)x
1,g′gC , u

(2)y
1,g′gC

)T
= 0,

(C15)

and open boundary condition at cell N2

(D3,D2,−D2 −D3)u
(2)
N,g′g = 0. (C16)
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Together with Eq.(C13), we solve cg′gβ and dg′gβ to

obtain u
(2)
g′g. Finally, the second harmonic displacement

is u
(2)
g =

∑N2

g′=1 u
(2)
g′g.

Appendix D: Numerical simulation of input local
response function and output transmission

susceptibility

1. Numerical details of 1D topological mechanical
chain

We perform Newtonian mechanics simulations to study
the non-reciprocal transmission in 1D topological me-
chanical chain. In the numerics, the chain is composed of
N = 100 rotor particles (i.e., it is composed of N/2 = 50
diatomic unit cells) and is subjected to OBCs at rotors
N = 0 and N = 99 (fig.1(a)). We set the particle mass
m = 1, the spring constant K = 1, and the damping
coefficient η = 0.01. The equilibrium configuration of
the particles is that they make an angle θ̄ = π/4 to the
upward and downward normals. The particles can ro-
tate about fixed hinges with the radii r = 1, and the
nearest neighbor hinges are separated by the distance
a = 2. Hence the springs connecting nearest neigh-
bor particles make an angle arctan(2r cos θ̄/a) = 35.3◦

to the horizontal line. Consequently, in this geometric
configuration, c1 = 0.986, c2 = 0.169 (c1, c2 are defined
in Eq.(B4)) and the band gap is ∆ = c1 − c2 = 0.817
(fig.1(b)). We apply a monochromatic angular shaking
force F ext(t) = F exteiωt at rotor N = 99 (the floppy
boundary) and at rotor N = 0 (the rigid boundary),
with the magnitude F ext = 10−5 and the frequency
ω = 0.5, 1

2∆ < ω < ∆, to illustrate the excitation of
linear edge modes and second harmonic bulk waves. In
order to confirm the establishement of the steady-state
conditions, we wait 1000 × (2π/ω) before we make any
displacement measurements. We further plot the linear
response function χin±(ω) in fig.1(c), linear transmission

susceptibility χ
(1)
out±(ω) in fig.1(d), and second harmonic

transmission susceptibility χ
(2)
out±(ω) in fig.1(e) by vary-

ing the driving frequency from ω = 0.01 to ω = 1.25.
Finally, we replace the harmonic excitation with a Gaus-

sian tone burst F ext(t) ∼ F exteiωt−(t−t0)
2/τ2

and ask
if the non-reciprocity still holds. By driving the lat-
tice with the Gaussian tone burst with carrier frequency
ω = 0.5, force amplitude F ext = 10−5 and the spread
parameter τ = 10π/ω, we illustrate the input response
displacement in fig.1(f) and the second harmonic trans-
mission signal in fig.1(g). We plot the second harmonic
transmission susceptibility curve in fig.1(h) to verify non-
reciprocal transmission against Gaussian tone burst by
varying the driving force frequency from ω = 0.01 to
ω = 1.25 (τ = 10π/ω varies accordingly).

2. Numerical details of 2D generalized kagome
lattice

In the simulation, a finite topological kagome lat-
tice which spans N1~a1 × (N2 − 1)~a2 area in real space
(N1 = N2 = 40), is considered. The lattice is made of
40× (40−1) unit cells with an additional layer of C-sites
at the bottom. We connect the leftmost particles to the
rightmost ones with harmonic springs to provide periodic
boundary condition in the ~a1 direction, and we leave the
C-sites of top and bottom boundaries free to realize open
boundary conditions. By applying a vertical harmonic

force ~F ext = (0, F ext) either on the top edge or bottom
edge C-sites, we drive the lattice and we compute the
displacement of mass points using a Newtonian dynam-
ics scheme with damping. Here we set the particle mass
m = 1, the spring constant K = 1, the damping coeffi-
cient η = 0.01, and the side length of the equilateral tri-
angle l0 = 1. We let the force amplitude F ext = 10−8 to
measure the reciprocal transmission of linear waves, and
we let the force amplitude to be F ext = 10−4 when mea-
suring the non-reciprocal transmission of second harmon-
ics. We vary the driving frequency from ω = 0.0055 to
ω = 0.1210 to plot the input response function χin(ω, k1)

in fig.2(c), linear transmission susceptibility χ
(1)
out(ω, k1)

in fig.2(d), second harmonic transmission susceptibility

χ
(2)
out(2ω, 2k1) in fig.2(e), and second harmonic transmis-

sion susceptibility χ
(2)
out(2ω) against point shaking force

in fig.2(f). In order to make sure steady-state condi-
tions are established, we wait 400 × (2π/ω) before we
make any displacement reading. We collect displace-
ments ~u1C(t) and ~uN2C(t) on the two edges. By applying
Fast Fourier Transformation (FFT), we convert displace-
ment time histories into their frequency spectra, ~u1C(ω)
and ~uN2C(ω). The elastic response is obtained via sum-
mation of multiple modes,

~un2C(ω) = ~u
(1)
n2C

(ω) + ~u
(2)
n2C

(2ω) + ... (D1)

where ~u
(1)
n2C

(ω) = (u
x,(1)
n2C

(ω), u
y,(1)
n2C

(ω)) and ~u
(2)
n2C

(2ω) =

(u
x,(2)
n2C

(2ω), u
y,(2)
n2C

(2ω)). u
x,(1)
n2C

(ω), u
y,(1)
n2C

(ω), u
x,(2)
n2C

(2ω)

and u
y,(2)
n2C

(2ω) are the amplitudes of x and y components
of linear and second harmonic modes. The input linear

response function is defined as χin+ = |uy,(1)1C (ω)|/F ext,
and the output linear transmission susceptibility is de-

fined as χ
(1)
out+ = |uy,(1)N2C

(ω)|/F ext. The output sec-
ond harmonic transmission susceptibility is calculated

through χ
(2)
out+ = |~u(2)N2C

(2ω)|/F ext.
All aforementioned numerical parameters, such as N1,

N2, m, K, η, l0, ~F ext, and ω are carried over to the simu-
lations of non-topological kagome lattice, and topological
lattice with on-site pinning potentials. Here the on-site
pinning strength is K ′ = K/100 = 1/100. In the simula-
tion of topological kagome lattice with on-site pinnings,
we further illustrate the input response displacement in
fig.3(f) and the second harmonic transmission displace-
ment in fig.3(g) when the harmonic driving is replaced
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by Gaussian tone burst F ext(t) ∼ F exteiωt−(t−t0)
2/τ2

with the amplitude F ext = 10−4, the carrier frequency
ω = 0.06 and the spread parameter τ = 10π/ω. By vary-
ing the carrier frequency from ω = 0.0055 to ω = 0.1210
(and by varying τ = 10π/ω accordingly), we plot the in-
put linear response function in fig.3(h) and the output
linear and second harmonic transmission susceptibility
curves in fig.3(i) to verify linear reciprocity as well as
second harmonic non-reciprocal transmission against the
Gaussian tone burst.

Appendix E: Energy transmission efficiency of
phonon diodes

An important feature of acoustic diodes which quanti-
tatively charaterizes the functionality of acoustic diodes
is the energy transmission efficiency. There has been
considerable discussions on the efficiencies of phononic
diodes and efforts to improve them, such as Refs.[47, 62].
Here we discuss this quantity of our phonon diodes in
details.

In Ref.[47], Liu et.al. proposed a non-reciprocal acous-
tic device which transmits linear elastic waves with very
high energy transmission efficiency R+ ≈ 1 and R− ≈ 0,

where R+ = Ėout+/Ėin+ (R− = Ėout−/Ėin−) is the
power-transmission rate of the phonon diode in the pos-
itive (negative) direction defined as the ratio between
the output and input wave power. By leveraging the
unified techniques of asymmetric incident wave magni-
fication and amplitude-dependent dispersion ω = ω(A),
their scheme transmits linear waves in one direction by
allowing the frequency to fall into the passband, while
blocks the sound in the opposite since the frequency falls
into the band gap. The energy transmission efficiency is
extremely high since the linear modes carry the most of
the acoustic energy.

In Ref.[62], Fu et.al. offer a different non-reciprocal
metamaterial consisting of asymmetric frequency con-
verter and linear wave filter. In contrast to Ref.[47], their
device transmits nonlinear waves which has a closer idea
to our work. However, unlike our scheme which transmits

second harmonic waves, the non-reciprocal transmission
of Ref.[62] stems from sub-harmonic waves which carry
the most significant amount of energy, with very high
primary transmission efficiency R+ ∼ 61% and a wide
working band width.

While our results take advantage of the novel topo-
logical protection and boundary floppy modes in uni-
form metamaterials, the energy transmission efficiency
is pretty low compared to Refs.[47, 62]. To demon-
strate this, we estimate the highest energy transmission

rates R+ = 4(χ
(2)
out+/χin+)2 and R− = 4(χ

(2)
out−/χin−)2

in 1D topological chain (data depicted in fig.1(c) and
1(d)) and in 2D topological lattice with on-site pin-
nings (data from fig.3(c) and 3(d)). The highest en-
ergy transmission rates in 1D and 2D topological lat-
tices are max[(R+, R−)1D lattice] ∼ (2 × 10−10, 10−13),
and max[(R+, R−)2D kagome] ∼ (10−5, 4×10−10), respec-
tively. At the first glance, one may argue that two ways
can largely improve the energy transmission efficiency of
our work. First, we could try increasing the shaking force
amplitude F ext by orders of magnitude, and the second

harmonic transmission susceptibilities χ
(2)
out± should in-

crease together. However, this proposal is disproved be-
cause chaos naturally arises for huge nonlinearities, es-
pecially the lattice boundary on which topological floppy
modes are localized. In fact, the driving force amplitude
F ext = 10−4 is already as far as we could to have non-
linear modes without excitating chaos. The second way
to improve energy transmission is to construct smaller
lattices. The unit cell numbers N1D lattice = 50 and
N2D kagome = 40 adopted in our simulations are too large
compared to N = 16 in Ref.[47] and N = 7 in Ref.[62].
Smaller lattices can indeed largely improve the transmis-
sion efficiency, but is still not as high as R+ ∼ O(1).
Second harmonic modes do not carry the majority of elas-
tic energy, in sharp contrast to linear and sub-harmonic
waves. In conclusion, our results simply present a possi-
ble design of the interplay between topological protection
and unidirection transport, rather than the optimized
version of acoustic diodes. It is therefore interesting to
ask if the combined techniques of topological protection
and optimized acoustic diodes can be realized in future
research.
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