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A bond-directional anisotropic exchange interaction, called the Kitaev interaction, is a promising route to
realize quantum spin liquids. The Kitaev interactions were found in Mott insulators with the strong spin-orbit
coupling, in the presence of quantum interference between indirect electron transfers. Here we theoretically pro-
pose a different scenario by introducing a polar structural asymmetry that unbalances the quantum interference.
We show that the imbalance activates additional exchange processes and gives rise to a dominant antiferromag-
netic Kitaev interaction, in stark contrast to the conventional ferromagnetic ones. We demonstrate by ab initio

calculations that polar Ru trihalides with multiple anions, α-RuH3/2X3/2 (X=Cl and Br), exhibit dominant anti-
ferromagnetic Kitaev interactions by this mechanism. Our proposal opens the way for materializing the Kitaev
spin liquids in unexplored parameter regions.

Entanglement between spin and orbital degrees of freedom
of electrons is a fertile source of exotic phases of matter. Such
entanglement typically appears via the strong spin-orbit cou-
pling (SOC) in the valence shells of heavy atomic elements
as well as strong electron interactions. In particular, in transi-
tion metal compounds with 4d and 5d electrons, synergy be-
tween the SOC and electron interactions brings about intrigu-
ing quantum phases, such as Weyl semimetals and topologi-
cal Mott insulators [1, 2]. Among them, the strongly corre-
lated regime, the so-called spin-orbit Mott insulator, has been
extensively studied as a key for realizing exotic magnetism,
such as noncollinear magnetic ordering and quantum spin liq-
uids (QSLs) [2, 3].

In the spin-orbit Mott insulators, the SOC and electron in-
teractions give rise to anisotropic exchange interactions be-
tween the localized electrons. Among various types of the
anisotropic interactions, bond-directional Ising-type interac-
tions have attracted great interest for over a decade, as a clue
for realizing the celebrated Kitaev model that provides an ex-
act QSL in the ground state [4]. It was pointed out that the
Kitaev interactions are realized under two requisites [5]: (i) a
Kramers doublet with the effective total angular momentum
jeff = 1/2 under the cubic crystalline electric field (CEF)
and the SOC and (ii) quantum interference between the in-
direct electron transfers via different 90◦ cation-ligand-cation
bonds. These are approximately satisfied in some 4d and
5d transition metal compounds with the low-spin d5-electron
configuration and the edge-sharing honeycomb structure of
ligand octahedra, such as A2IrO3 (A=Na, Li) [6, 7] and α-
RuCl3 [8, 9]. Indeed, recent theoretical and experimental stud-
ies revealed dominant ferromagnetic (FM) Kitaev interactions
in these magnets [10–20]. Despite the parasitic magnetic or-
ders at low temperature presumably due to other subdominant
interactions, anomalous behaviors, potentially ascribed to the
proximity to the Kitaev QSL, have been reported above the
transition temperature and the critical magnetic field [18–28].

While the Kitaev QSLs have received keen attention in
the field of not only magnetism but also quantum compu-
tation [4, 29], the candidate materials are still limited. Re-
cently, several efforts have been made to extend the candi-
dates. For instance, the d7 electron configuration in the high-

spin state [30, 31] and the f -electron multiplets [32–36] were
nominated for alternative jeff = 1/2 Kramers doublets in the
requisite (i). In addition, the networks with parallel-edge-
sharing octahedra [37, 38] and organic ligand bridges [39]
were proposed as alternative ligand geometries in the requi-
site (ii). These point out interesting possibilities of the Kitaev
candidates, but such challenges have been just initiated and
await for further experimental verifications. Moreover, recent
theoretical studies predict intriguing QSL phases in a mag-
netic field when the Kitaev interactions are antiferromagnetic
(AFM) [40–45], but there are a few proposals for the realiza-
tion [33, 34].

In this Rapid Communication, we theoretically propose an
alternative scenario to realize the Kitaev interactions. We find
that a polar crystalline structure, which unbalances the quan-
tum interference in the requisite (ii), gives rise to an AFM
Kitaev interaction. We show that it originates from differ-
ent perturbation processes from the conventional mechanism,
which are activated by the polar imbalance. In order to esti-
mate the exchange coupling constants quantitatively, we per-
form ab initio calculations for candidate polar materials with
multiple anions. We find that Ru trihalides with hydrides H−

potentially exhibit dominant AFM Kitaev interactions, whose
magnitude is considerably larger than the conventional ferro-
magnetic one.

We begin with a multiorbital Hubbard model for the low-
spin d5 state on a polar honeycomb-layered structure. The
honeycomb layer is composed of an edge-sharing network of
the ligand octahedra as demonstrated later [Fig. 1(a)]. We as-
sume polar asymmetry in the perpendicular direction to the
honeycomb plane, which would be realized, e.g., at surfaces
and interfaces, and by arranging different ligands in the upper
and lower triangles of the octahedra. We assume threefold ro-
tational symmetry around the [111] axis through every cation
site and mirror symmetry with respect to the plane spanned
by the [001] and [110] axes through the center of nearest-
neighbor bonds. In this situation, the d levels are split into the
eg and t2g manifolds by the dominant cubic CEF, and the five
electrons occupy the t2g levels in the low-spin state, as shown
in the middle panel in Fig. 1(b). We consider the multiorbital
Hubbard model for holes in the t2g orbitals, whose Hamilto-
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FIG. 1. (a) Schematic picture of a monolayer of polar honeycomb-
layered transition metal compounds. The large and small spheres
represent the transition metal cations and the ligand ions, respec-
tively. The color gradation of the octahedra depicts polar asymme-
try in the perpendicular direction to the honeycomb plane. The red,
blue, and green bonds denote the x, y, and z bonds, respectively [see
Eq. (1)]. The orthogonal xyz axes are taken along the directions from
a cation to the surrounding ligands in the ideal octahedron. The la-
bels A and B indicate two sublattices of the honeycomb structure.
(b) Schematic energy levels of the low-spin d5-electron configura-
tion under the cubic CEF and the SOC. The black dots indicate d

electrons.

nian consists of four terms as H = Hhop+Hint+HSOC+Htri [15].
The first term Hhop describes the kinetic energy of holes.

We here take into account the transfer integrals between
nearest-neighbor cations only [46]. Hhop is written in the ma-
trix form of

Hhop = −
∑

〈i j〉

c
†

i

(

T̂γi j
⊗ σ̂0

)

c j + h.c., (1)

where T̂γi j
denotes the transfer integrals including both direct

and indirect contributions [see Eq. (2) below], σ̂0 is the iden-
tity matrix, and c
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)

; c
†

imσ

(cimσ) is the creation (annihilation) operator of a hole at site
i with orbital dm (m = yz, zx, or xy) and spin σ =↑ or ↓ (the
spin quantization axis is taken along the [001] axis). Here,
sites i and j belong to the A and B sublattices of the honey-
comb lattice, respectively, 〈i j〉 denotes nearest-neighbor pairs,
and γi j = x, y, z denotes the γi j bond between the sites i and
j [see Fig. 1(a)]. From the crystalline symmetry, the transfer
integrals, for instance, on the z bonds, are given by

T̂z =
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When the system is nonpolar, η1 and η2 both vanish. Further-
more, t4 and η2 are small when the octahedra are not largely
distorted [12]. In such cases, the exchange processes via t2

predominantly contribute to FM Kitaev interactions [5, 13–
15].

The second term Hint denotes the onsite Coulomb interac-
tions, which is given by
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1
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imσ
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Assuming the rotational symmetry of the Coulomb interac-
tion, we set Ummmm = U, Umnmn = U − 2JH, and Umnnm =

Ummnn = JH (m , n), where U is the intraorbital Coulomb
interaction and JH is the Hund’s coupling, respectively [50].
The third and last terms in H describe the SOC and the trigo-
nal CEF splitting as
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respectively, where σ̂α (α=x, y, and z) is the Pauli matrix.
The t2g manifold is split into jeff = 1/2 doublet and jeff =

3/2 quartet under the SOC, and the ground state is given by a
single-hole state in the jeff = 1/2 manifold per site [Fig. 1(b)].
When the Coulomb interactions localize the holes to form the
spin-orbit Mott insulating state [51], the low-energy physics
is governed by the exchange interactions between two pseu-
dospins describing the Kramers pair of the jeff = 1/2 states.
The effective interactions on neighboring sites can be de-
rived by using the second-order perturbations in terms of the
hopping transfers in Eq. (1), which are summarized into the
generic form of Hspin =

∑

〈i j〉 S
T
i

Ĵγi j
S j, where Si denotes the

pseudospin operator at site i. From the crystalline symmetry,
the exchange interactions Ĵγi j

, e.g., for the z bonds, are written
as

Ĵz =





















J D + Γ −D′ + Γ′

−D + Γ J D′ + Γ′

D′ + Γ′ −D′ + Γ′ J + K





















, (6)

where J is the coupling constant for the isotropic Heisenberg
exchange interaction, K is for the Kitaev interaction, Γ and Γ′

are for the off-diagonal symmetric exchanges interactions, and
D and D′ are for the Dzyaloshinkii-Moriya interactions [12,
15]. The coupling constants for the x and y bonds are obtained
by the threefold rotations on Eq. (6).

When neglecting the trigonal CEF, there are only two types
of perturbation processes within the t2g manifold contributing
to the coupling constants in Eq. (6): One is within the jeff =

1/2 manifold [Fig. 2(a)] and the other is via the jeff = 3/2
manifold [Fig. 2(b)] [15]. We find that the polar asymmetry in
the lattice structure gives a crucial contribution to the former
process. This is explicitly shown by considering the effective
hopping transfers within the jeff = 1/2 states. By projecting
Eq. (1) onto the jeff = 1/2 states, we obtain

Heff
hop = −

∑

〈i j〉

c̃
†

i

(

t̃σ̂0 − iη̃σ̂γi j

)

c̃ j + h.c., (7)



3

(a) (b)

jeff =3/2
Coulomb

interactions
Coulomb

interactions

jeff =1/2

hole

FIG. 2. Perturbation processes (a) within the jeff = 1/2 states and (b)
via the jeff = 3/2 states.
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FIG. 3. Schematic pictures of monolayers of (a) nonpolar α-RuCl3

and (b) polar α-RuH3/2X3/2 (X= Cl and Br). The dotted lines indicate
indirect transfers through the ligand pz orbitals. The s orbital in the
hydride H− significantly suppresses the indirect transfers.

where t̃ = (2t1 + t3)/3 and η̃ = η1/3; c̃†
i
= (c̃†

i↑̃
c̃
†

i↓̃
), c̃
†

iσ̃
(c̃iσ̃) is

the creation (annihilation) operator of a hole in the jeff = 1/2
manifold at site i with pseudospin σ̃ = ↑̃ or ↓̃. For simplicity,
we neglect contributions proportional to η2 in Eq. (7), which
are small in realistic situations (see Table I).

Equation (7) shows that the effective hopping transfers in-
clude spin- and bond-dependent contributions proportional to
η̃ in the presence of polar asymmetry. This is similar to the
Rashba SOC term as seen in the tight-binding analysis for the
effects of spatial inversion symmetry breaking [52, 53]. By
considering the second-order perturbation with respect to the
hopping transfers in Eq. (7) [Fig. 2(a)], we obtain

J ∼
4
U

(

t̃2 − η̃2
)

, K ∼
8
U
η̃2, D ∼ −

8
U

t̃η̃, (8)

and Γ = Γ′ = D′ = 0. The full expressions including η2 and
the perturbation process via the jeff = 3/2 states [Fig. 2(b)]
are given in Supplemental Material [46]. An important find-
ing in Eq. (8) is that the Kitaev interaction is AFM, K > 0,
and its magnitude is proportional to 1/U. This is in stark con-
trast to the conventional scenario for nonpolar spin-orbit Mott
insulators [5], where a dominant FM Kitaev interaction pro-
portional to JH/U

2 is predicted from the perturbation process
via the jeff = 3/2 states [Fig. 2(b)].

In reality, however, the AFM and FM Kitaev interactions
can compete with each other. In order to estimate their re-
alistic values, we perform ab initio calculations by openmx
code [54] (see Supplemental Material for the computational
details [46]). Starting from a Kitaev candidate α-RuCl3, we
consider polar asymmetric materials by introducing differ-
ent anions on two ligand layers sandwiching the Ru honey-
comb layer (see Fig. 3). Note that the syntheses of similar
polar structures with multiple anions were reported for the
layered transition metal compounds [55]. In particular, we

t1 t2 t3 t4 η1 η2 ∆tri

α-RuCl3 45 159 −117 −22 0 0 −20
α-RuH3/2Cl3/2 143 −25 −227 −81 303 30 −12
α-RuH3/2Br3/2 97 0 −128 −67 283 23 8

TABLE I. Nearest-neighbor transfer integrals and trigonal CEF for
monolayers of nonpolar α-RuCl3 and polar α-RuH3/2X3/2 (X=Cl and
Br) obtained by ab initio calculations. See the definitions in Eqs. (2)
and (5). The unit is in meV. Further-neighbor transfers are shown in
Supplemental Material [46].

focus on a monolayer form of half hydride compounds, α-
RuH3/2X3/2 (X= Cl and Br). It is worth noting that the hy-
drides bring about extreme asymmetry to the quantum inter-
ference in the requisite (ii): s orbitals of H− strongly suppress
the indirect transfers between t2g orbitals from symmetry [see
Fig. 3(b)] [56].

Figure 4 shows the electronic band structures for monolay-
ers of nonpolar α-RuCl3 and polar α-RuH3/2X3/2 (X= Cl and
Br), obtained by the relativistic ab initio calculations for the
paramagnetic state. In all cases, the Fermi level locates in the
well-isolated t2g manifold, and the bandwidth changes in ac-
cordance with the optimized lattice constants: 5.97 Å, 5.35 Å,
and 5.67 Å for α-RuCl3, α-RuH3/2Cl3/2, and α-RuH3/2Br3/2,
respectively. We note that while each band of the nonpolar
α-RuCl3 is twofold degenerate, the degeneracy is lifted for
polar α-RuH3/2X3/2. We also show the projected density of
states (DOS) onto the jeff = 1/2 and 3/2 states as well as the
total DOS in Fig. 4. The results indicate that α-RuH3/2X3/2

(X= Cl and Br) share the common trend with α-RuCl3: The
jeff = 1/2 (3/2) state has larger weights in the higher-energy
(lower-energy) regions near the Fermi level.

By the maximally localized Wannier analysis [57, 58] for
the t2g bands, we estimate the transfer integrals in Eq. (2) and
the trigonal CEF splitting in Eq. (5) [46]. The estimates are
summarized in Table I. The result for nonpolar α-RuCl3 is
consistent with the previous study [15]. In the polar cases, η1

and η2 become nonzero as expected. Remarkably, the most
dominant t2 in the nonpolar case is substantially suppressed,
and η1 becomes most dominant in both hydride compounds.
Such a large η1 is attributed to the suppression of indirect
transfers via the s orbital as well as the modulation of di-
rect transfers due to the crystalline distortion [46]. We note
that the magnitudes of η2 and t4 are smaller than those of
t1, t3, and η1, and moreover, the trigonal CEF ∆tri remains
much smaller than the empirical value of the SOC for Ru3+,
λ ∼ 150 meV [15]; these rationalize our tight-binding analysis
above.

By using the estimates in Table I, we evaluate the exchange
coupling constants for α-RuCl3 and α-RuH3/2X3/2 (X= Cl
and Br). In the calculations, we include all the perturbation
processes within the t2g manifold and the effect of trigonal
CEF splitting [46], and take U = 3.0 eV, JH = 0.6 eV, and
λ = 0.15 eV for Ru3+ [15]. Table II summarizes the results.
Again, our results for α-RuCl3 well agree with the previous
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FIG. 4. Electronic band structures and the density of states (DOS) for monolayers of nonpolar α-RuCl3 and polar α-RuH3/2X3/2 (X= Cl and
Br) obtained by the relativistic ab initio calculations. For each case, the right panel displays the DOS: The red and blue lines indicate the
projected DOS onto the jeff = 1/2 and 3/2 states, respectively, while the gray line denotes the total DOS. The Fermi level is set to be zero in
all cases.

J K Γ Γ′ D D′

α-RuCl3 −0.8 −8.0 5.8 −2.3 0.0 0.0
α-RuH3/2Cl3/2 −35.6 69.8 −1.0 11.2 −3.6 0.0
α-RuH3/2Br3/2 −25.9 50.5 2.8 4.4 −0.6 2.5

TABLE II. Exchange coupling constants for monolayers of non-
polar α-RuCl3 and polar α-RuH3/2X3/2 (X= Cl and Br) estimated
by the perturbation theory by using the parameters in Table I and
U = 3.0 eV, JH = 0.6 eV, and λ = 0.15 eV [15]. The unit is in meV.
See Supplemental Material for further neighbors [46].

theoretical study [15], which reported the dominant FM Ki-
taev interaction K and the subdominant off-diagonal symmet-
ric interaction Γ. We find, however, that the introduction of
hydrides makes K being AFM with much larger amplitudes,
while suppressing Γ. At the same time, the FM J as well as Γ′

is enhanced. Our results indicate the exchange interactions of
the polar hydride compounds are governed by the dominant
AFM K and the subdominant FM J. This is understood from
Eq. (8) with the transfer integrals in Table I. By the hydiride
substitutions, η1 becomes most dominant among the transfer
integrals, while t1 and t3 are secondary and have the opposite
signs, as shown in Table I. Then, the exchange interactions
are dominated by the terms proportional to η̃2 in Eq. (8). This
leads to K ∼ −2J, which approximately holds in Table II. We
note that the t2g-eg mixing also leads to K ∼ −2J > 0 [11, 59],
but the values are much smaller than our results because of
the large cubic CEF splitting between the t2g and eg mani-
folds [14, 15, 60].

Finally, let us discuss the relevance of our results to the
study of Kitaev QSLs. The AFM Kitaev interactions have re-
cently attracted great interest as they not only preserve a topo-
logical QSL phase in a broader range of magnetic fields than
the FM ones but also lead to an enigmatic intermediate phase
before entering the forced-ferromagnetic phase, which is not
seen in the FM case [40–45]. Our results indicate that such
intriguing AFM Kitaev interactions can be obtained simply
by introducing the polar asymmetry in existing candidates, al-

though the subdominant FM Heisenberg interactions may sta-
bilize the zigzag AFM order in the ground state in our hydride
compounds [11, 12]. In order to study the intriguing physics
in unexplored parameter regions, we need to control the ratio
of J/K as well as the overall energy scales. Not only the sub-
stitution by different anions exemplified in Table II but also,
e.g., various surfaces and interfaces would be helpful for such
further tuning.

To summarize, we have theoretically uncovered an alterna-
tive mechanism to realize the Kitaev interactions in the spin-
orbit Mott insulator by introducing polar asymmetry in the
honeycomb-layered structure. We showed that the perturba-
tion processes through asymmetric indirect transfers between
the jeff=1/2 states give rise to the AFM Kitaev interactions,
which compete with the conventional FM ones originating
from the perturbation processes via the jeff = 3/2 states. We
confirmed our scenario by ab initio calculations and proposed
that a family of polar Ru halides, α-RuH3/2X3/2 (X= Cl and
Br), are good candidates for realizing the dominant AFM Ki-
taev interactions of several tens meV. The scenario based on
polar asymmetry is generic, not limited to the materials with
multiple anions but extended to surfaces and interfaces of lay-
ered transition metal compounds. It also points to a possibility
of tuning the Kitaev interaction by applying an electric volt-
age. Our results would provide a unique step towards crys-
tallographic, structural, and electronic designing of the Kitaev
magnets.
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