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First-principles calculations were used to study the Fermi surface of body-centered cubic vanadium
at elevated temperatures. Supercell calculations accounted for effects of thermal atom displacements
on band energies, and band unfolding was used to project the spectral weight of the electron states
into the Brillouin zone of a standard bcc unit cell. An electronic topological transition (ETT, or
Lifshitz transition) occurred near the Γ point with increasing temperature, but the large thermal
smearings from the atomic disorder and the Fermi-Dirac distribution reduced the effect of this ETT
on the electron-phonon interactions. The phonon dispersions showed thermal stiffening of their
Kohn anomalies near the Γ point, and of the longitudinal N phonon mode. In general the effects
of the ETT were overcome by the thermal smearing of the Fermi surface that reduces the spanning
vector densities for anomalous phonon modes.

I. INTRODUCTION

Vanadium is a body-centered cubic (bcc) metal with
some of the strongest electron-phonon coupling for a pure
element [1]. It is a superconductor with a transition tem-
perature Tc = 5.3 K, one of the highest of the elemental
superconductors [2]. Experimental and computational
studies on the superconductive, electronic, and mechan-
ical properties of vanadium at high pressures have re-
vealed anomalies in the elastic constants and a positive
relationship between the superconducting transition tem-
perature with pressure [3–6].

Elemental vanadium also displays anomalous behavior
with temperature. The temperature dependence of the
elastic constant C44 has two points of inflection at ap-
proximately 800 K and 1600 K [7]. Inelastic neutron scat-
tering (INS) experiments have shown that the increase
in the vibrational entropy of vanadium from thermal ex-
pansion is cancelled by nonharmonic thermal stiffening
[8] attributed to an adiabatic electron-phonon interaction
(EPI) broadening of the sharp features in the electronic
density of states (DOS). The strength of the EPI was re-
lated to the decrease in the electronic DOS at the Fermi
level [9].

Electron-phonon interactions at low temperatures have
been extensively studied for almost a century. Advances
over the past two decades have allowed us to calculate
materials properties related to these electron-phonon in-
teractions from first-principles [10]. These state-of-the-
art methods for calculating properties from the EPI are
based on density functional perturbation theory (DFPT)
[11], which does not adequately describe thermal effects
observed at finite temperatures, such as anharmonic lat-
tice dynamics. The adiabatic EPI at high temperatures
had been best understood by studying the changes in
the average phonon energies and the electronic DOS
[9, 12, 13]. We are only now starting to see advances
in first-principles computational methods for studying fi-
nite temperature electron-phonon interactions [14].

In a recent study of the adiabatic EPI, the thermal
phonon softening in FeTi was linked to the appearance

of new features on the Fermi surface with temperature
[15]. The adiabatic EPI was altered dramatically by a
thermally-driven electronic topological transition (ETT),
a novel Lifshitz transition [16] that had been rarely ob-
served with temperature [17]. It was suggested that a
thermally-driven ETT may be observed in other mate-
rials with occupied or unoccupied electronic bands that
are a few kBT from the Fermi level at low temperatures
[15].

It was reported that the adiabatic EPI in vanadium
saturates at high temperatures owing to the complete
smearing of a peak in the electronic DOS at the Fermi
level [9, 12, 13]. This correlated well with the softening of
phonons past 1000 K. In this present work, we study the
nonlinear nature of the phonon frequency shifts from the
adiabatic EPI and investigate if this behavior can be at-
tributed to a thermally-driven ETT using computational
methods that have evolved from the methods employed
in the study of FeTi [15].

We report changes in the Fermi surface of bcc V with
temperature, finding new features with temperature, but
a large broadening in energy of the Fermi surface. The
broadening originates from effects of comparable mag-
nitude from the displacements of atoms owing to the
occupancy of phonon modes, and from the distribution
of electron occupancies by the Fermi-Dirac distribution.
Electron-phonon interactions were assessed by how a
phonon could couple an occupied electron state to an
unoccupied state, but with thermal broadening the oc-
cupied state was sometimes below the energy of the un-
occupied state. Although temperature induced an elec-
tronic topological transition in the Fermi surface (a Lif-
shitz transition) near the Γ point, this ETT had less of
an effect on the EPI than did the thermal broadening of
the Fermi surface.



2

II. COMPUTATION

A. Phonon Calculations

Phonon frequencies at elevated temperatures were cal-
culated with a modified temperature dependent effective
potential (TDEP) method [18–20]. In the TDEP pro-
cedure, the Born-Oppenheimer surface of a material at
a given temperature is sampled with ab initio molecu-
lar dynamics (AIMD). The energies, displacements, and
forces on thermally displaced atoms are recorded over
time. With these energy-force-displacement data sets,
force constants are obtained with a least-squares fit of a
model Hamiltonian to the potential-energy surface:
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∑
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where pi and ui are the momentum and displacement
of atom i, respectively, and αβγ are Cartesian compo-
nents. The temperature-dependent U0 is a fit parame-
ter for the baseline of the potential energy surface [19].
The quadratic force constants Φij capture temperature-
dependent nonharmonic effects and are used to calcu-
late phonon frequencies ω shifted by these effects [19].
These quadratic force constants are also renormalized by
the quartic term in the potential [21, 22]. The cubic
force constants Φijk capture phonon-phonon interactions
(PPI) that contribute to the broadening and additional
shifts of phonon modes.

The same model Hamiltonian was used in this work,
except the Born-Oppenheimer surface was sampled by
multiple density functional theory (DFT) calculations
on supercells of thermally displaced atoms generated by
stochastic sampling of a canonical ensemble. For a cell of
Na atoms with mass mi, a harmonic normal-mode trans-
formation was used to generate positions {ui} consistent
with a canonical ensemble:

ui =

3Na∑
s=1

εis〈Ais〉
√
−2 ln ξ1 sin (2πξ2), (2)

where ξn are uniformly distributed numbers between 0
and 1 producing the Box-Muller transform. 〈Ais〉 is the
thermal amplitude of the normal mode s with eigenvector
εis and frequency ωs [23, 24]:

〈Ais〉 =
1

ωs

√
~ωs(ns + 1

2 )

mi︸ ︷︷ ︸
quantum

≈ 1

ωs

√
kBT

mi︸ ︷︷ ︸
classical

, (3)

where ns = (e~ωs/kBT − 1)−1 is the thermal occupation
of mode s, and ~ω � kBT denotes the classical limit at
high temperatures.

These stochastically generated thermal displacements
from Eqs. 2 and 3 sample the Born-Oppenheimer surface
in the stochastically-initialized temperature-dependent

effective potential (s-TDEP) method [18–20, 25, 26].
This method approximates the inclusion of zero-point
motion not included in AIMD simulations and connects
seamlessly to the classical limit at high temperature.
The s-TDEP procedure can be used to calculate force
constants capturing anomalous high-temperature effects
[25–28] to low-temperature quantum effects [29, 30] at a
much lower computational cost than what is required by
AIMD. The force constants calculated with this method
are numerically converged with respect to the number of
configurations and supercell size. The convergence of the
force constants and the baseline U0 was further ensured
by repeating DFT calculations on new snapshots gener-
ated from force constants from the previous iteration of
s-TDEP. The force constants used to generate the su-
percells in the first iteration of s-TDEP were generated
through a model pair potential as described in Ref. [25].
The weakness of the s-TDEP method is that it relies on
Gaussian distributions of coordinates generated by Eq.
2.

The ab initio DFT calculations were performed with
the projector augmented wave [31] formalism as imple-
mented in VASP [32, 33]. All calculations used a supercell
with 250 vanadium atoms, a 3 × 3 × 3 Monkhorst-Pack
[34] k-point grid, and a plane-wave energy cutoff of 580
eV. The exchange-correlation energy was calculated with
the PBE functional [35].

These force constants were calculated on a grid of
six temperatures, {0, 300, 550, 750, 1250, 1650} K, and six
volumes. The quadratic and cubic interatomic force con-
stants for temperatures and volumes between these grid
points were obtained by interpolation. Through three
iterations of the s-TDEP procedure, we obtained the
Helmholtz free energy surface F (V, T ):

F (V, T ) = U0(V, T ) + Fvib(V, T ). (4)

U0(V, T ) is the baseline from Eq. 1. Fvib(V, T ) is from
lattice vibrations:

Fvib =

∫ ∞
0

g(ω)

{
kBT ln

[
1− exp

(
− ~ω
kBT

)]
+

~ω
2

}
dω,

(5)
where g(ω) is the phonon density of states calculated
from the phonons in the first Brillouin zone,

g(ω) =
∑
s

δ(ω − ωs). (6)

The electronic entropy, obtained from the DFT calcula-
tions, made a small contribution to U0 of Eq. 1. We
minimized the free energy to calculate the equilibrium
volume at each temperature and evaluated the phonon
frequencies at these conditions.

We then corrected our phonon frequencies by calcu-
lating the linewidths Γs and shifts ∆s arising from an-
harmonicity, or phonon-phonon interactions. This re-
quired the many-body perturbation calculation of the
real and imaginary parts of the phonon self-energy
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Σ(Ω) = ∆(Ω)+iΓ(Ω), where E = ~Ω is a probing energy
[36, 37]. The imaginary component Γ(Ω) is

Γs(Ω) =
~π
16

∑
s′s′′

|Φss′s′′ |2 {(ns′ + ns′′ + 1)δ(Ω− ωs′ − ωs′′)

+ (ns′ − ns′′) [δ(Ω− ωs′ + ωs′′)− δ(Ω + ωs′ − ωs′′)]}
(7)

and the real component is obtained by a Kramers-Kronig
transformation

∆(Ω) =
1

π

∫
Γ(ω)

ω − Ω
dω. (8)

The imaginary component of the self-energy is a sum over
all possible three-phonon interactions, where Φss′s′′ is the
three-phonon matrix element determined from the cubic
force constants Φijk. The Γ(Ω) and ∆(Ω) were calculated
with a 28× 28× 28 q-grid.

Anharmonic phonon DOS curves were calculated with
the real and imaginary parts of the phonon self-energy:

ganh(ω) =
∑
s

2ωsΓs(ω)

[ω2 − ω2
s − 2ωs∆s(ω)]

2
+ 4ω2

sΓ2
s(ω)

. (9)

If both ∆ and Γ go to zero, Eq. 9 reduces to Eq. 6.
Calculations were also performed with the quasihar-

monic (QH) approximation, which gave a contribution
of thermal expansion to phonon frequencies without the
anharmonic corrections of Eqs. 7 and 8. These QH calcu-
lations were performed by interpolating the 0 K quadratic
force constants to volumes obtained from the minimiza-
tion of the QH free energy.

B. Electronic Band Unfolding

The electronic band structure of vanadium at 0 K is
usually obtained from a DFT calculation on a static lat-
tice using a primitive unit cell (PC). We model finite
temperatures with calculations on supercells (SC) con-
taining thermally-displaced atoms. The electronic bands
from these calculations are folded into a smaller SC Bril-
louin zone (SCBZ), giving rise to complicated band struc-
tures that cannot be directly compared to 0 K electronic
bands in the larger primitive cell Brillouin zone (PCBZ).

We can recover an approximation of these supercell
electronic bands in the PCBZ through band unfolding
[38] as implemented with the BANDUP software package
[39, 40]. In brief, BANDUP gives the spectral function
A(k; ε) from supercell calculations [38, 41]

A(k, ε) =
∑
m

PmK(k)δ(ε− εm(K))

=
∑
m

∑
n

|〈mK|nk〉|2 δ(ε− εm(K)),
(10)

where k and |nk〉 are electron wavevectors and eigen-
states in the PCBZ, and K and |mK〉 are electron

wavevectors and eigenstates in the SCBZ. The spectral
weight PmK(k) is the projection of |mK〉 on all of the
PC Bloch states |nk〉 at the PC wavevector k. The only
pairs of wavevectors (k, K) that are included in the sum
in Eq. 10 are those in which K unfolds onto k:

k = K + G, (11)

where G is a reciprocal lattice vector in the SBCZ.
The unfolded electronic band structure is represented

as an effective PC band structure (EBS). In BANDUP,
this quantity is calculated from the spectral function with
the infinitesimal version of the cumulative probability
function Sk(ε). The quantity dSk(ε) = A(k, ε)dε rep-
resents the number of PC electronic bands at the PC
wavevector k crossing the energy interval (ε, ε+ dε). We
can obtain the EBS δN(ki, εj) in a region of interest in
the (k, ε) space with energy intervals of size δε:

δN(ki, εj) =

∫ εj+δε/2

εj−δε/2
dSki(ε)

=
∑
m

PmK(ki)

∫ εj+δε/2

εj−δε/2
δ(ε− εm(K))dε

(12)
The EBS gives the number of PC electronic bands cross-
ing (ki, εj).

The EBS calculated from this unfolding procedure is
exactly equal to the PC electronic band structure only
for perfect supercells, where the static atoms are on
their crystallographic sites. The EBS calculated with
BANDUP shows the effects of perturbations on the elec-
tronic structure such as from crystallographic defects and
atom substitutions [39, 40].

For the electronic band structure at 1100 K, we assem-
bled an ensemble of supercells {η} with thermal displace-
ments {ui} generated with Eqs. 2 and 3 and phonon fre-
quencies at 1100 K. For each of the configurations η with
displacements {ui}, we calculated the EBS δNη(ki, εj),

where εj ≡ Ej−E(η)
F is defined with respect to the Fermi

energy E
(η)
F calculated for the supercell η. The thermal

atomic displacements from their crystallographic sites are
treated as perturbations. Our calculated electronic struc-
ture at 1100 K is the ensemble average of the EBS 〈δNη〉.
This methodology was previously used to model finite
temperature electronic bands in FeTi [15].

C. Density Functional Perturbation Theory

Density functional perturbation theory calculations
[11] were performed with Quantum ESPRESSO [42, 43]
with ultrasoft pseudopotentials [44] and the Perdew-
Burke-Ernzerhof (PBE) exchange-correlation functional
[35]. The electron-phonon interaction matrix elements
were first calculated on a 72× 72× 72 k-point mesh and
a 12×12×12 q-point mesh, and later interpolated to 720
q-points along the high symmetry lines in the bcc Bril-
louin zone through Fourier interpolation implemented in
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Quantum ESPRESSO. The matrix elements were then
used to compute the scattering rates of phonons by elec-
trons:

1

τqν
=

2π

~
∑
mn

∫
dk

ΩBZ
|gνmn(k,q)|2 (fnk − fmk+q)

× δ(εm(k + q)− εn(k)− ~ωqν),

(13)

where gνmn(k,q) is the electron-phonon interaction ma-
trix element associated with a phonon mode ν with
wavevector q and two electronic states with the eigen-
states |mk〉 and |nk + q〉, and fmk is the Fermi-Dirac
distribution for electrons. The electron-phonon coupling
strength associated with this interaction is:

λqν =
1/τqν

πN(EF)ωqν
(14)

where N(EF) is the electronic DOS at the Fermi level.

III. RESULTS

A. Phonons

Figure 1(b) shows phonon densities of states of vana-
dium calculated with the s-TDEP method at tempera-
tures from 0 to 1650 K. There is no significant broad-
ening from PPI. The high-energy longitudinal phonon
modes from 26 to 30 meV stiffen before they begin to
slowly soften with temperature. This anomalous behav-
ior is seen more clearly in the plot of average phonon
energies derived from the phonon DOS in Fig. 1(c):

〈E〉 =

∫
E × g(E)dE (15)

The average phonon energy increases with temperature
to approximately 750 K, and then begins to decrease.
This behavior strongly deviates from what is predicted
by the QH model, where the average phonon energy de-
creases in the entire temperature range as the crystal
expands. The calculated average phonon energies and
their thermal trend are in good agreement with inelastic
neutron scattering (INS) measurements of the vanadium
phonon DOS [8, 9, 45].

Our calculated spectral function S(q, ω) is compared
to phonon dispersions measured with thermal diffuse x-
ray scattering (TDS) [46] and inelastic x-ray scattering
(IXS) [47] in Fig. 2. The agreement is good. The s-
TDEP spectral function agrees with both the IXS (par-
ticularly along the H-P and Γ-P directions) and the TDS
measurements (the longitudinal branch along the Γ-H
and Γ-N directions). The Kohn anomalies [48] are more
pronounced in the s-TDEP spectral function along Γ-
H and Γ-N than the TDS and IXS measurements, and
there is some disrepancy for the transverse acoustic TA1

phonon mode at the N symmetry point. There is a
crossover of the longitudinal phonon branch with the the
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FIG. 1. (a) Phonon DOS curves from experimental measure-
ments on the PHAROS spectrometer from 10 - 1273 K [9].
(b) The phonon DOS curves of vanadium calculated with
the s-TDEP method at temperatures from 0 (dark purple)
to 1650 K (orange). (c) Average phonon energies of vana-
dium calculated with the s-TDEP method (identical colors to
those shown in (b)), shown together with average phonon en-
ergies from inelastic neutron scattering measurements (Refs.
[8, 9, 45]). The dashed red curve corresponds to quasihar-
monic (QH) behavior as calculated from first-principles.

TA2 branch at the N symmetry point in all phonon dis-
persions. This anomaly and many other features seen
in our s-TDEP spectral function were observed in the
phonon dispersions calculated with DFPT by Luo et al.
[4].

From 0 to 1650 K (Fig. 3), many phonon modes
soften with temperature, including the transverse acous-
tic modes at the N symmetry point and the phonon
modes at the H and P symmetry points. A few phonon
modes stiffen before they begin softening with tempera-



5

H P N0

5

10

15

20

25

30

35
En

er
gy

 (m
eV

)
300 K

In
te

ns
ity

 (a
rb

. u
ni

ts
)

FIG. 2. The 300 K spectral function calculated with s-TDEP
along the high-symmetry directions, plotted together with
measurements from thermal diffuse x-ray scattering (crosses)
[46] and inelastic x-ray scattering (dots) [47].

H N P H
0

5

10

15

20

25

30

35

Ph
on

on
 E

ne
rg

y 
(m

eV
)

[ 00] [ 0] [ 0] [ ]

FIG. 3. Phonon dispersion curves of vanadium calculated
with the s-TDEP method at temperatures from 0 (dark pur-
ple) to 1650 K (orange). Vector coordinates are written in
simple cubic lattice coordinates.

ture, such as the longitudinal phonon mode at q =
[
1
3
1
3
1
3

]
along the Γ-P direction. A number of phonon modes
stiffen with temperature, including the Kohn anomalies
close to the Γ point along the Γ-H, Γ-N, and Γ-P direc-
tions. The anomalous crossover of the longitudinal and
TA2 phonon modes at the N symmetry point is no longer
present at high temperatures because the longitudinal
phonon mode stiffens strongly with temperature. The
stiffening of the longitudinal phonon modes at the N sym-
metry point and q =

[
1
3
1
3
1
3

]
contribute to the anomalous

behavior of the longitudinal peak in the phonon DOS.

B. Electronic Band Structure

Figure 4 shows the electronic band structure of vana-
dium at 1100 K calculated with band unfolding imple-
mented in BANDUP. The 1100 K electronic band struc-
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FIG. 4. Unfolded electronic bands at 1100 K, compared with
0 K electronic bands in white. The Fermi level is represented
as a spread in energies.

ture is the average of the EBS 〈δNη〉 calculated from 15
stochastically generated supercells with thermal displace-
ments characteristic of 1100 K. Each EBS was calculated
from –1 to 1 eV along the high-symmetry directions of
the bcc Brillouin zone in (k, ε) space.

The Fermi level at 1100 K is represented as a distri-
bution of energies. This accounts for how the occupa-
tion of electronic states is neither exactly 0 nor exactly 1
within a few kBT around the Fermi energy, as specified by
the Fermi-Dirac distribution at finite temperature. This
is our visual representation of the thermal layer ∆ε of
thickness proportional to kBT in which there are elec-
trons together with empty states into which they may be
scattered [49].

We do not observe significant shifts in the positions of
the electronic bands from 0 to 1100 K. Instead there is a
strong broadening of electronic bands with thermal dis-
order, a high temperature phenomenon that is consistent
with predictions from the Allen-Heine-Cardona (AHC)
theory [50–55]. Electronic states at the Γ point intersect
the thermal layer because of this strong broadening.

C. Fermi Surface

We calculated the Fermi surface of vanadium at 0
and 1100 K through band unfolding implemented with
BANDUP. The EBS for a given supercell η was calcu-
lated for ε from −0.50 to +0.50 eV for all of the k-points
in a 50× 50× 50 k-point grid within the bcc irreducible
Brillouin zone. The Fermi surface F (k, ε) is our average
EBS 〈δNη〉 unfolded from the irreducible Brillouin zone
to the full Brillouin zone. We unfold the EBS by ap-
plying the symmetry operations used to recover the full
Brillouin zone from the irreducible Brillouin zone.

For visualization, each k-point in the Brillouin zone is
assigned an intensity from integrating the average EBS
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FIG. 5. The {100} cross sections of the Fermi surface of vanadium at (a) 0 K and (b) 1100 K (cross section indices are expressed
in simple cubic coordinates).

〈δNη〉

I(k) =

∫ εmax

εmin

〈δNη(k, ε)〉
(
−∂f(ε, T )

∂ε

)
dε. (16)

The EBS is weighted against the derivative of the Fermi-
Dirac distribution f(ε, T ) with respect to energy. This
provides a distribution function with a width propor-
tional to the thermal layer [49], which was represented
as the distribution of energies ∆ε around the Fermi en-
ergy in Fig. 4. For 0 K, this distribution function is a
Dirac delta function, yielding intensities expected from
the definition of the 0 K Fermi surface as the map of k-
points where electronic bands intersect the Fermi energy
(ε = E − EF = 0).

The {100} cross sections of the Fermi surface are shown
in Fig. 5 for 0 and 1100 K. The cross section of the 0 K
Fermi surface in Fig. 5(a) is in excellent agreement with
that calculated by Landa, et al. [6]. The broadening ∆k
of the electronic states in Fig. 5(b) arises from both ther-
mal atomic displacements and the thermal layer. Repre-
senting the finite temperature Fermi surface as an overlay
of surfaces defined in the thermal layer allows us to ac-
count for all of the electronic states relevant for thermo-
dynamic and transport properties, such as the electronic
specific heat and conductivity [49].

The values for the intensity I(k) of the 1100 K Fermi
surface are lower than the values for the 0 K Fermi sur-
face. The broadening ∆k of the Fermi surface washes
away sharp features of the 0 K Fermi surface, especially
for the closed distorted hole-ellipsoids centered at the N
symmetry points. The distorted octahedron closed hole-
pocket centered at the Γ point at 0 K is no longer dis-
tinguishable from these hole-ellipsoids at elevated tem-

peratures. We observe a number of additional electronic
states at the Γ point at 1100 K arising from the broaden-
ing of the triply degenerate electronic band seen in Fig.
4. The formerly hollow octahedron is filled up with these
new electronic states in a thermally-driven ETT.

IV. DISCUSSION

A. Fermi Surface Nesting

The 0 K electron-phonon coupling strength λqν was
calculated for vanadium and is plotted in Fig. 6.
The maximum value for the electron-phonon coupling
strength is observed for the transverse phonon branch
near the Γ point along the Γ-H direction, coinciding with
the Kohn anomaly [48]. Peaks in the electron-phonon
coupling strength are also observed for transverse phonon
branches close to the Γ point along the Γ-N and Γ-P di-
rections. A high value for the electron-phonon coupling
strength is observed for the longitudinal phonon mode at
the N point. This is the same phonon mode that crosses
over with the high transverse acoustic mode. All of these
phonon modes stiffen with temperature (Fig. 3).

The peak in the electron-phonon coupling strength
along the Γ-H direction coincides with the peak in the
generalized susceptibility found by Landa, et al at the
wavevector q = [0.24, 0, 0] [6]. The wavevector q =
[0.24, 0, 0] spans nesting features, pairs of parallel sheets
in the Fermi surface {|nk〉} and {|mk′〉} that are related
by k′ = k + q + g, where g is a reciprocal lattice vec-
tor. A high density of these spanning vectors results in
high numbers of nonzero terms in Eq. 13. The peaks in
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FIG. 6. (Top) 0 K electron-phonon coupling strengths of
phonon modes calculated with Quantum ESPRESSO dis-
played over the 0 K vanadium phonon dispersion calculated
with s-TDEP. (Bottom) Autocorrelation of the Fermi surface
at 0 and 1100 K.

the electron-phonon coupling strength along Γ-N, Γ-P,
and at N may correspond to additional wavevectors that
span Fermi surface nesting features.

We can probe for spanning wavevectors by calculating
the periodic autocorrelation of the Fermi surface

R(q) =
1

NFermi

∑
k

I(k)I(k + q + g), (17)

where I(k) is the integrated Fermi surface intensity cal-

culated from Eq. 16 and NFermi is the number of k-points
on the Fermi surface. We expect peaks in the autocor-
relation where nesting features in I(k) and I(k + q + g)
overlap.

The autocorrelations of the 0 and 1100 K Fermi sur-
faces are plotted in the bottom panel of Fig. 6. A
sharp peak is observed in the 0 K autocorrelation at
q = [0.24, 0, 0] along the Γ-H direction, approximately
lining up with the location of the peak in the electron-
phonon coupling strength λqν . Similar sharp peaks are
observed near the Γ point along the Γ-N and Γ-P direc-
tions and at the N symmetry point, approximately lining
up with the peaks in λqν .

We still observe a peak at the N symmetry point in
the 1100 K Fermi surface autocorrelation. We see an
additional peak at the H symmetry point. No peak is
observed at q = [0.24, 0, 0]. None of the peaks in the
1100 K autocorrelation are as narrow as the 0 K peaks,
and the peaks barely stand out from the baseline. The
broad peaks in the 1100 K autocorrelation indicate that
electron-phonon interactions are reduced as nesting fea-
tures are smeared out with the thermal broadening ob-
served in Fig. 5.

B. Temperature Dependence of Electron-Phonon
Interactions

We can get a closer look at how changes in the Fermi
surface with temperature affect electron-phonon interac-
tions by calculating the density of specific spanning vec-
tors Dν(q) at 0 and 1100 K. By comparing the spanning
vector densities of phonon modes between the two tem-
peratures, we can see if the number of available electron-
phonon interactions are increased or decreased with tem-
perature. We can also see if the spanning vector densi-
ties and electron-phonon interactions are impacted by the
thermally-driven ETT observed in Fig. 5. We define:

Dν(q) =
1

NFermi

∑
k

∑
ε∈TL

∑
qi∈Sq

[F (k, ε)F (k + qi + g, ε+ ~ωqν) + F (k + qi + g, ε)F (k, ε+ ~ωqν)]

× [f(ε, T )(1− f(ε+ ~ωqν , T )) + f(ε+ ~ωqν , T )(1− f(ε, T ))] ,

(18)

where qi is a vector related to q by symmetry. We are
treating the Fermi surface F as a function of both k and
energy ε to take the conservation of energy into account.
We remind the reader that the Fermi surface function F
is equal to the average EBS 〈δNη〉:

F (k, ε) = 〈δNη(k, ε)〉 (19)

Our calculation of Dν(q) sums over all possible electron-
phonon scattering processes in the window from −0.50 to
+0.50 eV with respect to the Fermi energy, which covers
the thermal layer (TL).

In the 0 K limit, the Fermi surface function F is ei-
ther a nonzero integer or zero, and the thermal layer is
localized at E = EF. At 0 K, the sum in Eq. 18 would
simply be a count of the number of spanning vectors q
on the Fermi surface. At finite temperatures, the Fermi
surface function F is interpreted as the probability of the
presence of an electronic state at (k, ε) as a consequence
of electronic broadening from thermal atomic displace-
ments. According to the Fermi-Dirac distribution terms
in the second bracket in Eq. 18, electrons at energies far
from the Fermi surface are less likely to be involved in
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FIG. 7. (a)-(c) {100} cross sections of the 0 K Fermi surface nesting strengths for the (a) transverse phonon mode at q =
[0.24, 0, 0], (b) the longitudinal N phonon mode, and (c) the H phonon mode. Sample [0.24, 0, 0] and [0.5, 0.5, 0] spanning vectors
are shown in (a) and (b). (d)-(f) {100} cross sections of the 1100 K Fermi surface nesting strengths for the (d) transverse phonon
mode at q = [0.24, 0, 0], (e) the longitudinal N phonon mode, and (f) the H phonon mode.

scattering processes due to low occupation. This is also
described by the derivative of the Fermi-Dirac distribu-
tion in Eq. 16.

Information about nesting features is obtained from

the summands D
(k)
ν (q):

Dν(q) =
∑
k

D(k)
ν (q). (20)

The nesting strength D
(k)
ν (q) is the density of spanning

vectors q for the electronic state at wavevector k. Nest-
ing features are composed of electronic states with high

values of D
(k)
ν (q). Fig. 7 shows the nesting strengths

D
(k)
ν (q) for three phonon modes: the transverse phonon

mode at q = [0.24, 0, 0] (subfigures a and d), the longi-
tudinal N phonon mode (subfigures b and e), and the H
phonon mode (subfigures c and f).

The high 0 K electron-phonon coupling strength λqν
for the transverse phonon mode at q = [0.24, 0, 0] origi-
nates with the high density of vectors spanning the flat
features on the hole-ellipsoids (Fig. 7(a)). These flat
features are the previously-identified nesting features as-
sociated with the Kohn anomaly along Γ-H for vanadium
[6] and contribute to the high superconducting transition

temperature Tc of vanadium [56, 57].
The peak in λqν for the longitudinal phonon mode at N

is from the high density of spanning vectors between the
hole-ellipsoids and the distorted octahedron (Fig. 7(b)).
The crossover of the longitudinal and transverse acoustic
modes at N can be attributed to the interaction of this
phonon mode with these electronic states.

No notable peaks were observed in the 0 K values of
λqν and Fermi surface autocorrelation for the H phonon
mode. There are almost no nesting features for the
q = [1, 0, 0] spanning vector (Fig. 7(c)), such that no 0 K
electron-phonon interaction is observed for the H phonon
mode. The vector q = [1, 0, 0] spans more features of the
Fermi surface at 1100 K, but these features make up only
a small fraction of the number of k-points making on
Fermi surface at 1100 K. These features also display low
nesting strengths, such that the spanning vector density
Dν(q) for this phonon mode is actually reduced by a fac-
tor of 1.73 from 0 to 1100 K. This is consistent with our
observation that this phonon mode softens quasiharmon-
ically with temperature.

The [0.24, 0, 0] and [0.5, 0.5, 0] vectors span more k-
points in the Fermi surface at 1100 K than at 0 K, as
shown in Fig. 7(d) and (e). The nesting strengths for
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these phonon modes are also low. The spanning vector
density for the transverse mode at [0.24, 0, 0] is reduced
by a factor of 2.36 from 0 to 1100 K, and the spanning
vector density for the longitudinal N phonon mode is
reduced by a factor of 3.09 from 0 to 1100 K.

The reduction of the spanning vector density for the
transverse mode at [0.24, 0, 0] is not as severe as the re-
duction for the longitudinal N phonon mode, owing to
the introduction of additional nesting features from the
thermally-driven ETT. The thermally-driven ETT does
not fully counteract the reduction in the electron-phonon
interaction strength for this phonon mode, however. The
[0.5, 0.5, 0] vector does not span any of the new electronic
states at the Γ point, so the thermally-driven ETT has
no impact on the thermal evolution of the longitudinal N
phonon mode. This thermally-driven ETT could plausi-
bly counteract the phonon thermal stiffening, explaining
the apparent saturation of the adiabatic EPI observed by
Delaire et al [9] and the softening of the longitudinal peak
and the average phonon energies past 750 K. However,
we attribute the stiffening of the longitudinal N phonon
mode only to the weakening of the low-temperature EPI
owing to the thermal smearing of the Fermi surface. This
phonon stiffening decreases with temperature as it is op-
posed by softening from thermal expansion.

V. CONCLUSIONS

The nonlinear thermal stiffening of phonons in vana-
dium measured by inelastic neutron scattering was repro-

duced with first-principles calculations. The Fermi sur-
face of vanadium was calculated at 0 K and high tempera-
tures through band unfolding procedures. The sharp fea-
tures of the Fermi surface at low temperatures were dras-
tically smeared with temperature from atomic displace-
ments and from the thermal excitations of electrons. The
overall weakening of the electron-phonon interactions in
vanadium is primarily attributed to this thermal smear-
ing. There is a thermally-driven electronic topological
transition near the Γ point, but the thermal broadening
suppressed its effects on phonons. At high temperatures,
the phonon stiffening from this reduction in the EPI is
counteracted by phonon softening from thermal expan-
sion.
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Lin, and B. Fultz, Phys. Rev. B 77, 214112 (2008).
10 F. Giustino, Rev. Mod. Phys. 89, 015003 (2017).
11 S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi,

Rev. Mod. Phys. 73, 515 (2001).
12 O. Delaire, M. S. Lucas, J. A. Muñoz, M. Kresch, and
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