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Abstract

We examine the presence of non-magnetic impurities in a hybridization
gap model of a Kondo Insulator which has band inversion. The model has
been used to predict that SmBg is a Topological Insulator. We show that
there are two types of non-magnetic impurity states in a Kondo Insulator.
The type of states can be categorized as deep impurity states, similar to
the impurity states in an ordinary metal, and impurity states which have
energies within the hybridization gap. Unlike the deep impurity states
which only form if the impurity potential exceeds a critical value of the
order of the conduction band width, the in-gap impurity states form for
exceptionally small values of the impurity potential comparable to the
hybridization gap. This result may explain why Kondo Insulators are
found to be exceptionally sensitive to impurities. We show that these
in-gap states are caused by band inversion and have properties similar to
those expected for impurities in a Topological Insulator.

1 Introduction

Kondo Insulators are semiconductors that have extremely narrow gaps of the
order of 10’s - 100’s of meV’s which are thought to be hybridization gaps pro-
duced by the mixing of localized f and itinerant conduction band states [1, 2].
The smallness of the gap is generally attributed to a renormalization of the hy-
bridization process by strong Coulomb interactions between the f electrons [3].
It has been predicted that the cubic material SmBg is a time-reversal inversion
symmetric Topological Kondo Insulator [4, 5]. There are five different classifica-
tions of 3-d Topological Insulators, as shown in Ref.[6]. An insulator with cubic
symmetry falls into the topologically non-trivial (Zs) class if it is time-reversal
invariant and has inversion symmetry, and if odd numbers of bands, with differ-
ent parities, invert at an odd number of the four time-reversal invariant points
I', R, X and M of the Brillouin zone. The prediction of a non-trivial topolog-
ical character of SmBg has motivated extensive investigation of the properties



of SmBg and is consistent with the long-known finding [7, 8, 9] that that the
resistivity shows thermally activated behavior which plateaus and saturates at
temperatures below 4 K. The plateauing of the resistivity is consistent with the
existence of surface states [10, 11, 12, 13]. Transport measurements, using a
Corbino geometry [14], have separated out the bulk resistivity from the surface
contribution [15]. The bulk component of the resistivity is thermally activated
and increases by ten orders of magnitude [15], indicating that the bulk is an
exceptionally good insulator and that the surface is metallic. Surface states
have also been observed in ARPES [16, 17, 18] and tunneling spectroscopies
[19, 20, 21, 22, 23, 24|, which provides further evidence that is consistent with
SmBg being topological. However, despite a number of experimental efforts by
various groups, no direct evidence has been obtained which conclusively proves
that SmBg has a non-trivial gauge topological.

The properties of SmBg are not well understood, probably partially due to
the strong electronic correlations [25, 26, 27, 19, 21, 28, 29] and probably due
to the presence of impurities [30, 31, 32, 33, 34, 35]. For example, the Fermi-
velocities of the surface states that were inferred from different measurement
techniques [36, 16, 37] differ by three orders of magnitude. Magneto-transport
measurements show a puzzling hysteretic behavior [38]. The material shows a
linear T-term in the specific heat which has a coefficient that varies between 2
and 25 mJ/mole/K?, depending upon the sample preparation [32, 33, 34, 35].
Doping with 5% of magnetic impurities can lead to an order of magnitude in-
crease in the heat capacity [39]. Likewise, large linear T terms in the thermal
conductivity have been reported in some samples [40, 41], but are absent in other
well-characterized samples [42, 43]. Despite the very high resistance of the bulk,
optical conductivity in the TeraHz frequency range measured in transmission
mode [44] shows an extremely large conductivity indicating the existence of lo-
calized in-gap states, but was unable to determine whether the ac conductivity
was due to surface or bulk states. It has been shown theoretically that f vacan-
cies in Kondo Insulators produce in-gap bound states [45] and that only a small
concentration of about 4% of vacancies is sufficient to close the hybridization
gap [46]. Raman scattering experiments [47] show that as few as 1% vacancies
may close the gap. There are reports of unusual high-frequency quantum oscil-
lations found in some samples that have been claimed to have their origin in the
bulk [40]. These results have not been reproduced by other groups [37, 48, 49],
and it has been suggested [50] that the oscillations may have an extrinsic ori-
gin. This suggestion that the unusual oscillations have an extrinsic origin is
consistent with the large values of the linear-T" coefficient in the specific heat
and thermal conductivity that were reported along with the oscillations [40, 41].
The question has arisen whether the in-gap states are intrinsic or extrinsic.

Here we shall consider the effects of non-magnetic impurities in Kondo In-
sulators and show that they can support two-types of non-magnetic impurity
states, and that the in-gap states may be topologically non-trivial. The other
types of impurity states are topologically trivial. Our calculations are restricted



to non-magnetic impurities, though experimental suggests that magnetic impu-
rities [39, 51] may lead to a novel type of Kondo effect. In our calculations,
when a f vacancy is created, the on-site f level energy is removed to higher
energies and no-longer participates in a coherent hybridization process. Since
the categorization of SmBg as having non-trivial topology depends on the rel-
ative energies of the E; level and the three time-reversal invariant X-points in
the conduction band [4], a shift of E; in a finite volume of space may result in
a change of topology and the formation of topologically protected surface states.

A rationalization of our finding is given by consideration of an isolated va-
cancy as being adiabatically connected to a void in a Topological Insulator. As
shown in Appendix A, a void in a Topological Insulator can be modeled by
the Dirac equation with a spatially-dependent [52, 53, 54] which changes sign.
Changing the sign of the mass in the Dirac equation produces a change in parity
of the eigenfunctions and results in a change in the winding number. Voids with
sufficiently large ratios of the magnitudes of the masses and sufficiently large
radii have their own surface states that have topological characters similar to
those of topological surface states on the exterior of the crystal. The surface
states of a spherical void are characterized by their total angular momentum
(4, 7-) and the parity eigenvalue of the upper components of the Dirac equation.
The void surface states are in-gap surface states and have only half the degrees
of freedom of the bulk states. This is analogous to the reduction of the degrees
of freedom in the bulk of a three-dimensional bulk topological insulator that
occurs at a planar surface, which leads to spin-momentum locking. Also shown
in the Appendix, for a thin-film of a topological insulator, tunneling between
the front surface and the back surface can produce an exponentially small gap
in the surface state dispersion relation [55, 56] and can destroy spin-momentum
locking. We argue that an impurity can be modeled by adiabatically continuing
the void radii to arbitrarily small values, but also continuing the mass ratios to
arbitrarily large values which suppresses tunneling across the vacancy. Hence,
in this limit, the in-gap impurity states produced by a vacancy in a TI are
expected to be similar to the surface states on the exterior of a topological in-
sulator. In fact, as has been previously shown by Sollie and Schlottmann [45],
an isolated vacancy does produce an in-gap state of f character, but instead of
being localized at the vacancy site is spread equally over the surrounding near-
est neighbor shell of atoms. Here, we re-examine the model in more detail and
show that the formation of an in-gap impurity state involves the same ingre-
dients, namely band inversion by hybridization and strong spin-orbit coupling,
that are required for the creation of the topologically non-trivial surface states
in a Topological Kondo Insulator [4].

2 The Hamiltonian

We shall consider the effects of non-magnetic impurities within a quasi-particle
picture. Using a slave boson mean-field theory [3], one finds renormalized bands



with an effective hybridization matrix element V' — V', /1 — n; that mixes the
bands with different orbital characters, an effective f level energy E¢+ A which is
shifted towards the chemical potential and a renormalized indirect hybridization
gap V2/W (1 — ny) in which ny is the f occupancy. For SmBg, the indirect hy-
bridization gap is estimated to be of the order of 20 meV. The renormalization
of the quasiparticle bands is accompanied by a reduction in the f quasi-particle
weight, as has also been found in other models of strongly correlated topological
insulators using DMFT [57]. Furthermore, an investigation using an inhomoge-
neous version of the slave boson method that models a surface layer of a Kondo
insulator by setting the slave boson amplitude to zero [58], finds that at T'= 0
the hybridization on the layer next to the surface is only reduced by about 30%.
The authors of ref.[58] posit that the the intervention of magnetism or other in-
stabilities may prevent the establishment of the Kondo effect at T' = 0. Similar
calculations presented in Appendix B are in complete accord with the findings
of Alexandrov et al. [58] since they indicate that the T = 0 Fermi-liquid and
topological characters of the material are preserved in the presence of Coulomb
correlations, in the absence of intervening phase transitions.

The quasi-particle picture maps onto the non-interacting Hamiltonian intro-
duced by Sollie and Schlottmann [45],

H = ﬁo-i-ﬁ] (1)

where Hy describes a homogeneous electronic system described by the Anderson
Lattice Model
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where the degeneracy index « takes on D, values. The term H; describes the
potential due to an impurity nucleus located at the origin, R = 0,

1
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in which N is the number of lattice sites. The energy e(k) is the energy eigen-
value for a conduction band Bloch state of wave vector k. The unhybridized
conduction band density of states per site, pg ¢(w), has a width denoted by 2W.
The energy Ey,, is the binding-energy of the f orbital labeled by « and V (k) is
the strength of the bulk hybridization energy. The bulk hybridization strength
V (k) is an odd function of k, since we assume that the f and conduction bands
have opposite parities. In general, the hybridization has a form V (k) = d(k) . o
[4] and, so, is only expected to vanish at isolated points. The density of states
of the pure system is expected to exhibit an indirect hybridization gap of order



|[V|?/W. The energy AU, is the strength of the potential of the impurity on
the f site. As will be shown later, AU is to be identified with the differences of
binding-energy of the f-state on the impurity and the host f-orbital.

2.1 The f-electron Green’s Functions

The time-dependent single-electron ff Green’s function is defined as

where 7" is Wick’s time-ordering operator. The equations of motion are evalu-
ated from
0
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where the commutators can be evaluated in term of the df Green’s function.
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which satisfies a similar equation of motion. The Fourier-Transform of the f f-
electron Green’s function is defined as
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The poles of the Fourier Transformed Green’s Functions represent the excitation
energies of the system. The Fourier Transformed Green’s equations of motion
form a closed algebraic set of equations of motion that consist of
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The above equations can be combined to yield
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On defining the f f-Green’s function for the solid in the absence of the impurity,
via
(w — elk))

100 —
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one can solve for the ff Green’s function in terms of the T-matrix
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where the T-matrix is calculated as
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Figure 1: (Color online) The unperturbed f, p%/(w), (blue) and d, p®¢(w),
(red) hybridized density of states as a function of energy. The f-binding energy
is E¢ o = W/5 and hybridization matrix elements V' = /4. These values are
not representative of SmBg but were chosen simply for clarity of illustration.

2.2 The d-electron Green’s Functions
The time-dependent single-electron dd Green’s function is defined as
7 N
%@Wm::fﬁ<T%Mm@wm> (14)

Likewise, the fd Green’s function is defined as
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The Fourier Transformed dd-electron and fd Green’s functions satisfy the cou-
pled equations of motion
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1
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On defining the unperturbed dd-electron Green’s function by
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and the hybrid Green’s function
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one finds that the dd-electron Green’s function can be expressed in terms of the
T-matrix as

Gt o) = Opw Grod(w) + G50 (W) Ta(w) GEMw)  (19)

In the absence of the impurity potential AU and with E; = 0, the model
exhibits particle-hole symmetry. As will be seen below, this symmetry is broken
for finite AU but the symmetry in the low-energy spectrum is restored for large
| AU |.

3 The Density of States

The total density of states pr(w) can be expressed in terms of the trace of the
Green’s functions
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where 7 — 0+. The density of states can be separated into the term p%(w)
which represents the continuous density of states of states of the homogeneous
system and Apr(w) which represents the change in the density of states due to
the presence of the impurity potential at the origin.

pr(w) = pr(w) + Apr(w) (21)

The total density of states for the homogeneous system, pJ(w), can be expressed
as

Pl = N3 B w'—VE'f>] male = ) @)
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Figure 2: (Color online) The change in the total density of states Apr(w) due
to the presence of the impurity potential. The change in the density of states
is shown for the same choice of parameters used in fig.(1). The value of AU
was chosen as —W/2. It is seen that impurity potential removed spectral weight
from the edges of the hybridization gap and formed an in-gap impurity state of
weight unity [as is described by eqn.(34)]. The w-integrated total spectral weight
(2N >, D,) is conserved. The in-gap state has the form of a delta function.
Although AU is not sufficiently strong to produce a bound state below the
lower hybridized band, it is seen that the impurity potential has moved spectral
weight of the lower hybridized band to lower energies, thereby forming a virtual
bound state with a Fano anti-resonance.

where po(w) is the bulk conduction band density of states, per site, in the
absence of hybridization. This density of states has the form of two hybridized
bands, separated by a hybridization gap as is seen in fig.(1). The change in the
total density of states caused by the presence of the impurity is given by
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where 6(w) is the phase-shift of the T-matrix
To(w) = |Taw) | explida(w)] (24)

This result is in accordance with Friedel’s theorem [59]. The change in the
density of states is shown in fig.(2). The w integral over Apr(w) is zero since
the total number of states in Hilbert space is conserved. The phase shift jumps
by 7 at the position of the bound state, indicating that the impurity state has
a total spectral weight of unity.



3.1 Bound State Formation

In the limit of zero hybridization, the unperturbed f-electron Green’s function
reduces to

1
f,0 _ )
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Hence, the expression for Apr(w) simplifies to
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This result corresponds to the production of a series of delta functions with
weights plus or minus unity located at the energies

w = Efa—l—AU

)

w = Ef,a (27)

The first corresponds to impurity bound states and the second to the removal
of the localized f levels at the impurity site. The total number of states is
preserved, in accordance with the conservation of the dimensionality of Hilbert
space. The above analysis identifies AU with the difference of the f-binding
energies of the f-state of the impurity and the host f-state.

The presence of hybridization drastically changes the above result. The
hybridization introduces band inversion in the total density of states and pro-
duces an indirect hybridization gap. In general, the change in the total density
of states caused by the impurity, Apr(w), can be written as

AU el f,0 AU £,0
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The above expression for the density of states involves the real and imaginary
parts of the unperturbed f f-electron Green’s function
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Figure 3: (Color online) A plot of the real (blue) and imaginary part (red) of
the k-averaged homogeneous f-electron Green’s function Gi’o(w), in units of
the inverse d-band width W~1. The values of Ef/W and V/W were chosen,
respectively, as 1/5 and 1/2. Bound states occur at energies where (55 ) shown
by the horizontal dashed black line intersects with the blue line whenever the
imaginary part (shown in red) is zero.
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and their derivatives. The unhybridized d-electron density of states pg q4(€) is
non-zero in the energy width W > € > —W. However, the non-monotonic
|V I?
w — Ef o
part, shown in eqn.(30), to fall to zero within a hybridization gap of full width

variation of the argument ¢ = w — with w also forces the imaginary

2
A = 2'3/' (31)

located around Ef,. The real and imaginary parts of the unperturbed ff
Green'’s function are sketched in fig.(3). One sees that the imaginary part (shown
in red) has a continuous spectrum which becomes an infinitesimal constant out-
side the f-band width and within the hybridization gap. Bound states may be
formed in these energy windows.

Within the hybridization gap at w = F¢ o
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so the imaginary parts of the unperturbed f f-Green’s functions are infinitesimal
and their derivatives are zero. One may reach this same conclusion by means of
an alternate argument. Note that the imaginary part of the f f-Green’s function
can be generated by the replacement w — w 4+ ¢ 7 in the purely real part of
the Green’s function, f(w), which is analytic and smoothly varying within the
hybridization gap. To first-order in 7, one may Taylor expand
flw +1in) :f(w)—kin%g})-i-... (33)
As seen in fig.(3), the function is approximately linear, therefore, one expects
that the derivative of f(w) will not only be infinitesimal but also approximately
constant. Thus, the derivative of the imaginary part of the ff-Green’s function
is expected to be negligibly small. Both arguments imply that, for the energies
for which the host’s hybridized density of states is zero, the impurity contribu-
tion to the density of states is given solely by the second term of eqn.(28) which
reduces to
App(w) = — % % ReGL0 (w) 5(1 - ATVU Z&eeG{ﬁ{a(w)) (34)
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Likewise, for w equal to F¢ , one finds that
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where the contributions from the simple poles at w = Ey, have cancelled.
Therefore, due to the small magnitude of the hybridization gap and the asym-
metry in the electron density of states, the real part of the f f Green’s function is
rapidly varying within the hybridization gap. Its slope at Ey , is approximately
given by

1 0

k
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(36)
As aresult, the real part of the k-averaged unperturbed f f-Green’s function dips
to a very large negative value below the upper edge of the hybridization gap and

rises to a very large positive value just above the lower edge of the hybridization
gap (as depicted in fig.(3)). Hence, even exceptionally small positive or negative

values of AU (|AU| <« % ) are sufficient to produce a solution of the equation
1 1 £,0
k

thereby producing zeroes in the arguments of delta functions of eqn.(34). The
magnitude of the critical value of AU can be much smaller than the hybridiza-
tion gap. which for SmBg is of the order of 10 ~ 20 meV. Due to band inversion,

11



positive values of AU slightly greater than a critical value produce in-gap bound
states with energies just above the top of the hybridized valence band, whereas
negative values of AU produce in-gap bound states just below the top of the
hybridized conduction band. Since spectral weight is conserved, the spectral
weight of the in-gap bound state is primarily removed from the closest edge of
the hybridized band structure. For larger magnitudes of AU, the in-gap bound
states shift away from the edges of the gap and the spectral weight is shifted to
the bound state from both the upper and lower edges of the hybridization gap
in almost equal proportions, as can be seen in fig.(2).

In addition to the bound states within the hybridization gap, sufficiently
large values of AU may also produce bound states either above or below the
topmost or lowermost edge of the hybridized bands. The criterion for the pro-
duction of a deep-energy bound state is approximately given by

AU > W (38)

The critical value of AU for the second type of states is expected to be of the
order of eV in contrast to the small critical value required to produce in-gap
bound states. The spectral weight associated with the formation of the bound
states is removed from the continuous portion of the spectrum, and can be
expressed in terms of the phase shifts through Levinson’s Theorem [60]. Positive
values of AU that are greater than the critical value produce bound states with
energies above the top of the conduction band, whereas negative values produce
bound states with energies below the bottom of the valence band (as shown in

fig.(4)).

3.2 The Local Density of States

The number of f-electrons at the site R can be expressed as

1 .
<fhofra > = = > expli(k—K).R] <fl, fva > (39
k.k’

From which, one finds that the f-density of states at site R is given by the
17 — 0 limit

11 . .
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(40)
The d-density of states at site R is given by the analogous limit
11
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(41)
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On using the expressions for the ff and dd Green’s functions, one finds
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and
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3.2.1 The Local f Density of States

The expression for the f-density of states at the impurity site R = 0 can be
simplified, since the phase factors in the term proportional to the T-matrix
reduce to unity. On using the expression for T-matrix, and putting the first and
second term over the denominator of the T-matrix, one finds that the terms in
the numerator proportional to AU cancel. Due to the cancellation, the f-density
of states at the impurity site, p}f%:()(w)7 reduces to

1 f,0
1 ~ 2k Gialw)
Phoolw) = — = Z Sm ( = 1 7.0 >
Tr o 1 _AU N ZE” Gk” ( )
iy 5y 9m o)
T (1= B8 ReG) (W) 4+ (B Y SmGLY ()2
(44)

Hence, within the hybridization gap, the f-density of states at the impurity site
can be simplified as

k/l

which has an explicit factor of AU~!. Therefore, the in-gap bound state has a
negligibly small w-integrated spectral weight on the impurity site which is given

by

~arr L L Sopealt W] o~ VI (46)
dw N < “Ta W2 AU?
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Figure 4: (Color online) The energy-dependence of the local f-density of states
on the impurity site pézo(w) for three values of AU, AU = —1.5 W (red),
AU = —1.0 W (green) and AU = —0.5 W (blue). The values of E; and V are
the same as in fig.(2). For all values of AU, there is a bound state within the
hybridization gap. The delta function has been given a small width to make it
visible. It is seen that the intensity of the in-gap bound state is very small and
decreases as AU 2 when AU increases. For AU = —1.5 W, a bound state has
split off from the bottom of the band and has removed almost all of the spectral
weight from the continuous spectra. For AU = —0.5 W, an external bound
state has not formed, but the on-site impurity potential has shifted spectral
weight towards the bottom of the f-band producing a virtual bound state.

The small weight is due to the factor of AU ! originating from the cancellation
of the phase factors and also a factor involving the derivative that quantifies the
wave-function or quasi-particle renormalization. Hence, in the limit AU — oo,
the amplitude of the bound state at the impurity site vanishes, in accord with
the findings of Sollie and Schlottmann. The f density of states at the impurity
site is shown in fig.(4) for negative values of AU. In addition to the in-gap bound
state, spectral weight from the continuum is seen to be shifted to lower energies.
For AU with magnitude smaller than W, a virtual bound state [61, 62, 63] is
seen to form at w ~ Ey + AU with a width given by m V?pg 4(w) which, as
|AU]| is increased, moves to lower energies, sharpens up and then splits off the
bottom of the valence band forming a deep energy bound state.

The f density of states on the nearest neighbor site, R = (1,0, 0), is shown
in fig.(5). As the energy of the bound state approaches E, the spectral weight
increases towards a maximum value estimated as

w2

36 47
V24 24 W2 ()
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Figure 5: (Color online) The local f-density of states on the site R = (1,0,0)
neighboring the impurity, p{17070) (w) as a function of w, for three values of AU,
AU = —1.5 W (red), AU = —1.0 W (green) and AU = —0.5 W (blue). The
values of E; and V' are the same as in fig.(2). For all values of AU, there is a
bound state within the hybridization gap. The delta function has been given a
small width to make it visible. The intensity of the in-gap bound state on the
nearest neighbor site is seen to decrease as the magnitude of AU is increased.
For AU = —1.5 W, a bound state has split off from the bottom of the valence
band, however, there is no visible vestige of the external bound state on the
neighboring site, indicating that it has a localization length less than the lattice
spacing.

Hence, in the wide-band limit, % of the in-gap bound state spectral weight is
of f character which is equally distributed on the shell of nearest-neighboring
atoms, in accord with the calculations of Sollie and Schlottmann in the particle-
hole symmetric case where Ey = 0 and AU — oo. It is seen that the spectral
weight in the continuous portion of the R = (1,0, 0) spectrum is larger than for
R = 0. Furthermore, as seen in fig.(6), there is little change in ,0(1 0. 0)( w) at
the bottom of the valence band, even when the deep energy bound state forms.
This indicates that the both the virtual bound state and the deep-energy bound
states are well-localized on the scale of a lattice spacing. For R = (2,0,0), the
f-spectrum is almost indistinguishable from the bulk f density of states.
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Figure 6: (Color online) The energy-dependence of the local f-density of states,
pé(w), at site R from the impurity, for AU = —0.5 W. The values of E; and
V are the same as in fig.(2). For small AU, the local f-density of states on the
impurity site exhibits a virtual bound state and has a small amplitude of the
in-gap bound state. The f weight of the in-gap bound state is primarily located
on the sites which are nearest neighbor to the impurity, i.e. R = (1,0,0). The
delta function has been given a small width to make it visible. The amplitude
of the in-gap bound decreases with increasing separation from the impurity site.

3.2.2 The Local d-Density of States

The d-density of states at the site of the impurity, R = 0, is given by the
expression

d w = ,l Sm (17“1 Ef ) Zk ka()
Ph_o(w) - Z ( o ())

d,
1 (1—wAEUf ) & Tk Cia@) ] 5 34 Sm GLL(w)
T = Zk// §R€G£/9 (W) + (8¢ PV \smGi,E))a(w))Q
d, )
1 <1—W> Y Gea@) ] [1 = 47 5, Re GLO(w) ]
T e — B ReGLD ()2 + (BE Xpr SmGLY  (w))?
(48)
The on-site d spectral weight of the in-gap bound state is evaluated to be
V2
—_— 49
V24 E3 4+ 52 ()

for moderately small values of AU. The sum rule for the in-gap state’s spectral
weight is saturated by the on-site d and nearest neighbor f weights, in the
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Figure 7: (Color online) The local d-density of states on the impurity site R =
(0,0,0) for AU = —0.5 W (blue) and for AU = —1.0 W (green) and the bulk d-
density of states where |R| — oo (red). The values of E¢ and V' are the same as
in fig.(3). There is a bound state on the impurity site within the hybridization
gap. The delta function has been given a small width to make it visible. The
d-density of states on the impurity site shows a Fano anti-resonance near the
energy Ey + AU where the f-density of sates exhibits a virtual bound state.

limit of particle-hole symmetry Ey — 0. As seen in fig.(7), the continuous
portion of the on-site d spectral density exhibits a strong Fano anti-resonance
[64] at w ~ Ef + AU. The local d density of states on the nearest neighbor
site R = (1,0,0) is shown in fig.(8). When compared with the on-site d density
of states, it is seen that the strength of the anti-resonance is diminished on
the nearest neighbor sites. The Fano asymmetry parameter gr does depend on
R and varies rapidly with energy but increases when the energy of the virtual
bound state decreases towards the bottom of the valence band.
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Figure 8: (Color online)The energy-dependence of the local d-density of states
on the site R = (1,0, 0) neighboring the impurity for AU = —0.5 W (blue) and
for AU = —1.0 W (green). The values of E; and V are the same as in fig.(3).
The delta function representing the in-gap state has been given a small width
to make it visible. A residual small Fano anti-resonance occurs on the nearest
neighbor site around the energy Ey + AU.

4 Summary

As proposed by Fu, Kane and Mele [65], an insulator with an odd number
of Time Reversal Invariant (TRI) points in the Brillouin zone is expected to
have a non-trivial topology if the parities of the occupied states are reversed
at an odd number of TRI points. A continuum of non-degenerate zero-energy
surface states is then expected to form at the interface between topologically
trivial and topologically non-trivial insulators. As illustrated in the Appendix,
this expectation is severely modified if either the topological or non-topological
regions have finite spatial extents, in which case, the interface states have fi-
nite excitation-energies due to the discretization caused by the finite length
scale. However, when tunneling across the finite region is suppressed, the low-
est excitation-energy collapses onto zero. For the half-filled Anderson Lattice
Model, the topological characterization of the insulating state as trivial or non-
trivial depends on band inversion [4] since the parities of the TRI points k,,
are defined by 6(k,,) = sgn(eq(k,,) — Ey). If the unperturbed system has a
non-trivial topological character, then a uniform relative shift of E; by |AU|
(< W) over a finite region could result in the parities of the occupied states
changing. Therefore, an in-gap state may form at the interface between the two
regions. For a material with electron-hole symmetry, i.e. Ey = 0, the in-gap
states are at zero energy, when tunneling across the region is suppressed by a
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large |AU|. Thus, even if the region in which band inversion occurs is restricted
to one site, |AU| may suppress tunneling and lead to low-energy surface states
that may have non-trivial topologically characters.

We have shown using the hybridization gap model of a Kondo Insulator that
non-magnetic impurities may produce two types of bound states. One set of
bound states only form if the impurity potential exceeds a critical value which
is comparable to the band width. These bound states are split off from the upper
(lower) edge of the conduction (valence) band and are related to the bound states
found in topologically trivial metals [59]. For values of the impurity potential
smaller than the critical value, the states merge with the continuous portions
of the density of states and form broadened virtual bound states. The other
type of bound states form within the hybridization gap and occur for extremely
small values of the impurity potential which can be significantly smaller than
the hybridization gap when the density of states is highly asymmetric. This
illustrates the extreme sensitivity of Kondo Insulators to imperfections. The
in-gap bound states gap have the form of surface states that extend over shells
neighboring the impurity. In other words, they form metallic states on the
surface surrounding the defect, much the same way as the surface of Topological
Insulators supports a metallic surface states which surrounds the insulating bulk.
The existence of the hybridization gap and the in-gap states is due to the band
inversion present in the model. If the features of the hybridization gap model
are adjusted to accommodate the conditions necessary for the classification as
a Topological Insulator [4], the in-gap impurity states are also expected to have
non-trivial topological character.
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6 Appendix A

In this appendix, we consider a model of a Topological Insulator given by the
Dirac equation with a spatially dependent mass [52, 53], for two types of geome-
tries. If the mass changes sign at a surface separating two regions, the system
remains insulating deep with each region but the parities of the solution in these
regions are reversed. Since the Dirac equation only has one trivial time-reversal
invariant point, a switch in the mass results in a switch of parity which leads to
the interface being classified as one which joins a topological non-trivial and a
topological trivial region.

A TT Thin Film

A thin film of a topological insulator with an energy gap of 2mc? surrounded
by a topologically trivial insulator with the same magnitude of the gap. We
assume that the mass depends on the spatial coordinate z via

m(z) = m(l—2®(z+a)+2@(z—a)) (50)

The Dirac equation has surface states [55] with a dispersion relation given by
B\ 2

(£) - (hsy)? 4 (me = (mey G51)

where k| is the component of the momentum parallel to the surface and the term
proportional to m? represents the negative kinetic energy due to tunneling. The
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surface states exponentially decay over a length scale £ given by

e= 1 (52)

my C

where the decay length is determined by m; which is given by the solution of

2
my C mq

exp{ 4 o a} =1 (m) (53)
Therefore, in the limit @ — oo, one finds that m; increased monotonically
my1 — m and the dispersion relation for the surface excitations becomes gap-
less. The monotonic decrease in the magnitude of the gap with increasing a
has been observed [56] in photoemission experiments on BisSes. In the limit
a — 00, the simultaneous energy - k| eigenstates are two-fold degenerate. One
choice of basis consists of a pair of surface states, one localized at the front
surface and one localized around the back surface of the film. The effective
Hamiltonian for the upper-components of the surface state Dirac spinor reduces
to a Rashba spin-orbit coupling Hamiltonian, therefore, the pair of orthogonal
surface states exhibits spin-momentum locking, in which the spins are aligned
parallel to the surface with directions perpendicular to the in-plane momenta.
However, a linear superposition of the precisely degenerate states leads to charge
fractionalization [52] and a net normal component of the thin film’s magnetiza-
tion.

A Spherical Void in a TI

A spherical void in a topological insulator can be described by the Dirac
equation, in which the mass m(r) is dependent on the radial distance. The four-
component Dirac spinor ¥ can be represented in terms of two two-component
spinors

"
v o 1< f(r) Q§g1> (54)
r\ ig(r) Q2

in which the orbital angular momentum is given by | = j + % and where the
two-component spinor-spherical harmonics are given by

ity _ IRl s 1 JH1+Jz i+t
Qj1jz - 2] + 2 }/jz_%<9790) ( 0 + 2] T 9 Y;z+%(9,tp)
jf% _ .]+.]Z J— 1 ]— .Z J*% 0

g T 235 Ja—
It should be noted that the upper and lower components of the energy eigenfunc-
tions of the Dirac equation have different [ values and, therefore, have different

Lol Bl
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parities. The spinor spherical harmonics are related by the identity

(55) et = - o (56

in which ¢ is the vector spin operator with components given by the Pauli
matrices. The radial functions f(r) and g(r) satisfy the set of coupled equations

(B—UW) —m)e) f — ch (3~ g = 0
(E—-U(r)+m(r)c®) g + ch(%-ﬁ-g)f =0 (57)

where k = £(j + 1) and U(r) is a spatially varying electrostatic potential.
Generally, the energy eigenstates of the spherically symmetric Dirac equation
are classified by the three quantum numbers (j,j.,x). We shall consider the
mass to have the form

m(r) = M — (M+m)O(r—a) (58)

such that the system is topologically non-trivial in the region where r > a and
topologically trivial in the region r» < a. The spherical boundary at » = a sep-
arates the void from the Topological Insulator [66]. The electrostatic potential
is chosen to be non-zero inside the void

Ulr) = AU ©O(a—r) (59)

Since the mass and the electrostatic potential U (r) are constant in either region,
one may define radial quantum numbers for each region by
(E—-AU)? — M*c* = n? 2k
4 2
E* —m?ct = Bk (60)
The bulk states correspond to positive values of k, but the in-gap states are
found by analytically continuing k to imaginary values. When expressed in

terms of the dimensionless variables p = kr, one finds that the solutions in the
two regions satisfy the Riccatti-Bessel equation. On setting

flp) = AVp Zj i1
9(p) = BVp Z._y (61)

one finds that the solutions are of the form of Bessel functions of half-integer
order. For r > a, normalizability requires that the allowed solutions are Bessel

functions of the first kind, Z,; 1) = Jy,+1. The Bessel function recursion
relations
2v
S+ dvyr = — J,
p
0J,
Jo_1—Jy 2 62
1 +1 ap (62)
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for v > 0 can be used to yield the relation between the amplitudes of the upper
and lower components.

E— AU — Mc? .
<Chk> A< = — Slgn(lﬂ)) B< (63)
<

Since, are interested in the in-gap states, the solutions in the exterior region will

be restricted to the Hankel functions H "

ol which have an asymptotic variation
2
of

40~ el tip] (64)

which are exponentially decaying when k-~ is analytically continued to imaginary
values. The Bessel function recursion relations lead to the relation between the
amplitudes of the upper and lower components

E + mc? .
(Chk> A> = — Slgn(ﬁ?) B> (65)
>

Continuity of the spinorial wavefunction at » = a leads to the energy eigenvalue
equation

, o)
(EAU+MC2> <J|H+;|;(k<a)> B (Emc2> (h|n+;|;(k>“)>
ch ke j|,€7;|7%(k<a) ch ks h(i) L (k>a)

In=41-3
(66)

expressed in terms of the spherical Bessel functions. Therefore, the eigenstates

are degenerate w.r.t j,, so the energy can only depend on j and possibly on the
. 1 1 . .

parity (—1)!**+21=3. The spherical Bessel functions are defined by

T
Jv(p) = — Jou1(p
(p) 35 Jers(0)
™
i) = g ;) (p) (67)

The first few analytic continued spherical Bessel functions are given in the Ta-
ble(1).
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The in-gap state eigenvalue equation only has positive energy solutions for
positive values of k, Kk = (j + %), as expected from the band inversion in a
topological insulator. Hence, the surface states can be uniquely characterized
by the sign of their energies and (j,j,). As a result, the surface states have
lost half their degrees of freedom, due to the locking of the spin with orbital
angular momentum. The bound state energies as a function of the radius a and
representative probability distributions for j = % are shown in fig.(9). Note that
the surface states have inverted parity.

7 Appendix B

The slave-boson Hamiltonian for an inhomogeneous Anderson Lattice Model in
the mean-field approximation is expressed as

Hyr = Z (Efi+X\i) friafi,o' + Z €k dgadg,a + Z i bib;

io k,o i

1 . )
e > | EEV(E) fl e b + e EE VI (k) b d), fio
\/ﬁ (7) fi,a k, (7) k,o f’

ik.o

(68)

The impurity is modeled by a shift of the f binding energy on site By = 0 form
its uniform value Ey by AU

Ery = Er + AU 40 (69)
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Figure 9: (Top Panel) The bound state energies for j = 3, j =2, j =3, .. as

a function of the ratio of the radius a to the decay length ——. (Bottom Panel)
The radial distribution functions for the upper components (I = 1 blue-solid)
and lower components (1=0 red-dashed) of the j = % positive energy bound
state for a = 1 (thick), a = 2 (medium) and a = 4 (fine).

For a paramagnetic phase, the complex slave-boson fields b; satisfies the con-
straints

bibi = 1 — Do Y < fifi > (70)

which projects out multiple occupancy on site R; and the Lagrange undeter-
mined parameters \; satisfy the extremal condition

Dy ,
i b+ S etE vk < fldy> = 0 (71)
k

VN

where the factor of D, accounts for the spin degeneracy. The impurity induces
a deviation of the boson condensate, which is mainly centered on the impurity
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ion and almost completely recovers on the sites nearest to the impurity [58].
Therefore, we shall write

bi b+ Ab 61"0
A= A+ AXdig (72)

The following analysis has been extended to deviations of the boson amplitudes
which extend to the nearest-neighbor sites.

The Green’s Functions

The self-consistency equations can be found by solving the inhomogeneous
mean-field equations of motion for the f-f and d-f Green’s functions. The
momentum-dependent {-f Green’s function is found as

Gilow) = GMpw) dep + G k(w) Thw (W) 6/ (w) (73)
where G/f k(w) is the homogeneous Green’s function given by

(hw — €x)
gffﬁ(w) = (hw — Ef — X)(hw — €x) — [V (k)|? ™)

and T}, (w) is the T-matrix. The T-matrix can be expressed as

0 1 / 2 /
Tow(w) = ]1V(A +A (k,Ak(L;A (M)) 75)

where the terms in the numerator are expressed as

1
0o _ 2
A = AU 4+ AX + N;A(kl) |AD|
AY(k, k) = A(k) b Ab* + Abb* A(E)
, 1
A% (kK = |Ab* [bf? NZ G 1, (W) (A(ky) — A(R))(A(Ry) — A(K))
k,
(76)
and where the denominator A(w) is given by
Alw) = 1 - B' — B? (77)
where the terms are
1 * *
B' = Nngff&(w) [AO+A(k1)(bAb + b*Ab)
1
B2 = AW B e 3 677 () G () (M) — Ak (78)

kik,
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in which

V@®P
Despite the fact that the denominator depends on products of spectral functions,
due to cancellations Sm A(w) is zero for frequencies outside the continua of the
homogeneous host. As seen in fig.(10), the poles in the T-matrix found using
slave boson mean-field calculations are in a one-to-one correspondence with
those of the non-interacting model described in the main text.
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Figure 10: The w-dependence of the real and imaginary parts of the denominator
of the T-matrix, A(w) in dimensionless units. For the chosen parameters, the
T-matrix has a pole at an energy inside the hybridization gap and a pole at the
energy of a virtual bound state.

The d-f Green’s function is obtained by the same analysis and is given by

Ab*
GZJ:&/ (w) = (6k‘,k' b* + m ) gde(CU) + gdfﬁ(w) b* SE/(O‘)) gffﬁ/(w)
(80)
where the homogeneous d-f Green’s function is given by
V*(k)
df _ 1
G = G T N - ) WP (51
and Sy (w) is given by
AU + AN+ [ Ab*b + b*Ab + |Ab]2 | A(K)
SE’ (w) —
N A(w)
(82)
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Finally, the d-d Green’s function is expressed as

Gi(@) = e G¥(w) + GYi(w) Rw) 67 (w)
(83)
where R(w) is found as
Rlw) = b2PAU + (hw — Ef — X\) [Abb* + bAb* + |Ab)?]
W= N A(w)
(84)
Or, equivalently
Giw (@) = dpw §¥% (W) + G¥(w) P(w) G670 ()
V*(k) [ Ab*b+ 5|AbN sy g, [(DTAb+ SALPY V(K
e — ) ( Naw )% W% O\ A e
(85)
where P(w) is given by
Pl) = b A(k)[Ab*b + L|AbP] + AU + AN + [b*Ab+ 1| AB2]A(K")
w) = | N A(w)
(86)
For the case of a uniform bose-condensate, these results reduce to those given
in the main text.
Inhomogeneous Self-Consistency Conditions
The f-occupation of the central site R = 0 is given by
_oy - _ Da = dw ——
nf(R=0) = - 72 [ 7f(w) Sm G&,E(W)
kK 00
Ir
D, * dw N G’ (w)
= - — — — 87
v X [T g e
which is related to the slave boson amplitude at the impurity site (b* + Ab*).
Likewise, the Lagrange parameter at the origin is found from the equation
* * DOé
A+ AN (b +A0") = — sz; Vik) < fl di, > (88
That inhomogeneous part can be evaluated as
A+ AN (b + AV ) —Ab* = — D, /m7 f(w) Sm [A(w) N; A(ky) G (w)
(89)
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where

Clw) = Ab*+ bﬁ*z ( (AU + AN) gg(w) + (ABb* + Ab*b + |Ab|?) A(ky) gg@) )
k,

Similar to the bulk self-consistency equations, when the energy of the f-impurity
state Ey + AU is far below the gap, the constraint A leads to a large upward
shift of the effective impurity level towards the Fermi-energy and leads to a
further reduction of the weight of the local quasi-particle density of states. This
result is analogous to the Kondo limit of an impurity model in a metal, in which
the width of the Abrikosov-Suhl resonance above just above the Fermi-energy
depends exponentially on the separation between the bare f level and the Fermi-
energy. Our result is also in accord with the results of Alexandrov et al. [58],
who found that the T' = 0 solutions of the mean-field slave boson consistency
equations remain non-trivial in the presence of inhomogeneity.

The results obtained from our mean-field slave boson calculations are in
accord with those described in the main text. The main difference is that, when
the bare impurity level lies outside the gap, the on-site f quasi-particle weight is
finite but exponentially small, which leads to the incoherent peak at (E; + AU)
having the dominant on-site spectral weight. However, although the poles of the
T-matrix show the presence of both an in-gap bound state and the deep-energy
bound state, the local f density of states

1 Gl7 (w)
heat) =~ 3 om [¥5g] ay

shows no spectral weight at the in-gap pole. This is due to the entire f spectral
weight of the in-gap f state being distributed on the nearest neighbor atoms, as
is discussed in the main text.
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