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We describe a simple setup generating pure valley currents – valley transport without charge
transport – in strained graphene nanoribbons with zigzag edges. The crucial ingredient is a uniaxial
strain pattern which couples to the low-energy Dirac electrons as a uniform pseudomagnetic field.
Remarkably, the resulting pseudo-Landau levels are not flat but disperse linearly from the Dirac
points, with an opposite slope in the two valleys. We show how this is a natural consequence of an
inhomogeneous Fermi velocity arising in the low-energy theory describing the system, which maps
to an exactly-solvable singular Sturm-Liouville problem. The velocity of the valley currents can
be controlled by tuning the magnitude of strain and by applying bias voltages across the ribbon.
Furthermore, applying an electric field along the ribbon leads to pumping of charge carriers between
the two valleys, realizing a valley analog of the chiral anomaly in one spatial dimension. These
effects produce unique signatures that can be observed experimentally by performing ordinary charge
transport measurements and spectroscopy.

I. INTRODUCTION

The electronic band structure of graphene1 hosts two
symmetry-inequivalent Dirac points, leading to an effec-
tive pseudospin degree of freedom – the valley – at en-
ergies close to the charge neutrality point. The possi-
bility of addressing or controlling the valley degree of
freedom2–5 has ushered in the field of “valleytronics”6,
which now extends beyond graphene to gapped 2D Dirac
materials7 such as transition-metal dichalcogenide mono-
layers8, bilayer graphene9–11 and two-dimensional ferro-
electrics12,13.

In monolayer graphene, a plethora of valley-specific
phenomena has been investigated recently. This includes
valley filters and switches2,14–19 (which selectively re-
flect electrons within a given valley), valley beam split-
ters18–21 (which spatially separate electrons according to
their valley index) and waveguides for valley-polarized
currents22,23. The generation and detection of pure val-
ley currents – currents transporting only the valley de-
gree of freedom but no charge – has also received some
attention. Theoretical proposals include optical excita-
tions generated by polarized light24, cyclic strain defor-
mations25, quantum pumping26,27 or applying AC bias28.
Valley currents have been observed experimentally as
edge states in graphene superlattices29 and graphene bi-
layers9–11, but not yet in monolayer graphene.

The goal of this paper is to describe an alternative way
to generate valley currents in monolayer graphene sub-
jected to non-uniform elastic strain. It is well known that
elastic strain can be used to tailor the electronic proper-
ties of graphene30–32– the most dramatic example being
the creation of uniform pseudomagnetic fields33–40 which
lead to Dirac pseudo-Landau levels (pLLs)34. This ef-
fect was first observed in STM measurements of graphene
“nanobubbles” grown on a platinum substrate41. Subse-
quent experimental work confirmed this result42–45, in-
cluding a recent momentum space observation of pLLs

KK’

FIG. 1. Graphene nanoribbon with zigzag edges and peri-
odic boundary conditions along the x direction. An inversion-
symmetry breaking uniaxial strain (represented by the color
scale) is applied along the y direction and generates a uniform
out-of-plane pseudomagnetic field B. The low-energy physics
of this ribbon is described by dispersing pseudo-Landau lev-
els with an opposite velocity in the two valleys, as shown by
blue (K) and red (K′) arrows. This leads to equilibrium
valley currents in the bulk. Localized edge states also host
counter-propagating valley currents.

using ARPES46. In this work, we show how strain can
lead to equilibrium valley currents in graphene nanorib-
bons through the formation of dispersive pLLs.

Our setup is described in Fig. 1 – we consider a
graphene nanoribbon with zigzag edges, infinite along the
x direction. A static, uniaxial strain pattern is applied
along the y direction. The applied strain increases lin-
early with y, generating a uniform pseudomagnetic field
B perpendicular to the plane which quantizes the low-
energy electronic spectrum to a ladder of pLLs. These
pLLs show the ∼

√
|n| energy spacing characteristic of

Dirac electrons but are not flat – instead, they disperse
linearly near the Dirac points, with an opposite slope
in the two valleys. In equilibrium, the charge current
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carried by each valley cancels out but the valley current
adds up – thus the bulk of the ribbon carries a net valley
current. The edges hosts counter-propagating valley cur-
rents (in a direction determined by the sign of B) – thus
the ribbon as a whole acts as “valley-helical” wire (see
Fig 1). This counter-intuitive feature is naturally un-
derstood in terms of an inhomogeneous Fermi velocity47

arising in this geometry. We provide a novel analyti-
cal solution of a singular Sturm-Liouville problem which
clarifies this connection. We also discuss how to control
the slope of the pLLs, and thus the velocity of the valley
currents, by applying bias voltages across the ribbon. To
this end, we generalize the seminal solution of Ref. [48] to
our setup, with Dirac electrons subjected to perpendicu-
lar electric and pseudomagnetic fields. Finally, we show
that applying an electric field along the ribbon leads to
pumping of charge carriers between the two valleys, thus
realizing an analog to the chiral anomaly in one spatial di-
mension, and discuss a related negative strain-resistance
effect observable in electrical conductivity measurements.

The rest of this paper is organized as follows. In Sec. II
we describe our model and derive the low-energy the-
ory in the presence of uniaxial strain. In Sec. III we
summarize the analytical solution for the bulk pLLs and
compare our results to numerical calculations. We also
discuss the appearance of valley currents and the chiral
anomaly. In Sec. IV we consider the effects of electric
fields (either externally applied or induced by the strain
itself) and discuss how they renormalize the slope of the
pLLs. We offer concluding remarks in Sec. V and relegate
more technical contributions to the Appendices.

II. THE MODEL

We consider an infinite graphene nanoribbon (with the
periodic direction along x), width W and zigzag edges, as
shown in Fig. 1. We model the system using the nearest-
neighbor tight-binding Hamiltonian on the honeycomb
lattice, which in absence of strain reads

H = −t
∑

<r,r′>

(
a†rbr′ + b†r′ar

)
, (1)

where a†r (b†r′) creates an electron in the pz orbital on the
sublattice A (B), t = 2.7eV and the nearest-neighbor dis-
tance is a0 = 0.142 nm. In view of the neglible spin-orbit
coupling in graphene and the absence of (real) magnetic
fields in our setup, we neglect the spin degree of free-
dom in this paper. We incorporate strain into our tight-
binding Hamiltonian [Eq. (1)] through a simple modula-
tion of the hopping parameters,

t→ trr′ = te−γ∆urr′ , (2)

where ∆urr′ is the displacement of atoms at positions r
and r′ relative to a0, and γ = −∂ ln t/∂ ln a|a=a0

∼ 3.37
is the Gruneisen parameter of graphene49. We work
within the framework of continuum elasticity theory,

where the displacement field ∆urr′ is expressed as a
smooth function of the spatial coordinates. This ap-
proach is valid for slowly-varying displacement fields on
the lattice scale. Novel effects can be expected when go-
ing beyond the continuum elasticity, see e.g. Ref. [50,51].

A. Low-energy expansion

Before moving to the solution of the problem at hand,
we first review the case of homogeneous uniaxial strain49.
We take trr′ as independent of spatial coordinates but
possibly dependent on the bond direction n,

t→ tn = te−γ∆un ≈ t (1− γ∆un) . (3)

Here we expanded the exponential for small displace-
ments

∆un =
∑
i,j

δinδ
j
n

a2
0

εij , (4)

where the nearest-neighbor vectors δn are given by

δ1 = a0[0, 1], δ2 =
a0

2
[−
√

3,−1], δ3 =
a0

2
[
√

3,−1]. (5)

The strain tensor εij = 1
2 [∂jui + ∂iuj ] is defined through

the in-plane displacement field u = (ux, uy) which we
take as a smooth function of the coordinates. In this
work we assume that u is only a function of y, such that
εxx = εxy = εyx = 0 and ∆u1 = εyy, ∆u2 = ∆u3 = εyy/4.

In momentum space, the Bloch Hamiltonian is given by
h(k) = d(k) ·σ where σ = (σx, σy) acts on the sublattice
(A,B) degree of freedom and

dx(k) = −t1 cos ky − 2t2 cos

√
3kx
2

cos
ky
2
, (6)

dy(k) = +t1 sin ky − 2t2 cos

√
3kx
2

sin
ky
2
, (7)

where tn = t(1 − γ∆un) and we set a0 = 1 from here
on. Expanding to lowest-order in momentum around the
inequivalent Dirac points K± = (± 4π

3
√

3
, 0), with k =

K± + q, we obtain

d±x (q) = ±~vF
[
(1− γ

4
εyy)qx ∓

γ

2
εyy

]
, (8)

d±y (q) = ~vF
[
(1− 3γ

4
εyy)qy ±

qxqy
2

(1− γ

4
εyy)

]
, (9)

where vF = 3t/2~ is the Fermi velocity and the su-
perscript ± refers to the two valleys K±. Note that
we expanded to linear order separately in both momen-
tum components – this generates a term proportional
to qxqy which is usually neglected when considering the
low-energy physics of Dirac fermions in graphene. Here
it is important because of the broken rotation symmetry
of the problem – when considering non-uniform strain in
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Sec. III, only the momentum qx remains a good quantum
number and one must consistently treat all terms linear
in qx to obtain a quantitatively correct result.

As expected, the strain tensor component εyy couples
to qx as a pseudo-gauge field Ax = γεyy/2 (that is, with
a different sign between the two valleys). However, to
the same order, εyy also renormalizes the Fermi veloci-
ties along the qx and qy directions. In the case of homo-
geneous strain, this only produces an anisotropic Dirac
cone. However, when εyy is promoted to a function of the
coordinates, it has an important effect on the low-energy
spectrum47,52, as described in Sec. III.

B. Symmetries

We now briefly comment on the relevant symmetries.
Combining the sublattice and valley degrees of freedom,
the low-energy limit of the problem is described by the
4-dimensional matrix Hamiltonian

h(q) =

(
h+(q) 0

0 h−(q)

)
, (10)

where h±(q) = d±(q) · σ describes the two valleys. We
henceforth denote the Pauli matrices acting on the valley
pseudospin as τ . The fact that the two valleys are de-
coupled in the low-energy limit allows to ask meaningful
questions about valley transport. Contrary to the case of
spin transport (for example), valley is not a microscopic
degree of freedom – strictly speaking, there is no physical
symmetry leading to a conserved “valley charge”. Never-
theless, in the effective low-energy description, Eq. (10),
one can identify the valley operator τzσ0 which is con-
served, [h(q), τzσ0] = 0, as long as no scattering terms
connect the two valleys.

The system respects time-reversal symmetry which
acts as T h(q)T −1 = τxh∗(−q)τx. In our case this en-
forces h+(qx) = h−(−qx) – that is, the spectra at valleys
K± are related by a reflection with respect to qx = 0.
The system also has a chiral (or sublattice) symmetry,
{C, h(q)} = 0 with C = τ0σz. This implies that the
spectrum at each valley is symmetric with respect to
the charge neutrality point E = 0. Chiral symmetry is
present whenever the terms in H only couple sublattices
A and B, and will be broken when adding a scalar poten-
tial terms in Sec. IV. Finally, our strain pattern (shown
in Fig. 1) breaks the inversion symmetry of the lattice,
which is a necessary ingredient to generate pseudomag-
netic fields.

III. EXACT SOLUTION FOR DISPERSIVE
PSEUDO-LANDAU LEVELS

Having a low-energy expansion with the correct sym-
metries in place, we now promote the strain tensor to a
smooth function of the coordinate y. This semiclassical

substitution is justified if we assume that the displace-
ment field u varies slowly on the lattice scale. In order
to generate a uniform pseudomagnetic field B = Bẑ using
only the εyy component, we take

εyy =
2eBy
~γ

≡ 2by

γ
, (11)

where we defined the dimensionless parameter b = eB/~.
Using Eqs. (8,9) the Bloch Hamiltonian in valley K+

reads

h+(q) = ~vF [σx (qx + pby) + σyqy (s− rby)] (12)

where we defined p = 1 − qx/2, s = 1 + qx/2 and r =
3/2+qx/4. The corresponding Bloch Hamiltonian h−(q)
for valley K− is obtained by sending qx → −qx.

By promoting the strain tensor to a function εyy(y), we
have explicitly broken the translational symmetry along
y. We now perform the canonical substitution qy → −i∂y
and, using the remaining translational symmetry along
x, we look for solutions of h+(q) of the form Ψ(y, qx) ∝
eiqxxφα(y), where α = A,B is the sublattice index. This
leads to the following eigenvalue problem,

[σx(qx + pby)− iσy(s− rby)∂y]

[
φA(y)
φB(y)

]
=

E

~vF

[
φA(y)
φB(y)

]
,

(13)

with homogeneous Dirichlet boundary condition at infin-
ity. This differential equation differs from the conven-
tional Landau level problem by the presence of terms of
the form y∂y which complicate the analysis, and also need
a proper hermitization. Nevertheless, as discussed in Ap-
pendix A, this problem can be solved by transforming Eq.
(13) to a second-order ordinary differential equation for,
say, φB ,[

(pby)2 +
pb

r
(2qxr + 2ps− br2)y +

∆

r2
− b2r2

4

]
φB

− b2r2(2yφ′B + y2φ′′B) = 0, (14)

where ∆ = (qxr + ps)2 − r2( E
~vF )2.

This turns out to be a singular Sturm-Liouville prob-
lem53,54 with a regular singularity at ysgl = s

rb and an
irregular singularity at infinity. It exhibits an unusual
finite sequence of eigenvalues differing from that of regu-
lar Sturm-Liouville problems. The spectrum of Eq. (14)
(and its equivalent result for valley K−) is given by(

E±n
)2

= ~2v2
F

(
|bn|(2± 3qx)− [bn(6± qx)/4]2

)
, (15)

where

n = 0, 1, 2, · · · ,
⌊

8(2± 3qx)

|b|(6± qx)2

⌋
(16)

and bac denotes the greatest integer less than or equal
to a. The Landau level spectrum is thus bounded from
above, with more levels attainable at smaller |b|. This can
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FIG. 2. Spectra of zigzag graphene nanoribbons (width W ≈ 192 nm) subject to strain-induced pseudomagnetic fields B = 2.5,
5 and −5 T (from left to right). The spectra are obtained from numerical diagonalization of the Hamiltonian [Eqs. (1,3)] and
the colorscale represents the expectation value of the ŷ position operator for each eigenstate. A set of pseudo-Landau levels
with linear dispersion near the Dirac points is visible, as predicted by Eq. (17) (dotted gray lines, shown here only for qx > 0).
The n = 0 level remains dispersionless and merges with the usual “zigzag” zero-energy edge states. Pseudo-Landau levels with
higher index |n| can be resolved by increasing the field B.

be intuitively understood by comparing |ysgl| to the typ-
ical wavefunction size ∼ lB, the magnetic length. When
the wavefunction size becomes comparable to |ysgl| it
is significantly affected by the regular singularity, even-
tually leading to the breakdown of the pLL spectrum.
When |b| decreases, levels with larger n appear in the
spectrum because |ysgl| ∼ 1/|b| grows faster than lB =

1/
√
|b|. For the strain-induced pseudomagnetic fields

considered in this work, one typically has |b| ∼ 10−4 � 1.
Thus, |ysgl| ∼ 104 is much bigger than both the wavefunc-
tion size and the ribbon width W , and does not directly
influence our analysis.

For small |bn|, the quadratic term in Eq. (15) can be
safely neglected, leading to

E±n = sgn(n)~vF
√
|bn|(2± 3qx). (17)

This dispersion relation is peculiar in that the pLLs are
not flat, but disperse linearly for small qx away from the
Dirac point, with an opposite slope between the two val-
leys. When qx = 0, the conventional Landau level spec-
trum is recovered.

We confirm this analytical result by numerically diag-
onalizing the tight-binding model, Eq. (1) with hoppings
given by Eq. (3), and compute the expectation value of
the ŷ position operator for all eigenstates, as shown in
Fig. 2. Our numerical results confirm the presence of dis-
persing bulk pLLs described by Eq. (17). Landau levels
with n 6= 0 eventually merge into edge states dispersing
upwards (for n > 0) or downwards (for n < 0), which are
of course not captured by our bulk solution. The bulk
pLL0 remains dispersionless and merges with the usual
zero-energy zigzag edge states for momenta qx between
the two Dirac cones55. The number of bulk pLLs that are
resolved depends on the interplay between the magnetic
length lB and the width of the nanoribbon W . In our
geometry, the pLL wavefunctions have an extent ∼ lB in
the y direction which also increases with |n|. Thus, as |n|

increases the confining effect from the width W becomes
stronger, eventually rendering our bulk solution invalid.
Conversely, as the pseudomagnetic field |b| is increased,
pLLs with higher |n| can be resolved (see Fig. 2).

We note that linearly-dispersing pLLs in uniaxially-
strained graphene have been observed numerically in re-
cent works56,57. The linear dispersion was attributed
to hybridization with edge modes in Ref. 56. In con-
trast, it was argued to be a bulk effect in Ref. 57, using
a perturbative treatment of symmetry-allowed terms in
the low-energy theory describing the system. Our exact,
non-perturbative solution unambiguously identifies the
dispersion of the pLLs as a bulk effect. Further, it allows
us to obtain a quantitative match with tight-binding sim-
ulations by including the (seemingly) higher-order qxqy
term in the low-energy theory, Eq. (9). This term proves
to be crucial in obtaining the correct value for the slope
of the pLLs near the Dirac points.

A. Bulk valley currents

These results have an interesting consequence – when
the chemical potential µ lies within a pLL, we expect pure
valley currents in equilibrium in the bulk of the nanorib-
bon. This is because the two sets of chiral pLLs in valleys
K± disperse with opposite velocities along x. They thus
carry only the valley degree of freedom but no electric
charge, as shown schematically in Fig. 1. We calculate
the valley current in equilibrium, as a function of the
chemical potential µ, assuming ballistic conduction:

Iv(µ) =
∑
s=±

∑
n

∫
dqx
2π

[sf(Esn(qx))vsn(qx)] , (18)
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where s = ± denotes the two valleys,

v±n (qx) ≡ 1

~
∂E±n
∂qx

= ±sgn(n)
3vF

2

√
|bn|

2± 3qx
(19)

represents the group velocity of electrons in band n, and

f(E±n ) = 1/(e(E±n −µ)/kBT + 1) is the Fermi function at
temperature T . We define Iv(0) = 0 as a conventional
reference point, noting that the notion of valley is only
well-defined close to charge neutrality. At T = 0 this
leads to a contribution Iv(µ) = 2|µ|/h for each pLL.

We show in Fig. 3 the valley currents Iv(µ) computed
using Eqs. (18, 19) close to charge neutrality, using the
numerical data from our tight-binding calculations. To
connect with our bulk solution for the pLLs, we arti-
ficially separate the wire in three equal-width regions
(along the y direction) which we define as the bottom
edge, bulk and top edge, respectively. We compute the
contribution to the valley current for each region sep-
arately, according to the expectation value 〈ŷ〉 of the
corresponding eigenstates (see Fig. 3 a and b). The
bulk contribution shows linearly-increasing regions with
Iv(µ) ∼ 2|µ|/h corresponding to well-formed pLLs, and
plateaus when µ/t lies within a bulk gap, as shown in
Fig. 2. (Note that, contrary to conventional (pseudo)-
Landau levels, such bulk gaps only exist here because of
the finite width of the ribbon). As expected, the two
edges contribute large valley currents of opposite signs,
owing to their large group velocity. They however do not
cancel out completely because the n = 0 edge mode –
connected to the zero-energy, flat zigzag state – is un-
compensated: the K+ valley only has a right-moving
edge mode as its left-moving partner lives in valley K−.

B. Chiral anomaly and negative strain-resistance

The strain-induced pLL spectrum displayed in Fig. 2
has important consequences for electrical transport which
might be the most practical method to probe it experi-
mentally. These include the chiral anomaly and negative
strain-resistance which we now discuss.

The structure of the edge modes associated with pLL0,
with one right-moving branch belonging to one valley and
one left-moving branch to the other, will give rise to the
chiral anomaly. The application of a bias voltage along
the wire will result in pumping electrons from one val-
ley to the other, thus producing a net valley polariza-
tion mostly localized at one edge of the ribbon. This is
analogous to the chiral anomaly in (1 + 1) dimensional
field theory, where the number of left-moving and right-
moving chiral modes is not conserved. Here, because of
the oppositely dispersive pLLs at the two valleys, the
valley and chiral charge coincides. Therefore, the valley
pumping through the pLL0 is described by the “valley
anomaly” equation

∂tρ
v + ∂xI

v =
e

h
εµνFµν , (20)

where ρv and Iv are the valley charge density and val-
ley current, respectively. Note that only the electric field
F01 = −F10 = E exists in (1 + 1) dimensions. Similarly,
in our model the pseudomagnetic field b only determines
the slope of the chiral modes, and the one-dimensional
transport will be driven solely by an external electric
field. Similar to the regular chiral anomaly58–60 or its
strained-induced counterpart61,62 in (3 + 1) dimensional
Weyl/Dirac semimetals, we may expect a large contribu-
tion to the conductivity from the valley anomaly. This
is because the imbalance between the valley charge den-
sities can only be relaxed through intervalley scattering
whose rate tends to be suppressed on the account of the
large momentum space separation between the valleys.

A unique manifestation of the pLL spectrum is the
negative longitudinal “strain-resistance”, which results
from the group velocity of the nth Landau level being
both b and n dependent as indicated in Eq. (19). The
longitudinal DC conductivity for Landau level n, in the
semiclassical Boltzmann formalism, is given by

σxxn = e2

∫
dqx
2π

τ(En(qx))v±n (qx)2

(
−∂f(E − µ)

∂E

)∣∣∣∣
En(qx)

(21)
where τ(En(qx)) is the relaxation time and µ is the Fermi
energy. Using Eq. (19) for the group velocity of electrons
in the bulk pLLs and changing the integration variable
to band energy En, we obtain (at zero temperature)

σxxn
(e2/h)

=
3~v2

F |bn|τ(µ)

2µ
. (22)

In real systems τ(µ) will be a phenomenological param-
eter describing various contributions to electronic scat-
tering. In the following we assume for simplicity that
the dominant source of scattering is a Drude contribu-
tion which can be treated using the Born approximation.
The relaxation time then reads τ(µ) = ~/2πD(µ)niC
where ni is the concentration of impurities, C is a con-
stant depending on the details of the scattering and
D(µ)−1 = 2π~|v±n (µ)| is the density of electronic states
at the Fermi level µ. We obtain

τ(µ) =
~2|v±n (µ)|
niC

=
3~3v2

F

2niC

|bn|
µ

(23)

and thus

σxxn
(e2/h)

=
K|bn|2

µ2
. (24)

where we defined the constant K = 9(~vF )4/4niC. We
see that the longitudinal resistivity ρxx = 1/σxx of the
pLLs decreases as 1/|b|2, giving rise to a characteristic
negative strain resistance. Note also the peculiar µ de-
pendence reflecting the fact that the pLLs are not linear
far from the Dirac points.

In systems with a finite width, the pLLs are not com-
pletely formed – they only exist in a region of momen-
tum space near the Dirac points. Consequently, the
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FIG. 3. Transport properties of strained graphene nanoribbons with B = 5 T. (a) Equilibrium valley currents Iv [Eq. (18)] as
a function of chemical potential µ/t. We separate bulk, top and bottom edge contributions in three equal sections according
to the expectation value 〈ŷ〉 of each eigenstate. The vertical lines show the energy of the bulk pLLs at the Dirac point. (b)
Same data as in (a), but with the contribution from the two edges combined. The net valley current is non-zero because of the
dispersing edge mode connected to the flat, zero-energy n = 0 pLL. (c) Longitudinal conductivity σxx [Eq. (21)] as a function
of chemical potential, where the edge contribution is suppressed by a factor 1000. The dashed lines represent the expected
bulk conductivity Eq. (24) for the first few pLLs with n = 1..9. (d) Derivative of the total σxx (sum of the edge and bulk
contributions in (c)) with respect to µ. We use a small physical temperature T/t = 0.0001 for all plots.

bulk expression for σxxn only applies for µ inside a well-
formed bulk pLL, as shown in Fig. 3c, which compares
the tight-binding simulation with the analytical predic-
tion, Eq. (24). The edge states (not captured by this ar-
gument) provide the dominant contribution to σxx, given
their large group velocity, and might therefore mask the
contribution from the bulk pLLs in experiments. Nev-
ertheless, clear signatures of the pLLs can be seen in
dσxx/dµ, which shows oscillations with a series of min-
ima between two neighboring peaks (see Fig. 3d). These
peaks correspond to the abrupt change in group velocity
occurring when a bulk pLL merges into an edge state.

IV. SCALAR POTENTIAL

In general, a non-uniform deformation of the lattice
will not only generate a pseudomagnetic field, but also
a scalar potential A0. This was so far neglected by con-
sidering only changes in hopping parameters. In general,
such a scalar potential term is proportional to the trace
of the strain tensor33,63,

A0 = λ (εxx + εyy) , (25)

where λ is a coupling constant which depends on mi-
croscopic details and is estimated to be λ ∼ 4 eV in
monolayer graphene64. For the simplest tri-axially sym-
metric strain pattern originally considered in Ref. [34],
εxx = −εyy and A0 vanishes by symmetry. However, for
the uniaxial strain considered here, this is not the case
and A0 = 2λby/γ. In our tight-binding model, this term
simply reads

Hscalar =
∑
r

A0

(
a†rar + b†rbr

)
, (26)

which breaks chiral symmetry but respects time-reversal
symmetry. It has the same form as the coupling to an
externally applied electric field E = Eŷ = 2λb/eγŷ.

Thus, even though the parameter λ cannot be directly
controlled, it can be cancelled (or enhanced) by applying
a bias voltage across the nanoribbon. The presence of
this scalar potential term was argued64 to explain some
features of the pLL spectrum observed in Ref. [41].

A. Solution for pseudo-Landau levels

In the presence of the scalar potential term, the low-
energy theory for valley K+ [Eq. (12)] becomes

h+(q) = ~vF [σx (qx + pAx) + σyqy (s− rby) + σ0A0] .
(27)

where we defined the electromagnetic potential Aµ =
(A0,Ax, 0) with A0 = eEy/~vF and Ax = by = eBy/~.
This Hamiltonian is reminiscent of the seminal problem
of a 2+1-dimensional massless Dirac fermion in perpen-
dicular electric and magnetic fields, which can be solved
in an elegant manner by boosting to a frame where the
electric field vanishes48,65. In our case, a complication
arises: the Dirac equation obtained from Eq. (27) is not
Lorentz invariant because p, r, and s are not Lorentz
scalars but functions of the spatial derivative ∂x. How-
ever, when considering small pseudomagnetic fields and
momenta near the Dirac points (such that qx � a−1

0 )
these Lorentz-invariance breaking terms are small. One
is thus tempted to treat p, r and s as Lorentz scalars and
derive an approximate expression for the Landau level
spectrum in the presence of both E and B. We then
confirm that this method yields a quantitatively correct
spectrum for small fields, near the Dirac points, by com-
paring directly with tight-binding results.

With this is mind, we now perform a Lorentz boost
along the x direction to a new frame S̃, following
Ref. [48]. The coordinates of the new frame are given
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FIG. 4. Spectra of zigzag graphene nanoribbons (width W ≈ 192 nm) subject to pseudomagnetic field B = 5 T and electric
fields with β = E/vFB = 0.05 (a) and −0.05 (b). The spectra are obtained from the exact-diagonalization of the Hamiltonian
[Eqs. (1,3) with the addition of the scalar potential term, Eq. (26)], and the colorscale represents the expectation value of the
ŷ position operator for each eigenstate. The dispersion of the pLLs follows the prediction based on the solution of the Dirac
equation in the boosted frame, Eq. (31) (dotted gray lines, shown here for qx > 0 only). The n = 0 Landau level now disperses
with an opposite slope in the two valleys. (c) Bulk contribution to the equilibrium valley current for different β.

by x̃ν = Λνµx
µ, where xµ = (vF t, x, y) and

Λ =

cosh θ sinh θ 0
sinh θ cosh θ 0

0 0 1

 . (28)

The relative velocity β between the old and the new frame
is determined through the usual relationship tanh θ =
β. The electromagnetic potential transforms with the
inverse transformation as Ãν = ΛµνAµ which yields

Ã0 = cosh θ

(
E

vFB
− β

)
by,

Ãx = cosh θ

(
1− βE

vFB

)
by. (29)

Choosing the new frame velocity as β = E/vFB, the
electric field vanishes and we are left with a problem of
the same form as in Eq. (12), albeit with a renormalized

pseudomagnetic field b̃ = b
√

1− β2. Invoking our pre-
vious result [Eq. (17)], the solution for the pLLs in the
new frame (to lowest-order in the field b) reads

Ẽ+
n = sgn(n)~vF (1− β2)1/4

√
|bn|(2 + 3q̃x). (30)

Transforming back to the original frame (see details in
Appendix B) we obtain, to lowest order in |b|, β and qx,

E+
n

~vF
=− βqx +

3

2
β|bn|

+ sgn(n)(1− β2)3/4
√
|bn|(2 + 3qx). (31)

In the K− valley, the spectrum is obtained by the re-
placement qx → −qx in order to respect time-reversal
symmetry.

Numerical simulations on the strained lattice model
incorporating the scalar potential term Eq. (26) repro-
duce the analytical result Eq. (31) for the bulk modes,

as shown in Fig. 4. The most striking effect of taking
the electric field into account is that LL0 also acquires a
linear dispersion ∓βvF which is opposite in the two val-
leys. Therefore, LL0 contributes to bulk valley currents
under the combination of E and B fields, whereas LLn
with n 6= 0 only require the presence of B.

B. Consequences for valley currents and tunable
flat bands

In the presence of the scalar potential term, the group
velocity of bulk pLLs changes to

v±n (qx) = ∓βvF ± sgn(n)
3vF

2
(1− β2)3/4

√
|bn|

2± 3qx
(32)

which affects the valley currents and can also change their
sign, as shown in Fig. 4. This mechanism provides a way
to electrically control the magnitude as well as switch
the polarity of the bulk valley currents. Similarly, the
longitudinal conductivity σxx will be affected by the slope
renormalization (not shown here).

Another interesting feature of this system is that by
tuning the strength of the electric and magnetic contri-
butions, we can cancel out the linear in qx part of the
dispersion for any given Landau index n, thus generating
a nearly flat band. This could be accomplished by tuning
the electric field across the nanoribbon with bias voltages
such that

β

(1− β2)
3/4

= sgn(n)
3

2

√
|bn|
2
. (33)

This mechanism could thus provide a way to tune corre-
lation effects in graphene nanoribbons.
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C. Quantitative estimates

Here we provide estimates of quantities relevant for the
experimental exploration of the valley physics discussed
in this work. First, it is crucial that pLLs are formed in
the system. This necessitates a magnetic length that is
much smaller than the width W of the ribbon,

lB =

√
~
eB
�W. (34)

For B = 2.5T (B = 5T) shown in Fig. 2, we get lB ∼ 16
nm (lB ∼ 11.5 nm) as a lower bound for W . For a
linearly-increasing strain with the unstrained (equilib-
rium) point located in the middle of the nanoribbon, the
maximal relative displacement ∆umax will be experienced
at the edges (y = ±W/2) and given by

∆umax ∼ εyy(y =
W

2
) =

ea0B
γ~

W, (35)

where we restored a0. For B = 2.5− 5.0T and W ∼ 192
nm as shown in Fig. 2, we get ∆umax ∼ 3− 6 %. These
values are not unreasonable, as Ref. [66] reports that in-
situ uniaxial strain gradients of ∼ 1% can already be
created. They are also well below the ∼ 20% threshold
which monolayer graphene can withstand without break-
ing67. Further, the characteristic energy gaps induced for
fields B ∼ 2.5 − 5.0 T are given (at the Dirac point) by
Egap ∼ 55−78 meV and are thus within the experimental
resolution of ARPES or STM techniques.

Finally, our calculation relies on β < 1 where β = 1
correspond to the collapse of the pLL spectrum. For
B = 5 T and vF ≈ 9× 105m/s in graphene, this leads to
the condition E < 4.5 × 103 V/mm. In comparison, we
get E = 2λa0B/~γ ≈ 2.5 × 103 V/mm, indicating that
this system is close to the pLL collapse (as also discussed
in Ref. [64]). However, in our setup E can be controlled
by applying bias voltages across the ribbon, thus allowing
to access the small β regime discussed in this work.

V. DISCUSSION AND OUTLOOK

In this paper we presented a simple setup which gener-
ates spatially separated valley currents and a valley ana-
log to the chiral anomaly in uniaxially-strained graphene
nanoribbons. These features are a direct consequence
of dispersive bulk pseudo-Landau levels near the Dirac
points. We showed how this anomalous dispersion arises
through an inhomogeneous Fermi velocity, which nat-
urally appears in the low-energy theory describing our
system, and which lends itself to an exact analytical so-
lution. The effects of an applied electric field were also
considered by generalizing the solution of Ref. [48] to our
setup, showing how the valley currents can be controlled
(and even reversed) by bias voltages applied across the
ribbon.

We now conclude by providing further remarks rele-
vant to potential experimental realizations of the physics
discussed in this work. One major challenge will be to
engineer such a non-uniform, uniaxial strain pattern in a
real graphene nanoribbon. This differs from the proposal
of Ref. [39], which employs a uniaxial stretch to generate
a uniform pseudomagnetic field which, however, is not
equivalent to a uniaxial strain due to the particular ge-
ometry used. One solution could be to bend a graphene
nanoribbon (or a flexible substrate on which the graphene
nanoribbon would be deposited) in a spiral-like shape,
where the radius of curvature r(θ) would depend linearly
on the angle θ. Perhaps more practically, a recent work66

reports the creation of linearly-increasing uniaxial strain
patterns similar to those considered in this work. Using
in-situ strain-tuning of graphene encapsulated in hBN,
the authors report a maximal strain around ∼ 1% which
is not too far from the 3− 6% used in our work.

Another challenge will be the detection of such val-
ley currents. This could be potentially accomplished by
attaching a “valley filter”2,14–19 or a “valley beam split-
ter”18–21 at one end of the nanoribbon. However, care
must be taken in separating the bulk contribution from
the edge contributions which tend to dominate transport
properties, owing to their large group velocities. Further,
careful matching between the filter or beam splitter char-
acteristic energy window and the energy of the pLL under
study must be acheived. Using instead a superlattice of
valley filters might offer better energy tunability68, but
still remains an experimental challenge.

The simplest experimental detection of the anomalous
pLL structure predicted in this work can be achieved
through an ordinary charge transport measurement. As
implied by Eq. (24) and Fig. 3, the bulk longitudinal elec-
trical conductivity σxx of a strained nanoribbon exhibits
several remarkable features. These include a negative
strain-resistance (that is, decreasing resistance with in-
creasing strain) as well as a characteristic non-monotonic
dependence on the chemical potential which can be tuned
by adjusting the gate voltage. Given that the edge contri-
bution to σxx typically dominates over the bulk contribu-
tion, such effects might easier to observe in the derivative
of the total conductivity, dσxx/dµ, as shown in Fig. 3d.
The unique signatures of pLLs could also be observ-
able using standard spectroscopic techniques including
the scanning tunneling spectroscopy and angle-resolved
photoemission, which have been successfully employed to
probe strain-induced gauge fields in graphene41–46.

Finally, we remark that our analysis does not crucially
rely on a nanoribbon geometry – it could also be realized
as a uniaxally-strained region embedded in a larger (un-
strained) graphene sheet. In that case the “bulk” valley
currents would occur in the center of the strained re-
gion, and the counter-propagating “edge” valley currents
would be mostly localized at the interfaces between the
strained and unstrained regions. This might provide a
simpler platform to test the valley physics presented in
this work.
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Appendix A: Exact solution of the dispersive
pseudo-Landau levels

1. The differential equations and mathematical
properties

For the low-energy physics around Dirac points of pLLs
due to spatial modulations in the y direction (Landau
gauge), one can write down a most general system of
linear ordinary differential equations (ODE) of the 2× 2

Hamiltonian, ~d · ~σ
[
φA(y)
φB(y)

]
= ε

[
φA(y)
φB(y)

]
with

dx = −i(u− vby)∂y + pby + q (A1)

dy = −i(s− rby)∂y + wby + t (A2)

where ε = E/(~vF ) and p, q, r, s, u, v, w, t are certain lin-
ear polynomials of qx dependent on the specific model.
It lacks a straightforward analytic solution to the best
of our knowledge, unless u = v = 0 or r = s = 0 or
s− rby ∝ u− vby, which can all be solved in a way sim-
ilar to the following. The analytic tractability thus lies
in the absence of differentiation in one of dx, dy or the
presence of a same type of differentiation in both, which,
interestingly, always introduces a regular singularity in
(−∞,∞) as shown below.

Without loss of generality, we focus on the case when
u = v = 0 to account for all the models considered here

~d · ~σ = (q + pby)σx − i(s− rby)∂y σy. (A3)

In the main text, q is replaced directly by the momentum
qx. As aforementioned, adding nonzero w, t is still ana-
lytically solvable in a similar manner. For completeness,
we mention that two independent artificial modulations
could possibly introduce two different rates of modula-
tion, b̄ = νb and b corresponding respectively to the two
b’s in Eq. (A3), although the overall effect is a single
pseudomagnetic field dependent on both. Obviously, ν
can be absorbed into p. This, in some cases, contrary to
the one in the main text, can in its own right generate
dispersionless flat pLLs even in zigzag graphene ribbon.

For Eq. (A3), let’s first shift y 7→ y + s
rb to get

[q + pb(y +
s

rb
)]σx + i rby∂y σy. (A4)

Under the usual homogeneous Dirichlet boundary condi-
tion, we note that −iy∂y is not Hermitian. Therefore, one
had better first perform a proper hermitization, which is
not unique in general. A convenient choice that preserves
the eigenequation structure is to use instead the symmet-

rically Hermitized operator −i
y∂y+∂yy

2 = −i(y∂y + 1
2 ).

Further eliminating φA, we arrive at a 2nd-order ODE[
(pby)2 +

pb

r
(2qr + 2ps− br2)y +

∆

r2
− b2r2

4

]
φB

− b2r2(2yφ′B + y2φ′′B) = 0, (A5)

where we define ∆ = (qr+ps)2−r2ε2. This Hermitization
only introduces the last term in the bracket in front of
φB and does not alter the overall form of the equation
and hence the eigenspectrum.

Equation (A5) can be cast in the form of a singular
Sturm-Liouville (SL) problem

(Pφ′B)′ −QφB = −λWφB (A6)

with P (y) = y2,W (y) = 1, Q(y) = [(pby)2 + pb
r (2qr +

2ps − br2)y + (qr+ps)2

r2 − b2r2

4 ]/(b2r2), λ = ε2

b2r2 . It is
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singular because the interval is infinite and P (0) = 0.
Therefore, it is not guaranteed to have square inte-
grable (i.e., inside the physical Hilbert space) eigenfunc-
tions on (−∞, 0] or [0,∞) or (−∞,∞) for real eigen-
values, depending on Weyl’s spectral dichotomy, limit
circle/limit point classification, of the boundary or sin-
gular points 0,±∞. Neither is an infinite sequence of
discrete eigenvalues guaranteed53,54. A finite sequence
of discrete eigenvalues is actually what we will see in
Eq. (A11). Knowing that each eigen-subspace is at most
one-dimensional for separated boundary conditions and
a well-posed SL problem should have a complete eigenba-
sis54, the existence of a complementary continuous essen-
tial eigenspectrum above the maximal discrete eigenvalue
is naturally expected.

2. Analysis of the equation

To facilitate the analytic solution, we first perform the
asymptotic analysis. Now the original regular singularity
ysgl = s

rb is moved to ysgl = 0 while the irregular singu-
larity is still at ∞. In the vicinity of ysgl, we can neglect
any term dependent on y in the polynomial factor of φB
and Eq. (A5) becomes

(
∆

r2
− b2r2

4

)
φB − b2r2(2yφ′B + y2φ′′B) = 0. (A7)

Physically for small momentum k relative to the Dirac
point and lower Landau level energies ε, we hereby safely
assume ∆ ≥ 0 and will justify later. This Cauchy-Euler

equation has two independent solutions y
− 1

2±
√

∆
|b|r2 . To

make the solution not divergent at ysgl, only y
− 1

2 +
√

∆
|b|r2 is

physically acceptable. Towards the infinity, Eq. (A5) is
asymptotically expressed as

(pby)2φB − (bry)2φ′′B = 0, (A8)

which has two independent solutions e±
p
r y. Note that

they diverge at ±∞, respectively. Therefore, they can-
not help build any physical solution on the whole y-axis,
which is a peculiarity of the present singular SL problem
and will be made clear later.

We are now ready to make the substitution φB(y) =

e−
z
2 y
− 1

2 +
√

∆
|b|r2 u(y) with a change of variable z =

−sgn(b) 2p
r y for brevity. It may look a priori for the

sgn(b)-dependence and surely can be motivated by a nu-
merical solution. (Although it later helps make the so-
lution mathematically and physically clear, we can oth-
erwise stick to the same substitution without sgn(b) and
get some seemingly distinct solution, which can be shown
equivalent by certain transformation properties.) The

new equation turns out to be

− |b|e− z
2 y

1
2 +

√
∆

|b|r2×{p
r

[
2sgn(b)(

√
∆− qr − ps) + r2(b+ |b|)

]
u(y)

+
(

2prby + 2
√

∆ + r2|b|
)
u′(y) + r2|b|yu′′(y)

}
= 0.

(A9)

Away from the singularity, we further transform it to a
confluent hypergeometric equation of u(z)

zu′′(z) + (γ − z)u′(z)− αu(z) = 0, (A10)

in which α = (b+|b|)r2+2(
√

∆−qr−ps)
2|b|r2 and γ = 1 +

2
√

∆
|b|r2 . Formally, it has two linearly independent so-

lutions, Kummer’s function M(α, γ, z) and Tricomi’s
function U(α, γ, z)69. Solution M exists when γ is
not a non-positive integer, which is manifestly satis-
fied. Solution U in general exists as a linear combination

Γ(1−γ)
Γ(α+1−γ)M(α, γ, z) + Γ(γ−1)

Γ(α) z1−γM(α + 1 − γ, 2 − γ, z)
or only the second part if γ is a non-positive integer.
Exhausting all the special cases, U(α, γ, z) either always
contains a term proportional to z1−γ or is reduced to
M(α, γ, z) when α is a non-positive integer and γ is not.

3. Eigenenergy and wavefunction

Thus, if solution U were present, φB would have a

part ∝ y
− 1

2−
√

∆
|b|r2 that diverges at ysgl and hence we can

hereafter work only with solution M . For M(α, γ, z) to
not diverge at infinity, it is cut off to the generalized
Laguerre polynomial Lγ−1

−α (z) when α is a non-positive
integer. This solves the eigenvalues

ε2 = |b|n
(
2qr + 2ps− |b|nr2

)
, (A11)

in which n = 0, 1, 2, · · · , b qr+ps|b|r2 c. This already takes into

account that the overall power of y in φB(y) should be
non-negative for the convergence at ysgl. And in fact,
we have n ≥ 1 (n ≥ 0) when b > 0 (b < 0), which
is intentionally corrected since this apparent asymme-
try between two opposite directions of magnetic field
is purely an artifact of converting the 1st-order matrix
ODE to a single 2nd-order ODE. Note that the eigen-
values clearly show a higher order effect of the magnetic
field b and have an upper bound as seen from the fact
that the quantization condition automatically excludes
∆ < 0. This eigenenergy upper bound, together with the
wavefunction expanse (see discussion below), (−∞, srb )
and ( srb ,+∞) for positive and negative b respectively,
diverges with vanishing b as understood from the limit-
ing case recovering the leading-order conventional Lan-
dau level. Also note that in Eq. (A5), only one term
∝ b2y in the factor of φB will flip its sign by the mapping
b 7→ −b, y 7→ −y. Therefore, for the opposite direction
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of magnetic field, the solution of identical energy is not
obtained as a simple coordinate reflection with respect
to the singularity point ysgl.

It is also worthwhile to further comment on the wave-
function. Firstly, similar to conventional Landau levels,
for nth eigenenegy, φB(y) possesses exactly n−1 zeros as
seen from the Laguerre polynomial contained. Note that
this is in general not granted since we have a singular SL
problem. Secondly, the exponential factor in φB(y) will
diverge at sgn(b)∞. It looks as if the analytic solution
doesn’t allow a physical solution vanishing towards both
directions of the infinity simultaneously. This is resolved
by noticing that homogeneous Dirichlet boundary con-
dition is automatically satisfied at −sgn(b)∞ and ysgl.
Therefore, the true wavefunction is

φB(y)θ[sgn(b)(ysgl − y)]. (A12)

This is continuous but not its derivative, which is valid
for a wavefunction and is a typical consequence of the reg-
ular singularity ysgl. The singularity suggests that some
otherwise small term cannot be ignored in the vicinity of
the singularity, and adding it eliminates the singularity.
Physically, the lattice regularization surely plays such a
role. As a final check, we mention that all the features
discussed are confirmed by numerical solutions based on
a second order finite element method.

Appendix B: Spectrum of pseudo-Landau levels in
the presence of electric and pseudomagnetic fields

The Landau level spectrum in the new frame S̃, in the
K+ valley, reads

Ẽn = sgn(n)~vF (1− β2)1/4
√
|bn|(2 + 3q̃x), (B1)

To obtain the spectrum in the original frame S, we have
to consider the transformation of the energy-momentum

four-vector under the Lorentz transformation Λ,

Ẽn = En cosh θ + vF qx sinh θ, (B2)

vF q̃x = En sinh θ + ~vF qx cosh θ, (B3)

where tanh θ = β = E/vFB. Applying first Eq. (B2) we
obtain

En
~vF

= −βqx + sgn(n)(1− β2)3/4
√
|bn|(2 + 3q̃x), (B4)

which recovers the result of Ref. [48] when q̃x = 0. Trans-
forming q̃x to the original frame, using Eq. (B3), yields

En
~vF

=− βqx (B5)

+ sgn(n)(1− β2)3/4

√√√√|bn|(2 + 3
qx + βEn/vF√

1− β2

)
.

Squaring on both sides and taking vF = 1, we obtain a
quadratic equation aE2

n + bEn + c = 0 with

a = 1,

b = 2βqx − 3β
(
1− β2

)
|bn|, (B6)

c = β2q2
x − 2(1− β2)3/2|bn| − 3

(
1− β2

)
|bn|qx.

Neglecting terms of order O(b2), we get

En
~vF

≈− βqx +
3

2
β(1− β2)|bn| (B7)

+ sgn(n)(1− β2)3/4

√
|bn|(2 + 3

√
1− β2qx).

In the limit of small β and small qx this expression can
be further simplified by keeping terms up to second-order
in any small quantity (β, qx, b), leading to

En
~vF

≈ −βqx +
3

2
β|bn|+ sgn(n)(1− β2)3/4

√
|bn|(2 + 3qx),

(B8)

which is Eq. (31) in the main text.
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