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We consider the effective coupling between impurity spins on surfaces of a thin-film Weyl
semimetal within Ruderman-Kittel-Kasuya-Yoshida (RKKY) theory. If the spins are on the same
surface, their coupling reflects the anisotropy and the spin-momentum locking of the Fermi arcs.
By contrast when the spins are on opposite surfaces, their coupling is mediated by the Fermi arcs
as well as by bulk states. In this case the coupling is both surprisingly strong and highly thickness
dependent, with a maximum at an optimum thickness. We demonstrate our results using analytical
solutions of states in the thin-film geometry, as well as using a two-surface recursive Green’s function

analysis of the tight-binding model.

I. INTRODUCTION

Weyl semimetals (WSMs) are three dimensional topo-
logical systems that host an even number of band-
touching points (termed as Weyl nodes) in the bulk spec-
trum, near which the low-energy excitations follow the
relativistic Weyl equation!. Such Weyl quasiparticles
have definite chirality, and the chirality of these quasipar-
ticles are given by the nature of the Weyl nodes, which
can act as either sources or sinks of Berry curvature in
the Brillouin zone. In a finite geometry, WSMs also host
unique surface states known as Fermi arc states, whose
projected Fermi surfaces are open arcs on each of the
surfaces. Numerous materials have been predicted to be
suitable candidates for WSMs , and a variety of experi-
ments demonstrate their novel character.

Correlations functions impact many properties of these
systems, and are of special interest because of the
unique helical nature of low-energy excitations in WSMs.
Within this class of properties, the effective interaction
between two localized impurity spins introduced in such
a system, mediated by the WSM conduction electrons,
is described by the Ruderman-Kittel-Kasuya-Yoshida
(RKKY) theory?, and is directly related to the spin-
spin correlation function of electrons within the system.
Among solid-state materials, spin-orbit coupled systems
34 particularly topological and Dirac systems, are inter-
esting in the way they mediate long-range — and some-
times controllable — coupling®'” among spins. Work
on RKKY interactions through bulk Weyl fermions!'®2°
show the interactions can be anisotropic and are in some
circumstances weak, but generally carry signatures of the
chiral nodes.

Significant attention has also been given to RKKY in-
teractions on the surface of WSMs?1 723, Surface states,
at the Fermi energy of a WSM in a slab geometry, typ-
ically reside at wavevectors which form arcs in the sur-
face Brillouin zone. These arcs join one Weyl node to
the other, and typically disperse energetically perpen-
dicular to a given arc, with different signs of the dis-
persion for each of the two physical surfaces. The es-
sentially one dimensional character of the surface states
results in a strong, highly anisotropic spin-spin corre-

lation function, with similarly anisotropic RKKY inter-
actions among spin impurities adsorbed on the surface
of a WSM. Previous studies have been largely confined
to semi-infinite geometries, for which coupling between
surfaces cannot be modeled. Such coupling is poten-
tially significant, as the Fermi arc states can be relatively
weakly localized at their surfaces; moreover, the penetra-
tion length of a Fermi arc state diverges as the surface
wavevector approaches the projection of a Weyl node.
This can induce interesting physics due to non-negligible
coupling between spins on opposite surfaces of the WSM.

In this paper, we investigate the effects of such inter-
surface coupling by analyzing a slab geometry of finite
thickness. Specifically, we examine effective spin-spin in-
teractions due to the RKKY mechanism for two differ-
ent situations. Firstly, when two spins are on the same
surface of the WSM, surface electrons on the opposite
surface can participate in their coupling. The resulting
RKKY interaction reflects the anisotropy of the Fermi
surface, and in the thick slab limit can be compared with
previous results in which only a single surface was mod-
eled?!. Secondly, when the spin impurities are on oppo-
site surfaces of the slab, the resulting coupling depends
strongly on the overlap of the Fermi arc states. We find
that the resulting coupling is a non-monotonic function
of the slab thickness, and a thin-film limit can be de-
fined by observing when the coupling between the spins
is strongest. In order to compute the coupling, we have
developed a recursive Green’s function scheme in which
the elements of a Green’s function on the surfaces can be
computed essentially exactly with relatively high numer-
ical efficiency. We show that analytical solutions for the
WSM wavefunctions in a slab geometry agree with the
numerical results, and offer some qualitative insight into
their behavior.

This manuscript is organized as follows. In Section
II, we introduce the simple WSM model used for our
work and find analytical solutions for wavefunctions in a
slab geometry with appropriate boundary conditions. In
Section III, we briefly discuss the formal expression for
RKKY interactions and our numerical scheme for com-
puting them in a slab geometry of a tight-binding model.
Our numerical results along with their asymptotic behav-



iors are presented in Section IV, where we make compar-
ison with analytical results. Finally we conclude with a
summary and discussion in Section V.

II. WEYL SEMIMETAL - THIN FILM
A. Model Hamiltonian

A minimal model of a WSM has two Weyl nodes at
the Fermi energy and breaks time-reversal (TR) symme-
try. For such a model, the low-energy Hamiltonian can
be written using a two-band model. If the two bands
represent spin states, then for a slab geometry, with the
Weyl nodes separated along the momentum of one of the
translational invariant (in-plane) directions, the surface
states (Fermi arcs) are spin-polarized, resulting in com-
pletely spin-polarized surfaces of the slab. As the indi-
rect spin-exchange interaction is only interesting when
the ground-state is spin-unpolarized, the minimal model
we consider must have at least two Fermi arcs on each
surface, with the spin-polarizations of each oriented such
that the net spin density on either surface vanishes. If
the two Fermi arcs on a surface have distinct locations
in the surface Brillouin zone, then one has a total of four
Weyl nodes in the bulk, each with a distinct location in
momentum space. If the Fermi arcs join two Dirac nodes,
then the Fermi arcs will overlap in the surface Brillouin
zone. This latter situation was considered, for example,
in Ref. 21. In our work we confine our studies to the
former case (i.e., Weyl semimetals).

Our starting point is a model Hamiltonian defined
on a cubic lattice?*. The Hamiltonian preserves time-
reversal symmetry (defined by the time reversal opera-
tor T' = o, K, with K the complex conjugation opera-
tor and o, a Pauli matrix acting in the spin-space), but
breaks inversion symmetry, and so has four degenerate
Weyl nodes. Specifically, we take

H(kj) =\ Z (o Sinka — K + TyayMk' (1)

a=wz,y,z

Here M, = m + 2 — cosk, — cosk,, and 7, are Pauli
matrices acting in an orbital space. For |m| < A the four
Weyl nodes are located at k = (0,+m/2 + kg,0), where
ko = /2 —sin"!(m/\) (with lattice spacing a our unit
of length and A = 1). On a given surface, the two Fermi
arcs join the four Weyl nodes in a pairwise fashion, as
illustrated in Fig. (1). States of the two Fermi arcs are
spin-polarized along o, in opposite directions (i.e, they
are eigenvectors of o, = 77 ®0, with opposite eigenvalues
for the two Fermi arcs). Furthermore, the two Fermi arcs,
at low-energy, are dispersionless along the %, direction
and have opposite velocities along the = direction.

The Hamiltonian can be brought into a block diagonal
form. Writing H' = UHU?, with the unitary matrix U
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FIG. 1. Top: For the WSM, Eq. (1), in a slab geometry
with finite thickness in z direction and for k, = 0, the band-
structure (in the units of A) as a function of k, shows the four
Weyl nodes in the bulk, with the two Fermi arcs joining them.
(The lattice spacing a is taken to be unity). Bottom: The spin
densities of the Fermi arc states are shown as a function of z
for two values of k, as indicated in the top figure. Parameters:
m = 0.5 A, thickness N, = 45 lattice spacings.

defined by
-1 — —i 1
1 1 — ¢ 1
U=3l 1 i i1 (2)
-1 i i 1

one finds H' has two 2 x 2 blocks, where for each block
(labeled by n = £1), the two-band Hamiltonian is

H) = Noysink, — o, sink;)

+no,(2+m —cosk, —cosk,) — Ao, sink,. (3)

This is a particularly useful form, in which each block
individually breaks time-reversal (TR) symmetry, while
T maps H', to H' (and vice-versa), so that the total
Hamiltonian is TR symmetric. Each of the blocks has
two Weyl nodes separated in momentum space, and on
a given surface they are joined by one Fermi arc. In
principle, a system hosting many Fermi arcs on a surface
should be structured in such a way that each joins two
Weyl nodes; an effective model of such a multi-Weyl node
system could be written as H = H; ® Hy ® - --, where
each of the blocks contains two Weyl nodes.

To focus on the physics of the Fermi arcs, we expand
the Hamiltonian to lowest non-trivial order in &, and k.,
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FIG. 2. (Top) Minimum solution of x’ for values of M,. When
M), — —oco, X' — 0, when M) =0, ¥’ = (7/2)? and for large
M), X' ~ M}? + n°. (Bottom) The lowest energy solution
for g, = 0 for various values of L, from 5 to 30 are shown
for half of the Brillouin zone, containing two Weyl nodes.
The energy values decrease exponentially with increasing L.,
characteristic of surface states, for k, between the Weyl nodes.

writing k, — ¢, and k. — ¢,. Then from Eq. (3) we
obtain

H;, R NoyQz — 02q2) + 0. My(ky), (4)

with M, (k,) = mn — Asink,. The four Weyl nodes are
at K, ¢ = (0,75 + &ko,0) with n,{ = £1 and kg =
cos~*(m/X). For the n = +1 block, My < 0 between
ky € (m/2 — ko,m/2 + ko). For a surface perpendicular
to the z direction, along the k, axis these two points are
connected by a Fermi arc. For the n = —1 block, M_ > 0
between k, € (—7/2 — ko, —7/2+ ko), and again there is
a Fermi arc connecting these points on the &, axis for the
same surface. This situation is illustrated in Fig. 1. Note
that for H' (i.e., after the unitary transformation), states
on the Fermi arcs are eigenvectors of oy, rather than o,.

Near the Weyl nodes, if we can write the low-energy
Hamiltonian in the form of H = k,A,,0,, then the
chirality of the node is given by sgn(Det[A]). Writing
k = (qz,n% + &ko + gy, q.) and expanding to first order
in ¢;, we arrive at the low-energy Hamiltonian

H7IIO§W ~ )\(Uqu - Uﬂiqz) + ﬁfaUngn (5)

with & = /1 — (m/\)2. The chiralities of the four nodes
may then be written as sgn(Det[A,, ,]) = —n¢.

B. Infinite mass boundary condition

To make progress analytically, we need to construct
appropriate boundary conditions of the Dirac Hamilto-
nian Eq. (3) for a slab geometry, such that the properties
of the Fermi arc can be recovered. In general boundary
conditions for the Dirac equation can be cumbersome,
but our goal here is to recover the properties of the sur-
face modes (i.e, Fermi arc states). Thus we adopt rela-
tively simple boundary conditions by taking the Hamil-
tonian of the vacuum (outside the slab, which extends
from z =0 to z = L.), to be similar to Eq. (4), except
for the mass term, whose form is taken as M;*® = nmy,
with mg — oco. This construction is required to ensure
that for momentum between the Weyl nodes the effec-
tive mass term (M, (k,)) for the Weyl semimetal and the
vacuum (M;*¢) are oppositely signed.

The eigenfunctions for the Hamiltonian Hyae
Mgzoy — q204) + My*o, are

with eigenvalue E = +1/mZ + A2(¢q2 + ¢2). For mo > E,
the eigenfunctions are normalizeable if
for z> L.,

for z <0,

q- = ik,
q> = _Z‘“@

with k = y/m3 + ¢2 — E2. Thus, in the limit mo — oo,

we have Kk — mg. For z > L,

tmo + ¢ oz ) oz
¢>O<<nrr?o%)e Oz<n>e O

For z <0,

—im, +Zx m 1 moz
¢<O(( ymo— E )e 02%(—?7)6 @

At z = 0 and L., these spinors become the Fermi arc
wavefunctions, and are recognizable as eigenvectors of
Oy.

Matching the wavefunction t(z) within the slab to
these boundary forms yields the conditions

P(z=0) xP<(2=0) and ¢(z= L) x¢s(z = L),
9)

where

¥(2) =a ( ]\>\4((I(zk:—) Zgg% ) R

+b <17)]‘\(4;(‘1ky;rfq%) ) e7i9E (10)

with ¢, = (1/}) \/E2 — M2 — M\2q2. Non-trivial solutions
of Eq. 9 exists if
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FIG. 3. The RKKY coupling between two spins (connected to the same orbital) put on the same surface (along z-direction i.e.
R =(R,0,0)) of the WSM slab with (a) the analytical wave-functions and keeping only the n = 0 bands, (b), (¢) numerically
evaluated Green’s function in the real-space. With increasing thickness, the all components except J., becomes essentially
thickness independent after certain thickness, as shown in (d). Inset of (d) shows the RKKY coupling vs slab thickness
calculated using analytical wave-functions and n = 0 bands. Results shown are for ;. = 0 (i.e., Fermi wavevector kr = 0) and

m = 0.5A. R/a = 40 in panel (d).
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Simplifying this condition, we obtain a transcendental
equation,

tanh (Lz \/W) A

LV —x 12)

LGMn7

where xy = (E/)\)? — ¢2. For all real solutions y of this
equation, the energy has values E = +A\/x + ¢2. No
solutions of Eq. 12 exist with y < 0.

For bound-state solutions, i.e, when ¢, is imaginary,
X < (M,/X)?. The left hand side of Eq. 12 is a positive
function with values between 0 and 1. Thus, such bound-
state solutions are only possible when nM, < 0 as well as
when |L, M,/ > 1, i.e., when |M,| > X\/L,. Defining

)‘(_QZ + iQZ) 0

M, (k,) — E 01 _ 0

MN=gq, +igy)e == ¢ | =
n

(M) (ky) — E)eit:1-

(

X' = L?x and My = nL.M,/\, we rewrite Eq. 12 as

tanh(,/M;? — x') 1 13
/MT/IQ _ X/ B ' (

M;

The various solutions of x’ from Eq. 13 can be labeled
by an index n = 0,1, .. (with increasing values of n cor-
responding to larger values of x’) and the corresponding
energy solutions E, +(¢z,qy) = £A\/Xn + ¢2 gives rise
to particle-hole symmetric bands. The minimum solution
of ¥’ is shown in Fig. 2. The bands with n = 0 contain
all the Fermi arc states (when k, is between the Weyl
nodes, in the Fermi arc interval) as well as low-energy
bulk states (when k, is outside the interval).

The a, b coefficients in Eq. (10), can be found from the
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FIG. 4. The RKKY coupling between two spins (connected to same orbital) on opposite surfaces of the WSM slab, with the
positions of the two spins at (z,y,2) = (0,0,0) and (R, 0, L, = N,a). (a), (c) and (e) are results for the analytical wavefunctions
keeping only the n = 0 bands. (b), (d) and (f) show numerically evaluated results from the Green’s function approach. With
increasing thickness, all components decrease rapidly (shown in more detail in Fig. 5 and tabulated in Table II). These results

are for p =0 (kr = 0). For all panels, m = 0.5 A.

boundary conditions at z = 0 to be

M, — E +n\(gz — ig2)

a
b
We can then write down the wavefunctions. Defining

K = My(ky) = E, f = Mge —1q2),9 = Mge + iq.), one
finds

%) :LN {(K +19) <ZIJ; ) pit:
Y ) 6””} . (15)

For real ¢, = \/x — M, (ky)? (when x > m?, f = g*) the
normalization factor has the form

+(K+17f)(

N =2|K +nfP(K* +|f*)L
e—Qiqu

—1>] . (16)

+Im (K+77f)2(K2+92)( .

For purely imaginary q, = ix (when x < m?),f = ¢, + &,
g =4z — K,

N =—2(K +nf)(K +n19)(K*+gf)L

+ [(K +ng)*(f* + K?)e "F

sinh(kL)
—

+ (K +nf)%(g* + K?)e™] (17)

These are the full solutions of the low-energy states of the
WSM slab in the rotated basis (Eq. (2)). Once written

in the original basis, these solutions correctly reproduce
the spin configuration of the Fermi arc states.

In what follows, we retain only the n = 0 wavefunc-
tions above to calculate the one and two surface surface
Green’s functions. Using the unitary transformation U,
we then write these Green’s functions in the original ba-
sis of our model Hamiltonian to compute the RKKY cou-
plings.

III. RKKY INTERACTION AND RECURSIVE

GREEN’S FUNCTION

Ruderman-Kittel-Kasuya-Yoshida (RKKY) theory?
describes the effective coupling between two impurity
spins S; and Ss in a metal mediated by the conduction
electrons. The spins, located respectively at r; and ro,
are typically treated as classical magnetic moments, and
are assumed to be coupled to the electrons by sd Hamil-
tonians, Hgq = JS; - s(r;) (i = 1,2), where s(r;) is the
conduction electron spin density at the location of im-
purity spin i. For small 7, the resulting impurity spin
interaction becomes

j2 Er
Hgrxxy = 77 / dwTI‘[(Sl.S)G(I‘lg; w + iO+)(SQ.S)
x G(—r12;w +10+)] (18)
= Z JijSliSQj, (19)

1,]=T,Y,z



where rq2 is the separation of the two spins and G(ri2; w+
i0+) is the real space Green’s function for the unper-
turbed electron system. The resultant J;; is essentially
the electronic spin-spin correlation matrix. In all of our
results we show J;; in units of J2.

Details of the particular electron system in which
the impurity spins are embedded enter the calculation
through G(ri2;w + i0+). For our WSM system, we will
proceed in two ways. First, we will directly compute
G in momentum space from the low-energy Hamiltonian
wavefunctions Eq. (15), and then Fourier transform the
expression to obtain the needed real-space Green’s func-
tion. Our second approach is more numerical, and in-
volves inverting the tight-binding model, Eq. (1). In
this approach the discrete translational invariance in
the z — y plane of the slab geometry allows, for each
two dimensional wavevector, independent computation
of the Green’s function. A computation of the real
space Green’s function then follows from a Fourier trans-
form. For the results we present in the next section, we
also restrict ourselves to considering impurities which are
exchange-coupled to the same orbital of the two-orbital
model, Eq. 1, which captures the essential physics of
interest. For the case of the semi-analytical model of
the last section, for which the atomic-scale structure is
not included, we assume the impurities to be exchange-
coupled to the conduction electrons within a small region
(of thickness of one lattice spacing) on each surface.

Before proceeding to our results, we use the remainder
of this section to outline the recursive Green’s function
method we use for our fully numerical studies. We are
interested in the coupling between impurities placed on
the surfaces, so that in the computation of G(ri2;w+i0+)
one only actually needs the Green’s function for sites ry
and ro on the slab surfaces. Following Ref. 25, we can
compute the two dimensional Fourier transform of this,
Gij(w, kg, ky), where i and j label the surfaces of the slab
on which r; and ry reside, respectively.

For a slab geometry of N, number of sites in the z
direction, we re-write the tight-binding Hamiltonian (Eq.
1) in the form

H (k) = Z <¢;(EII)A(EH)¢J’+1(E||) +h.c.
+1/’;‘(’5\\)hm(’_5||)1/)j(’5||)) : (20)

where IZH = (ky, k,), which are good quantum numbers.
This allows us to write the Hamiltonian in the form of

h A 0.0
At b A0

H=| 0 At h .0 (21)
0 0 0.h

and the Green’s function is evaluated from the equation

(wH - H(EH)) G(ky,w) =1 (22)

When N, = 1 + 2F, the above set of equations can be
recast in the form

(WI—-h)G" =1, (23)

with
;o B AR , _( Gun Gin,
h' = (AT(k) h(k) ’ G = GNZI GNzNz ) (24)

where the hgk),h,()k) and A®) are found by recursively
solving

AG+D — A(i)(w _ h(O))—lA(i)7

R+ — () L AT() (w— h(i))A(i) + A(i)(w — hD)ATD)
h§i+1) — hgi) + AW (w — B~ ATO),

R = B 4 ATO (w — p) =140, (25)

with 2" = h® = h©® = h and A© = A This
yields the two surface Green’s functions G(Ell)l,l and
G(%ll)Nz,Nz as well as their connections G(Ell)l,Nz and

G(EH) N.1 without requiring a solution for the full
Green’s function.

IV. NUMERICAL RESULTS

In this section, we present our results for the specific
cases when (7) the magnetic impurities are on the same
surface of the WSM, and (i) when the magnetic impuri-
ties are on opposite surfaces of the WSM. In both cases
we compute the RKKY interaction using the recursive
Green’s function method outlined in the last section, as
well as using the analytical wavefunctions of the n = 0
bands of Sec. II, which contain the Fermi arc states, and
compare the results.

A. Impurities on a single surface

As discussed above, the Fermi arc states disperse in
energy along k perpendicular to the arc itself. As a re-
sult these states have a highly asymmetric velocity, with
vy K vy. The effective interaction between spin impuri-
ties placed on the same surface reflects this strong asym-
metry. For a semi-infinite system, it can be shown for
large r that the elements of the Green’s function G(7)
asymptotically vanish as ~ 1/r? when # is on the surface
and 7 || §. By contrast, they fall off as ~ 1/r when
7 points along the & direction?!; the difference is a con-
sequence of the (nearly) unidirectional dispersion of the
Fermi arc energies. This results in the strongest RKKY
coupling for impurities separated along the & direction,
and in what follows we focus on separations along this di-
rection. Moreover, for a thick enough sample (when the
presence of the other surface may be neglected), states
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FIG. 5. Top main panel: The RKKY coupling between two
spins (connected to same orbital) on opposite surfaces of the
WSM slab of thickness L. = N.a and placed at (0,0,0) and
(R = 40q,0,L.) as a function of N, evaluated using nu-
merical Green’s function method. Inset: Results from ana-
lytical wavefunctions, keeping only the n = 0 bands. With
increasing thickness, all components of RKKY coupling de-
crease rapidly after attaining a maximum value at an opti-
mum thickness (see discussion in the main text). Bottom
panel: The RKKY coupling between two spins (connected to
same orbital) on opposite surfaces of the WSM slab of thick-
ness N.a placed at three lateral distances (R = 20a,0, L),
(R =40q,0,L.), (R=60qa,0,L.) as a function of N.. These
results are computed using the analytical wavefunctions keep-
ing only the n = 0 bands. Note that the spin-spin couplings
peak at slightly different slab thickness for different lateral
separations between them and J;, = Other
parameters are same as in Fig. 4.

vy ~ —Jz.

in each of the Fermi arcs are spin-polarized (along the
direction of o, in our model) and are chiral in their
dispersion (i.e, the energy is proportional to +k, for
n = £1). For such helical states, where oppositely po-
larized electrons move in opposite directions, one expects
the spin-spin coupling will vanish for the impurities with
spin-polarization parallel to that of the electrons®!7-2!.
This argument suggests that J,, will vanish for coupling
among spins mediated by a single Fermi arc.

These expectations may be understood as follows. The
Fermi arcs, for a thick sample, are exponentially confined
to a surface at z = 0 with an approximate wave function

(see Egs (7) and (8))

o) m ettt Pl (1) o)

where M, (k,) = mn — Asin(k,). These wavefunctions
allow us to write an effective Green’s function from the
Fermi arc on this two-dimensional surface in the form

) ko eikmzeikyy
GEA(w +id;r) = (09 — noy)/

(27)2 w — nupk, + 6

X We(ky — kn,1)0(kn2 — ky),
(27)

where the Fermi arcs exist between ky 1 = n5 — ko and
ky2 = n5 + ko. The k, momentum can be integrated
between k, 1 and k, > and performing the k, integral one
obtains,

T I(y)0(nz), (28)

FA .. .00 — N0y i(w+id)
Gn (U.) +'L(S7 T) = W@
where, the Fermi velocities of the Weyl nodes vp = A. In
the limit § — 0+,

I(y) = ™I (y), (29)
. _ msin(ykg) — yAsin ko cos(yko)
with T'(y) = 0 W7 — 1) 2 2, (30)

and 7 = (z,y). This approximate form for the Green’s
function is useful in determining the asymptotic behavior
of the RKKY interaction, as we show briefly in the next
section (see also Ref. 21). Note that the step function in
Eq. (28) implements the chiralities of the Fermi arcs. As
17 = 4, in the full 4x4 orbital/spin space, the Green’s
function is then

A r
6™ = (U8 Gl ). 6D

With this expression it is straightforward to work out the
RKKY integral (Eq. 18) and show that, in the original
basis of the Hamiltonian, Eq. (1), the elements of the
correlation matrix, Eq. (19), are given by

J2L(y)?
Jow=0; Jyy=Jo. = —m cos(2kpx + my), (32)
JT(y)? .
T = e = g SRk ). )

Other off-diagonal components vanish. In this limit,
the separation of the pairs of the Weyl nodes (taken
as 7/a in our model) does not alter the result. Note
that a non-vanishing asymmetric Dzyaloshinskii-Moriya
(DM)?5:27 type of exchange interaction (J,, = —J,, # 0)
arises among the impurity spins due to the broken inver-
sion symmetry of the system. The symmetries apparent
in Egs. 33 can be understood from the original tight-
binding system, as we discuss in Appendix A. These are
reflected in our results, as illustrated in Fig. 3.
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FIG. 6. Asymptotic behavior of spin-spin couplings: (color online) Exponents «, v and § (see the main text) of the
RKKY coupling between the two spins are estimated for various values of the parameter m/X, where a larger m/A ratio
represents a smaller length of the Fermi arc in the momentum space, which is given by 2cos™!(m/\). All other figures of the
coupling amplitudes, in the main text, are shown for m/A = 0.5. (a) to (d) shows the exponents when the spins are on the
same surface, and (e), (f) shows the exponents when the two spins are on the opposite surfaces. Other than the plots for larger
thickness, which are marked directly in the sub-figures (a)-(d), the thickness of the sample is kept fixed at L. = 33a for all of
the cases. Linearly dispersing electronic states would result in v = 2§/\ &~ 0.016, where § is the small imaginary part added
to the denominator of the Green’s function. Plots for which v & 26 imply that the electronic states most important in the
coupling are linearly dispersing. In the inset of (a) and (b), we show the behavior of o and -y parameters for the spins on the
same surface by varying m/\ continuously for a fixed separation of the spins, R = 80a. In the inset of (e¢), we show the nature
of the parameter § for spins on opposite surfaces by varying m/A continuously for a fixed in-plane separation of the spins,

R = 40a.

In particular the value of J,, attains a maximum at an
optimum thickness L, = L. and decreases with further
increase in the thickness of the sample. The other com-
ponents increase with increasing thickness and become
constant as L, > L., as shown in Fig. 3(d). In section
C, we provide a detail analysis of asymptotic behavior of
Jze and Jy, for large R. Off-diagonal components other
than J,, and J,, (not shown) are several orders of mag-
nitude smaller than these quantities, as expected from
the above analysis. (Note also the qualitative agreement
between results from our semi-analytical model and the
tight-binding computation.) The DM type of couplings
follow similar behavior as that of J,,. In Fig. 3(a), one
sees |Jzz| < |Jyyl, |J:2], both for our numerical analysis
(see below) and when using the analytical model with
just the n = 0 band. However, J,, shows further oscil-
lations for the analytical model for larger values of N,.
The precise reason for this is uncertain; it may be caused
either by limitations in our numerics, or due to the fact
that the n = 0 band itself is not enough to fully cap-
ture the inter-surface coupling through the bulk states
at larger thickness.

The results for J,, obtained from the tight-binding
computation are particularly interesting. If the cou-
pling between the spins were only mediated by the Fermi

arc states and if they are fully spin-polarized along
x—direction, then one would expect J,, to vanish. In
contrast, in the slab geometry J,, remains non-zero and
falls off rather slowly (see Fig. 3) with the distance be-
tween the impurity spins. (Similar behavior is found in
our analytical model at small thickness.) The discrep-
ancy can be attributed to two possible effects: (i) in-
teractions mediated by the bulk states which were not
included in the simple Fermi arc analysis, and (ii) the
presence of the second surface. Interestingly, Fig. 3(b)
shows that J,., after attaining a maximum value, van-
ishes rapidly with increasing thickness, which clearly fa-
vors mechanism (ii). Indeed, the non-monotonic behavior
of J;, can be understood as follows. Initially when the
sample thickness is small, processes that couple the spins
involve both surfaces, which host states of opposite helic-
ity. The surface density of states increases with increas-
ing thickness, giving rise to values of J,, that increase
with thickness. At larger thicknesses, the second surface
becomes increasingly inaccessible to impurities on the
first surface. Thus J,, deceases rapidly with further in-
crease in thickness. Since the chiral nature of the surface
states does not affect the other RKKY couplings, with
rising sample thickness these couplings increase mono-
tonically, due to the increasing surface density of states.



They saturate to constant values at large thickness.

The critical thickness L. can be used to define a “thin-
film limit” of the system, for which the effects of having
two surfaces are maximal. Noting that kg is the only
relevant momentum scale, we expect the thin film limit
to scale as L. ~ a/ko. A numerical verification of this
hypothesis is presented in Appendix B.

B. Impurities on opposite surfaces

When the impurity spins are put on opposite surfaces
of the slab, they may communicate via electron states
that are present in the bulk of the Weyl semimetal. To
examine this effect numerically, we place the two spins on
different surfaces of a WSM slab with various thicknesses
and vary their separation along the z axis (i.e., the di-
rection in which the Fermi arcs states disperse). Results
from these are illustrated in Figs. 4 and 5.

For the range of parameters we examined, the sym-
metry properties of the spin coupling matrix turn out to
be the same as when the spins are situated in the bulk
and are separated along the z direction (see Appendix
A). Numerically, when the two spins are located at sites
(z,y,2) = (0,0,0) and (R,0,L, = N.a), the coupling
between them is surprisingly strong despite the fact that
they reside on different surfaces. It is shown in Fig. 4
that in addition to DM-type exchange couplings, sym-
metric off-diagonal type?” exchange couplings J,. = J.,
are also present. The asymptotic behavior of diagonal
couplings for large R are discussed in detail in Section
C below; off-diagonal components of the coupling ma-
trix have asymptotic behavior similar to diagonal com-
ponents.

As a function of the thickness L., for fixed R all the
couplings initially increase and after attaining maximum
values decrease rapidly. Results for both the analytical
and tight-binding approaches for varying N, are illus-
trated in Fig. 5. The non-monotonic behavior of all the
couplings as a function of thickness can be qualitatively
understood as follows. As the thickness increases, the
Fermi arcs localize increasingly firmly on the surfaces,
increasing the surface density of states near the Fermi en-
ergy. This leads to an increase in the coupling between
the impurity spins on the surfaces and the conduction
electrons, which can mediate intersurface interactions ef-
fectively when L, is not too large. On the other hand,
as L, increases, the number of conduction electron states
which are sensitive to both surfaces decreases, resulting
in weaker coupling between spins on opposite surfaces.
With increasing thickness, the competition between these
two mechanisms gives rise to a critical thickness for which
the coupling between spins placed on opposite surfaces
maximizes. As in our earlier argument for impurities on
the same surface, with kg the only relevant momentum
scale we expect this thickness to scale as ~ a/ky. We
explore this in Appendix B. Again this critical thickness
also defines a thin-film limit; the values of this critical

thickness obtained from inter-surface coupling are of the
same scale as those obtained from the intra-surface cou-

pling.
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FIG. 7. RKKY coupling for slab with surfaces perpendicular
to the inter-Weyl node separation (y direction in our model)
for which there are no Fermi arcs. m = 0.5\, N, = 33. Top
panel: Spins on the same surface. Bottom panel: Spins on
opposite surfaces. In comparison with Figs. 3 and 4 the
couplings are very small. For larger R, as the J;; become
very small, the oscillations are likely due to the numerical
inaccuracy.

C. Asymptotic Behavior

In this section we analyse the asymptotic behavior of
RKKY couplings based on the observations shown in
Figs. 3, 4, 5. We first examine the behavior of the various
RKKY couplings as the distance between spin impuri-
ties becomes very large. For numerical estimation of the
functional form of the J;; as R along & becomes large,
we numerically evaluate two quantities,

d?log.J d dlog J
_ p2 - _
a(R)=R IR ,Y(R) a-r <R iR ) , (34)

and plot them as function of R in Fig. 6(a)-(d). Essen-
tially, if these functions become independent of R at large
R, then the asymptotic functional form of the coupling
is J ~ e~ "(F/@) R=  The numerical origin of 7 is that in
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FIG. 8. The diagonal elements of coupling matrix at a finite chemical potential (given by p in units of \), showing 2kg
oscillations. The left column shows the results for the spins on the same surface of the slab and the right column shows the
results when the spins are on opposite surfaces. The slab thickness N, = 33 and all other parameters are same as in Figs. 3

and 4.

evaluating the Green’s function, we add a small imagi-
nary value § to w, which models contacting the electrons
to some source of incoherence. For a system with linear
dispersion, it is easy to check that the resulting v in the
asymptotic limit would simply be 24, which matches well
with the numerically estimated value of v for J,, and
J.». As 0 — 0, v should also vanish.

The separation of Weyl nodes in momentum space
is controlled by the parameter m/A and is given by
2cos~1(m/)). As shown in Fig. (6), for all values of pos-
sible Weyl node separations, the numerical estimation of
a indicates that J,,,Jy, ~ 1/R for R > a. For very
small separation of the Weyl nodes (i.e, for m/A close
to unity) convergent 1/R behavior is reached only for a
large thickness. Note that, at very large R (such that
koR/a > 1), it is predicted that J,, and J,, would fall
off asymptotically roughly as 1/R? due to the curvature
of the Fermi arcs?!. Our numerical results suggest that
Fermi arc curvature effects on the exponent may require
very large spin separations to become noticeable.

Our estimate of the quantities o and « display a sur-
prisingly slow decay of the coupling with impurity sep-

aration, even for spins on opposite surfaces. This raises
the possibility that magnetizations on the surfaces should
order at low temperature. For intersurface coupling, -y re-
mains close to 24 for large R, but «(R), even for large R,
shows a weak R dependence, hinting that the coupling
may have a more complicated asymptotic form that 1/R.
Our numerical estimate of «(R) for a large R (=~ 150a)
is about 1.25. Results from the tight-binding simulation
and from the low-energy wavefunctions both support this
result.
In the inset of Fig. 6(e), we plot the function

d?log J
2

(35)

as a function of L, using the results from the low-energy
wavefunctions (for fixed R), showing that at large L., 8
retains a value ~ 5. Thus as a function of thickness, the
coupling decays as ~ e_:Y(Lz/a)Lz_ﬁ with 8 ~ 5. This
value of § matches the power-law falloff of RKKY cou-
pling for spins in the bulk of the WSM!®2!  suggesting
that for large enough L, the coupling between spins on



opposite surfaces is dominated by the bulk states. The
coefficient 4 (not shown) arises due to the non-vanishing
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FIG. 9. The Jy, coupling between spins on opposite sur-
faces for the system with a finite but small chemical potential
1/X = 0.05, as a function of the thickness of the slab, showing
that the non-monotonic behavior persists (compare to figure
5, where the chemical potential is the energy of the Weyl
nodes). Other parameters are the same as in Fig. 5. Other
couplings behave analogously.

V. SUMMARY AND DISCUSSION

In this work we have examined RKKY interactions
among impurity spins on the surfaces of Weyl semimetal
(WSM) slabs, using both an approach in which the wave-
functions of the WSM electrons are found in an analytical
form, and a more fully numerical recursive Green’s func-
tion technique. We find that Fermi arc surface states
play an important role in the RKKY coupling, creating
couplings that are stronger and more long-range than is
found for impurities well-inside the bulk of the system.
Surprisingly, even the coupling between spins on opposite
surfaces can be relatively strong. As a function of film
thickness, we find that the RKKY couplings are non-
monotonic, with maxima that can define a “thin-film”
limit, in which the effects of both surfaces are in some
sense maximal. The relative strengths and signs of dif-
ferent components of the RKKY couplings J;; can be
understood using a simple model in which only surface
states associated with the Fermi arcs are retained, and
in which the Fermi arcs are perfectly straight.

The importance of electron states with strong support
on the surfaces can be examined by comparing results for
geometries with Fermi arcs to ones without them. Fig.
7 illustrates RKKY coupling for spins on the same and
opposite surfaces which are perpendicular to the direc-
tion of separation between the Weyl nodes in the bulk,
for which surface states are not present. The generally
smaller scale of the resulting couplings supports the idea
that the Fermi arc states play a large quantitative role in
setting the coupling scale.
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The results presented to this point have been for van-
ishing chemical potential p, where the only extended
Fermi surfaces are due to the Fermi arcs, and the Fermi
energy passes directly through the Weyl nodes in the
bulk. In general, when g # 0 and the Fermi wavevector
kr # 0 in the bulk, one expects 2kp oscillations in the
RKKY coupling. Results for 1 # 0 are presented in Fig.
8, for which the oscillations are apparent. The envelopes
within which these oscillations occur behave rather simi-
larly to the results for p = 0. For finite, but small p, the
nonmonotonic behavior of the couplings that defines the
“thin-film limit” persists, as illustrated in Fig. 9.

When a system is of order or thinner than a critical
thickness ~ 1/kg, our results show that a proper treat-
ment of RKKY interactions requires one to retain states
from the Fermi arcs of both surfaces, even if the two spins
reside on the same surface. For real systems, such as
TaAs?®, the typical separation of Weyl nodes is rather
small (of the order of kg =~ 0.17/a) and thus we expect
the critical thickness to be of the order of several tens
to a hundred lattice spacings. Such thicknesses are quite
reasonable for thin-film semiconductor systems.

We conclude with some speculations about the kind of
magnetic order these RKKY interactions might induce
in the low temperature state of spin impurities on the
surfaces of a WSM thin film. At large distances, the
strongest couplings we find are for Jy, = J,, < 0 within
a single surface, suggesting the system will form a pla-
nar ferromagnet in its ground state. The non-vanishing
Jy. and J., couplings if large enough could induce spi-
ral order; while at short distances these can be larger
than the diagonal elements, at long distances the latter
are significantly larger. Given the relatively slow spa-
tial decay of the RKKY interaction, it seems likely that
the system will favor ferromagnetism. Furthermore, the
sign of coupling for impurities on different surfaces sug-
gests that the magnetization of the two surfaces will be
parallel to one another in the groundstate. In principle
at low temperature such magnetic order should be de-
tectable. Moreover, with this type of order one expects a
magnetic disordering transition at finite temperature in
the Kosterlitz-Thouless universality class, which might
be detected in thermal measurements or via spin trans-
port in the system. Finally, the importance of the Fermi
arc states in supporting such magnetic order could be
tested by comparing the behavior of slabs in which the
surfaces support them to ones in which they do not. We
leave the investigation of these questions to future work.
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APPENDIX

A. SYMMETRIES AMONG THE
SUSCEPTIBILITY MATRIX ELEMENTS

In this appendix we briefly discuss the symmetries
among the various coupling elements J;; for spins that
are on the same or opposite surfaces, as well as in the
bulk, based on the symmetry of the underlying Hamilto-
nian of the WSM.

First we consider the case when both spins, coupled to
same orbital, are on the same surface of a WSM slab of
thickness N, with spatial separation (x = R,0,0). The
two Green’s functions G(ri2,w) and G(—ri2,w) required
to calculate the RKKY coupling between the spins for
some arbitrary values of x and w have the structures

S0 S1  S2 S3
51 S0 S4 S2

G(I‘12,w) = so —83 8o 51 s (36)
—S4 S22 S1 So
Sop —S1 —S2 S3
—S81 So S4 —S2
G(—I‘12,W) = —89 —83 S0 5 5 (37)
—84 —S82 —S81 So

where s; (with ¢ = 0,1,2,3,4) are complex numbers de-
pending on R and w. Using these in Eq. 19, we obtain all
possible nonzero components of the spin-spin correlation
matrix to be

jzz - jyya jz:v 7é 0 and jzy - *jyz- (38)

Next, we consider the case when both spins, coupled
to the same orbital, are on the opposite surfaces of WSM
slab of thickness Lz with lateral spatial separation R, the
positions of the two spins are (0,0,0) and (r = R,0,L,).
The two Green’s functions G(ri2,w) and G(—rj2,w) re-
quired to calculate the RKKY coupling between the spins
for arbitrary values of R and w now have the structure

Og 02 0 03
O 01 —O03 0

G(rig,w) = 0 —o0s oo 05 | (39)
o3 0 02 01
op —oy 0 03
Glripw) = | _033 ZB _002 ; (40)
03 0 —os o9
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FIG. 10. The critical thickness at which the RKKY coupling is maximum depends strongly on the separation of the Weyl
nodes in momentum space, given by ko = cos™!(m/)\). For three values of m/\ = 0.2 (triangles), 0.5 (filled circles) and
0.95 (squares), (a) and (b) show the thickness dependence when the spins are on the same surface, while (c¢) and (d) show
the thickness dependence when the spins are on opposite surfaces. For (a) and (c) the analytical solutions for wavefunctions
of the low-energy Hamiltonian has been used. For (b) and (d) the recursive Green’s function method was used directly on
the tight-binding model. The parameter values are the same as for Figs. 3 and 4. For (a) and (b), the two spins are at
positions (z,y,z) = (0,0,0) and (R = 40,0,0) and for (c¢) and (d) the two spins are at positions (z,y,z) = (0,0,0) and

(R = 40,0, L. = N.a).

with o; (with i =0, 1,2, 3, 4) complex numbers depending
on R, L,, and w (0y is two orders magnitude smaller
than other elements). Using these in Eq. 19, we find
all possible nonzero components of spin-spin correlation
matrix are related by

jma: ~ jyy7 jzz 7é 0 3 jxy = _jy:m

Tow = Jz. and jzy = _Jyz' (41)

Finally, we consider the case when the two spins, cou-
pled to the same orbital, are deep in the bulk of a WSM
and have spatial separation (0,0,z = R). The two
Green’s functions G(ris,w) and G(—ri2,w) required to
calculate the RKKY coupling between the spins for some

arbitrary values of R and w have the structure

bp O 0 b
0 by —by O
G(I‘u, W) = 0 _22 b02 0 ; (42)
by O 0 b
by O 0 b
0 by —by O
G(—I‘lg,w) = 0 _22 b12 0 y (43)
by 0 0 bo

where b;, (with i = 0,1,2,3,4) are complex numbers de-
pending on R and w. Using these in Eq. 19, we obtain the
components of the spin-spin correlation matrix as similar
as those in Eqgs. (41):

Tz = jyya Tz 7é 0, jmu = _jym



B. CRITICAL THICKNESS AND THE
SEPARATION OF THE WEYL NODES

Finally, we examine in more detail the kg dependence
of the critical thicknesses at which the couplings are max-
imized, as discussed in the main text. Fig. 10 illustrates
numerical results for the thickness dependence of RKKY
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couplings for various values of the Weyl node separation
ko, for both the cases when the spins are on the same
surface as well as when the spins are on the opposite
surfaces. If one estimates the critical thickness L. at
which the coupling attains its maximum, one finds that
L.ko/a =~ constant.



