This is the accepted manuscript made available via CHORUS. The article has been published as:

Momentum-selective optical absorption in triptycene molecular membrane
Masashi Akita, Yasumaru Fujii, Mina Maruyama, Susumu Okada, and Katsunori Wakabayashi
Phys. Rev. B **101**, 085418 — Published 24 February 2020
Momentum selective optical absorption in triptycene molecular membrane

Masashi Akita1, Yasumaru Fujii2, Mina Maruyama2, Susumu Okada2 and Katsunori Wakabayashi1,3,4

1School of Science and Technology, Kwansei Gakuin University, Gakuen 2-1, Sanda 669-1337, Japan
2Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba 305-8571, Japan
3National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba 305-0044, Japan and
4Center for Spintronics Research Network (CSRN), Osaka University, Toyonaka 560-8531, Japan

The optical properties of triptycene molecular membranes (TMMs) under the linearly and circularly polarized light irradiation have been theoretically studied. Since TMMs have the double-layered Kagome lattice structures for their π-electrons, i.e., tiling of trigonal and hexagonal-symmetric rings, the electronic band structures of TMMs have non-equivalent Dirac cones and perfect flat bands. By constructing the tight-binding model to describe the π-electronic states of TMMs, we have evaluated the optical absorption intensities and valley selective excitation of TMMs based on the Kubo formula. It is found that absorption intensities crucially depend on both light polarization angle and the excitation position in momentum space, i.e., the momentum and valley selective optical excitation. The polarization dependence and optical selection rules are also clarified by using group theoretical analyses.

I. INTRODUCTION

Two-dimensional (2D) atomically thin materials have attracted significant attention owing to their unique physical and chemical properties, which are derived from the low dimensionality of electronic systems.1,2 Graphene3 is one of the most prominent 2D materials which shows high carrier mobilities,4 half-integer quantum Hall effect,5,6 and superconductivity.7 Owing to the honeycomb network structure of sp2 carbon atoms,8 the electronic states of graphene near the Fermi energy are well described by using the massless Dirac equation and possess conical electronic energy dispersion at K and K’ points of the hexagonal 1st Brillouin zone (BZ). These two nonequivalent Dirac points are mutually related by time-reversal symmetry. The independence and degeneracy of the valley degree of freedom owing to Dirac cones can be used to control the electronic states, i.e., valleytronics,9–13 which is analogous to spintronics and advantageous for the ultra-low-power consumption electronic devices. The idea of valleytronics is also applied to transition metal dichalcogenide with honeycomb structure such as MoS2 and has been experimentally demonstrated that the electrons in each valley can be selectively excited by circularly polarized light irradiation.14–20

Besides the hexagonal lattice structures such as graphene, Kagome lattice, which has the trihexagonal tiling network, is of interest, because it also possesses electronic energy band structure with valley structures, together with a perfect flat energy band. Kagome lattice has been the intensive research subject of theoretical studies because of its peculiar magnetic,21–24 transport25 and topological properties.26–31 However, experimental fabrication of Kagome lattice especially composed of sp2 carbon atoms is considered to be difficult. Recently, the bottom-up synthesis of 2D materials has been extensively investigated. Examples of this approach are surface metal-organic frameworks (MOFs)32 and surface covalent-organic frameworks (COFs).33,34 It is also suggested that the electronic states of 2D MOF consisting of π-conjugated nickel-bis-dithiolene35 can be modeled by the tight-binding model of Kagome lattice with the spin-orbit interactions as a candidate of topological insulators.36

Here, we focus on the aromatic hydrocarbon triptycene37 that is the three-dimensional (3D) propeller type structure as the building blocks of polymerized triptycene molecular membranes (TMMs).38,39 Two types of cross-linked structure in TMMs according to the bonding shape of each bridge, i.e., zigzag and armchair types. The recent first-principles calculations based on density functional theory (DFT) have shown that these TMMs are thermodynamically stable and become semiconducting with multiple Kagome bands,40,41 i.e., several sets of graphene energy bands with a flat energy band. Especially, these multiple Kagome bands provide a good platform of selective excitation of electrons with specific momentum, i.e., at K and K’ points. However, the effect of light irradiation on the optical transition has not been studied yet.

In this paper, we theoretically study the optical properties of TMMs under the linearly and circularly polarized light irradiation. To analyze the optical properties of TMMs, we construct the tight-binding model that faithfully reproduces the energy band structure obtained by DFT, and numerically evaluate the optical absorption intensity and valley selective optical excitation using the Kubo formula.32,43 It is found that absorption intensity crucially depends on both light polarization angle and the momentum of optically excited electrons. It is also confirmed that the circularly polarized light irradiation can selectively excite the electrons in either K or K’ point. Then, we analyze the optical selection rule of TMMs using the group theory. From the analysis, we determine the selection rules of the absorption spectrum and polarization-dependent transition at the high symmetric points in 1st BZ.

This paper is organized as follows. In Sec. II, we illustrate the lattice structures of zigzag and armchair TMMs. Subsequently, we construct the tight-binding model to
calculate their electronic structures and describe the fundamental theoretical framework to evaluate the optical properties of TMMs. In Sec. III, we discuss the optical properties of zigzag TMM under linearly and circularly polarized light irradiation. The optical properties of armchair TMM is discussed in Sec. IV. Section V summarizes our results. In addition, the details of the optical selection rules for 2D Kagome lattice are given in the Appendix A.

II. TIGHT-BINDING MODEL OF TMM

In this paper, we employ the tight-binding model to describe the π-electronic states of TMMs and study their optical properties under the linearly and circularly polarized light irradiation. The Hamiltonian for the π-orbitals in TMMs can be given as

$$\hat{H} = \sum_{\langle n,m \rangle} \gamma_{n,m} \langle \psi_n | \psi_m \rangle,$$

where ψ_m and ψ_n indicate the π-orbitals at m and n sites in the unit cell, respectively. $\gamma_{n,m}$ indicates the π-electron hopping integral between m and n atomic sites. The detailed parametrization of $\gamma_{n,m}$ is given below.

Triptycene is the 3D aromatic molecule and schematically shown in Fig. 1(a). The black and white circles indicate sp2 and sp3 carbon atoms, respectively. Each sp2 carbon provides one π-electron. Owing to the central sp3 carbons, three propeller wings extend toward three directions forming C$_3$v symmetry. Since there is no π-electron on the center of three propellers, the π-electrons construct the triangle network in the triptycene. Figure 1(b) shows the top view of triptycene molecule together with π-orbitals. The electron hoppings within the same wing are defined as $-\gamma_0$, and those between different wings are defined as γ_1, where $\gamma_0 > 0$ and $\gamma_1 > 0$.

As shown in Figs. 1 (c) and (d), there are two types of cross-linked structures of TMMs, i.e., zigzag and armchair TMMs, respectively. It should be noted that both of TMMs have C$_6$v symmetry. Here, the magenta arrows are primitive vectors, given as $a_1 = (a,0)$ and $a_2 = (a, \sqrt{3}a)$, where a is lattice constant: $a = 8.92\,\text{Å}$ for zigzag TMM and $a = 22.17\,\text{Å}$ for armchair TMM, respectively. The yellow shaded areas are the unit cells of TMMs. The zigzag and armchair TMMs have 18 and 54 π-electronic sites in their unit cells, respectively. Since the corresponding reciprocal lattice vectors are given as $b_1 = \frac{2\pi}{a} (1, \frac{1}{\sqrt{3}})$ and $b_2 = \frac{2\pi}{a} (0, \frac{2}{\sqrt{3}})$, the 1st BZ for TMMs becomes the hexagonal shown in Fig. 1(e).

In zigzag TMMs, triptycene molecules are polymerized by sharing benzene rings between neighboring molecules. It can be understood that the π-electrons form the network composed of triangle rings and even membered rings as shown in Fig. 1 (c). The inplane network structure is resemble to the Kagome lattice, where triangle and hexagonal-symmetric rings are alternatively spread. Besides, this Kagome-like network forms the bilayered...
structure which can be seen in side-view. The bilayer structure leads to bonding and anti-bonding molecular orbitals between upper and lower layers. As shown in Appendix A, the tight-binding model of 2D Kagome lattice produces the energy band structures with graphene energy dispersion and a perfect flat band. In actual, the DFT calculations show that zigzag TMMs become semi-conducting and show the energy band structures accompanying several sets of Kagome-like energy dispersion. For the tight-binding model of zigzag TMMs, we use $-\gamma_0$ for the electron transfer within benzene rings, $\gamma_1 = \gamma_0/4$ for triangular rings connecting benzene rings. Throughout this paper, we set $\gamma_0 = 2.43eV$. This parameter set fairly reproduces the energy band structures of zigzag TMMs obtained DFT calculations.

Figure 1 (d) shows the lattice structure of armchair TMMs, where triptycene molecules are connected through benzene molecules with σ-bondings. Since the benzene molecule bridges two carbon atoms belonging to the different layers as shown in the side-view of the structure, armchair TMM has the rippling structure. The DFT study has shown that armchair TMM is energetically stable and semi-conducting. Similar to zigzag TMM, owing to the presence of triangle rings, armchair TMMs also has Kagome-like energy band structures. For the tight-binding model of armchair TMM, we use $-\gamma_0$ for the electron transfer within benzene rings, $\gamma_1 = \gamma_0/4$ for triangular rings connecting benzene rings. It is also known that the bridging benzene rings are tilted with the angle of $\frac{\pi}{3}$ from the vertical plane to the armchair membrane owing to the conformation. Thus, the transfer integral for the bridging bonds is taken as $-\gamma_2 = -\gamma_0 \cos \theta$ with $\theta = \frac{\pi}{3}$. This parameter set fairly reproduces the energy band structures of armchair TMMs obtained DFT calculations.

Let us briefly make the overview of theoretical framework to study the optical properties of TMMs under the linearly and circularly polarized light irradiation. The light absorption coefficient of solid is described as

$$\alpha(\omega) = \frac{\omega}{c n} \text{Im}[\varepsilon(\omega)],$$

where $\varepsilon(\omega)$ is complex dielectric function. Here ω is frequency of irradiation light and n is refractive index. In addition, dielectric function $\varepsilon(\omega)$ can be related to the dynamical conductivity $\sigma(\omega)$ by

$$\varepsilon(\omega) = 1 + \frac{4\pi}{\omega} \sigma(\omega).$$

Since the effect of external field is treated within first-order perturbation, the dynamical conductivity can be evaluated through Kubo formula,42,43 i.e.,

$$\sigma(\omega) = \frac{\hbar}{i S} \sum_k \sum_{i,f} \frac{f(E_k^{(f)}) - f(E_k^{(i)})}{E_k^{(f)} - E_k^{(i)}} \frac{|\mathbf{e} \cdot \nabla \psi_k^{(f)}|}{E_k^{(f)} - E_k^{(i)} - \hbar \omega + i\eta},$$

$$= \frac{1}{S} \sum_k \sum_{i,f} \tilde{\sigma}_{f,i}(\mathbf{k}, \omega).$$

S is the area of system and $E_k^{(i)}$ and $E_k^{(f)}$ indicate the eigenenergies for initial and final states for the interband optical transition, respectively. $\psi_k^{(i)}$ and $\psi_k^{(f)}$ are...
FIG. 3. (a) (Upper panel) Optical absorption spectrum of zigzag TMM under the circularly polarized light irradiation. The three dashed lines indicate the representative optical transition caused by T_1 at M point, T_2 at M point and T_2+T_3 at K point from left. The integration is evaluated within the 1/6 region of 1st BZ containing K_2 point. (Lower panel) The difference of optical absorption between LCP and RCP. Dashed and solid lines correspond to the cases of k-integration for the 1/6 regions of BZ containing K_1 and K_2, respectively. Since TMM preserves both time-reversal and inversion symmetries, K_1 and K_2 states polarize oppositely, i.e., no net valley polarization. (b) Momentum space mapping of absorption intensity for (upper panel) T_1 and (lower panel) T_2 transitions. (c) The distribution of dipole vector in the momentum space for (upper panel) T_1 and (lower panel) T_2 transitions under the circularly polarized light irradiation. The green and orange arrows indicate real and imaginary parts of the dipole vector, respectively.

corresponding wavefunctions obtained from tight-binding model. The k-summation is performed within the 1st BZ. $f(E_{k}^{(i)})$ is the Fermi-Dirac distribution function for the state of energy $E_{k}^{(i)}$. η is an infinitesimally small real number. Also, $e = (e_x, e_y)$ is the polarization vector of incident light and $\langle \psi_k^{(f)} | \nabla_r | \psi_k^{(i)} \rangle$ represents the transition dipole vector, where $\nabla_r = (\partial/\partial x, \partial/\partial y)$. For linearly polarized light, it is given as $\hat{\sigma}_{\pm}(k, \omega)$, which gives the momentum resolved absorption intensity from $\psi_k^{(i)}$ to $\psi_k^{(f)}$, i.e., $\alpha_{f,i}(k, \omega)$. This will be used for momentum space mapping of absorption intensity.

The transition dipole vector is evaluated as the expectation value of group velocity, i.e.,

$$\langle \psi_k^{(f)} | \nabla_r | \psi_k^{(i)} \rangle = i \frac{m}{\hbar} \langle \psi_k^{(f)} | \frac{\partial \hat{H}}{\partial k} | \psi_k^{(i)} \rangle.$$

The inner product between the polarization vector and the transition dipole vector leads to

$$e \cdot \langle \psi_k^{(f)} | \nabla_r | \psi_k^{(i)} \rangle = \frac{m}{\hbar} \left(e_x \langle \psi_k^{(f)} | \frac{\partial \hat{H}}{\partial k_x} | \psi_k^{(i)} \rangle + e_y \langle \psi_k^{(f)} | \frac{\partial \hat{H}}{\partial k_y} | \psi_k^{(i)} \rangle \right).$$

The polarization of light can be incorporated through the Jones vectors. For linearly polarized light, it is given as

$$e_{\text{Linear}} = \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix},$$

where ϕ is direction of electric field of incident light measured from x-axis. Meanwhile, for right-handed circularly polarized (RCP) light irradiation, we use

$$e_{\text{RCP}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix},$$

and for left-handed circularly polarized (LCP) light, we use

$$e_{\text{LCP}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}.$$
irradiation. Figure 2 (a) shows the energy band structure of zigzag TMM together with the corresponding density of states (DOS) on the basis of tight-binding model. The system is semiconducting with the direct band gap. Since zigzag TMM has C_{6v} symmetry same as the 2D Kagome lattice, several Dirac cones appear at K-point. Simultaneously, several perfect flat bands appear owing to the nature of Kagome lattice. If we say a set of graphene-like bands with a flat band as a Kagome-like energy band, as we have expected, six set of Kagome-like energy bands with a flat band as a Kagome-like energy band structure, we can distinguish the energy subbands into bonding (black line spectrum) and antibonding (cyan line spectrum) subbands across the upper and lower layers. It is noted that optical transitions occur between same types of states, i.e., the transition from bonding (anti-bonding) to anti-bonding (bonding) states is forbidden since the parity of the wavefunction is reversed with respect to the xy-plane.

1. Linearly Polarized Light

Let us closely inspect the optical properties of zigzag TMM under linearly polarized light irradiation. To study the details of optical selection rules, we focus on the optical transition from the highest valence subband. The representative optical transitions are named T_1, T_2 and T_3 indicated by red arrows in Fig. 2(a). Note that the optical transition to cyan-colored subband is prohibited. The left panel of Fig. 2(b) shows the incident energy dependence of absorption intensity under linearly polarized light irradiation. Only T_1, T_2 and T_3 transitions contribute optical absorption in this energy region, and k-integration is performed in the whole 1st BZ.

The absorption spectrum shows two intensive peaks at 3.96 and 4.21 eV, which originate from the divergent joint density of states (JDOS) owing to the saddle points of energy band structure at M points. The first peak mainly arises from the optical transition T_1, and the second one arises from T_2.

It is noted that three non-equivalent M points contribute differently to these peaks of the optical absorption spectrum. The right panel of Fig. 2(b) shows the contributions from M_1, M_2, and M_5 points. To separate the contribution from each M point, k-integration of optical conductivity is performed in the three divided regions as shown in the inset of right panel of Fig. 2(b). It is seen that the M_2 point has the larger contribution to the first peak than M_1 and M_5, but the smaller contribution to the second peak. Thus, it is possible to make a polarization among three non-equivalent M points using the linearly polarized light irradiation.

2. Polarization Angle Dependence at High Symmetric k-Points

Next, we shall discuss the polarization angle dependence of optical absorption intensities at Γ, M, K points using group theory. Since the TMMs have similar crystal symmetry with 2D Kagome lattice, the polarization angle dependence is quite analogous to the case of 2D Kagome lattice discussed in Appendix A in detail.

1) Γ point: The Γ point has C_{6v} symmetry. However, in Kagome lattice and TMMs, the optical selection rules are determined by C_{3v} symmetry, because of the existence of the triangle unit in the lattice. Thus, optical transition occurs between non-degenerate A_1 state and doubly degenerate E states. Therefore, only T_1 and T_2 transitions are optically active, but T_3 is prohibited.

Figure 2(d) shows the polar angle dependence of light absorption at the Γ point for T_1 and T_2. Since the wavefunction of zigzag TMM (not shown) has the same symmetry as that of 2D Kagome lattice, the T_1 and T_2 have the polarization angle dependence on $\cos \phi$ and $\sin \phi$, respectively.

2) M point: The M points have C_{2v} symmetry, i.e., there is no degeneracy in energy dispersion at these points. In zigzag TMM, all the wavefunctions at M points are classified into either A or B representation, as similar to the case of 2D Kagome lattice. The optical transitions occur for T_1 and T_2. It should be noted that T_3 is not allowed because T_3 connects the two states with the same symmetry. In Fig. 2(e), the angle dependence of linearly polarized light at M_2 point is shown. We can clearly confirm the T_1 and T_2 have $\cos \phi$ and $\sin \phi$ dependence, respectively. This is consistent with the case of 2D Kagome lattice. For M_1 (M_3) point, the polarization angle dependence is obtained by shifting the angle as $\phi \rightarrow \phi - \pi/3 (\phi + \pi/3)$.

3) K point: The K points have C_{3v} symmetry. Similar to 2D Kagome lattice, non-degenerate A_1 states and doubly degenerates E states appear at K points in zigzag TMM. The flat band state corresponds to A_1, and the Dirac points correspond to E states. Thus, the optical transitions are allowed between A_1 and E states, i.e., T_1, and between E states, i.e., T_2 and T_3. However, it is noted that the optical absorption is relatively weak compared with those at Γ and M points, owing to the smaller JDOS of Dirac cones in zigzag TMM.

The angle dependence at K points is shown in Fig. 2(f). It is noted that the optical transition of T_1 is isotropic, which is not seen in Γ and M points. It is equivalent to the polarization dependence of 2D Kagome lattice, see Appendix A.

Furthermore, in TMMs, the unique optical transitions occur between Dirac cones, which are absent in simple 2D Kagome lattice. Similar to graphene, the Dirac cones are expected to have the helicity. In general, the upper and lower cones have opposite helicities even at the same K point. The red and blue Dirac cones in Fig. 2(f) indicate the opposite helicity. It should be noted that the optical
transitions between the same (different) helicities have the polarization angle dependence of \(\sin \phi (\cos \phi) \). Thus, the polarization dependence of absorption spectrum at \(K \) points has different origin from those at the \(\Gamma \) and \(M \) points.

3. Circularly Polarized Light

Since zigzag TMM has the valley structures in the energy band structure, the circularly polarized light irradiation can selectively excite the electrons belonging to either \(K_1 \) or \(K_2 \) point depending on the direction of polarization. Note that the present system preserves both time-reversal and inversion symmetries, no net valley polarization occurs. The upper panel of Fig. 3(a) is the absorption spectrum under the circularly polarized light irradiation, where the \(k \)-integration has been performed within the 1/6 region of BZ containing \(K_2 \) point, see inset of Fig. 3(a). It can be noticed that there are two pronounced peaks around \(h \omega = 3.96 \) and 4.21 eV, where only the first peak shows rather large difference between LCP and RCP. The first and second peaks correspond to the optical transition of \(T_1 \) and \(T_2 \) at \(M \) point, respectively. The optical transition of \(T_1 \) is mainly dominated by the electronic excitation at \(M \) and \(K \) points. However, \(T_2 \) is mostly dominated by electronic excitation at \(M \) points. The lower panel of Fig. 3(a) is the difference of optical absorption between LCP and RCP. Since TMM preserves both time-reversal and inversion symmetries, \(K_1 \) and \(K_2 \) states polarize oppositely, i.e., no net valley polarization.

Figure 3(b) shows momentum space mappings of absorption intensity differences between LCP and RCP, \(\Delta \alpha(k) \), for the optical transitions \(T_1 \) and \(T_2 \). \(\Delta \alpha(k) \) is defined as \(\Delta \alpha(k) = \alpha_{\text{LCP}}^{f,i}(k,\omega) - \alpha_{\text{RCP}}^{R,i}(k,\omega) \), where \(f, i \) and \(\omega \) are chosen to satisfy the condition of specific optical transition. Red (blue) region indicates strong absorption for RCP (LCP). The strong valley selective excitation by circularly polarized light irradiation can be observed for the optical transition \(T_1 \). However, such valley selective excitation becomes weak for \(T_2 \). This can be understood by inspecting the momentum space mapping of the dipole vector, \(\langle \psi_{LCP}^{f,i}(k) | \nabla_{\mathbf{r}} | \psi_{RCP}^{R,i}(k) \rangle \) as shown in Fig. 3(c), where green and orange arrows indicate real and imaginary parts of the dipole vector, respectively. As can be seen, the real and imaginary parts are orthogonal near the \(K_1 \) and \(K_2 \) points for \(T_1 \), resulting in the valley selective excitation.\(^{47,48} \) However, the real and imaginary parts of dipole vector becomes parallel in the transition \(T_2 \), i.e. very weak valley selective excitation. Note that the momentum mapping of absorption intensity for \(T_3 \) is not shown here, because of that \(T_3 \) is optically prohibited except the vicinity of \(K \) points.

IV. OPTICAL PROPERTIES OF ARMCHAIR TMM

In this section, we briefly discuss the optical properties of armchair TMM. For armchair TMM, we can apply the similar optical selection rules found in zigzag TMM. How-
A third strong peak indicates transitions has the two strong peaks around the 2.

ley polarization occurs, because both time-reversal and
dicated as

d to three lowest conduction subbands in-

let us focus on the optical transition from the highest

anti-bonding states. Similar to the case of zigzag TMM,

cannot decompose the energy subbands into bonding and

Owing to the rippling structure of armchair TMMs, we

can not decompose the energy subbands into bonding and

In armchair TMM, the absorption spectrum of these

transitions has the two strong peaks around the 2.76eV

and 2.94eV in addition to one weak peak around the

2.84eV as shown in the left panel of Fig. 4(b). Here, k-integration is performed in the 1/6 re-

gion of 1st BZ containing K_1 point, see inset of Fig. 4(b).

Certainly, the momentum space mappings of the absorp-
sion spectrum differences $\Delta\alpha(k)$ for T_1, T_2 and T_3 transi-
tions clearly indicate the selective excitation around the

K_1 and K_2 points as shown in Figs. 4(c), (d) and (e).

V. SUMMARY

In summary, we have theoretically investigated the op-
tical properties of TMMs under the linearly and cir-
cularly polarized light irradiation. To analyze the opti-
cal properties of TMMs, we have constructed the tight-

binding model that faithfully reproduces the energy band

structures obtained by first-principles calculations. On

the basis of the tight-binding model, we have numerically

evaluated the optical absorption intensity and valley se-

clective optical excitation using the Kubo formula. This

approach reduces significantly the computational cost,

since the TMMs contain the large number of atoms in

their unit cells. It is found that absorption intensity cru-

cially depends on both light polarization angle and the

momentum of optically excited electrons. It has been

also confirmed that the circularly polarized light irradia-
tion can selectively excite the electrons in either K or K'

point. Besides the circularly polarized light irradiation,

the use of second optical harmonics is another way to

generate the valley polarization in TMMs, which will be

studied in future. Thus, TMMs are considered to be the
good platform for the valleytronics applications. In addi-
tion, we have analyzed the selection rules of TMMs using

group theory, which shows very similar optical selection

rules to that of 2D Kagome lattice system. From the

analysis, we have determined the absorption spectrum

and polarization-dependent transition at high symmet-

ic points in 1st BZ. Our works will serve for designing

further TMMs and analyze the experimental data of the

optical absorption spectrum of TMMs.

K.W. acknowledges the financial support from Masu-

suya Memorial Research Foundation of Fundamental Re-

search. This work was supported by JSPS KAKENHI

Grant No. JP18H01154, and JST CREST Grant No.

JPMJCR19T1.

Appendix A: Selection Rule of 2D Kagome Lattice

Here we consider the electronic states of 2D Kagome

lattice and summarize the optical selection rules on the

basis of nearest-neighbor tight-binding model. Figure 5

(a) shows schematic of 2D Kagome lattice. The yellow

shaded area is the unit cell, which contains three non-
equivalent atomic sites called A, B and C. The primitive

ever, owing to the less dispersive energy band structures

of armchair TMM, rather clear valley selective optical

excitation can be observed.

Figure 4(a) shows the energy band structure of arm-

chair TMM together with the corresponding DOS on the

basis of tight-binding model. Here the tilted angle is set
to $\frac{\pi}{2}$. Similarly, several sets of Kagome bands are ob-
tained. Since the unit cell contains 54 atomic sites, only

subbands and DOS near the Fermi energy are shown.

Owing to the rippling structure of armchair TMMs, we

cannot decompose the energy subbands into bonding and

anti-bonding states. Similar to the case of zigzag TMM, let

us focus on the optical transition from the highest

valence subband to three lowest conduction subbands in-
dicated as T_1, T_2, and T_3 in Fig. 4(a). Note that no val-

ley polarization occurs, because both time-reversal and

inversion symmetries are preserved.

In armchair TMM, the absorption spectrum of these

transitions has the two strong peaks around the 2.76eV

and 2.94eV in addition to one weak peak around the

2.84eV as shown in the left panel of Fig. 4(b). Here, k-integration is performed in the whole 1st BZ. The first

strong peak and second weak peak indicate the T_1 and

T_2 transitions at M point, respectively. However, the

third strong peak indicates T_2 and T_3 transitions at K

point. In armchair TMM, the slope of energy dispersion

for Dirac cones becomes smaller than that of zigzag

TMM, leading to faster increase of DOS near the Dirac

points. This fact induces rather strong valley selective

optical absorption at K point for $\hbar\omega = 2.94eV$. Thus,

armchair TMM can generate the valley selective optical

excitation more clearly, as shown in the right panel of

Fig. 4(b). Here, k-integration is performed in the 1/6 re-

gion of 1st BZ containing K_1 point, see inset of Fig. 4(b).

Certainly, the momentum space mappings of the absorp-
sion spectrum differences $\Delta\alpha(k)$ for T_1, T_2 and T_3 transi-
tions clearly indicate the selective excitation around the

K_1 and K_2 points as shown in Figs. 4(c), (d) and (e).
vectors are given as $a_1 = (a, 0)$ and $a_2 = (-\frac{a}{2}, \frac{\sqrt{3}a}{2})$, where a is the lattice constant. Here, we assume that each site has a single electronic orbital and electron hopping parameter between nearest-neighbor sites is $-\gamma$.

The Schrödinger equation for 2D Kagome lattice is given as

$$\hat{H}_k \psi_k = \epsilon_k \psi_k,$$

where $\psi_k = (A_k, B_k, C_k)$ is the wavefunction representing the amplitude at A, B and C sublattice sites in the unit cell, respectively. ϵ_k is the energy eigenvalue. The Hamiltonian is given by

$$\hat{H}_k = -\gamma \begin{pmatrix} 0 & 1 + e^{iK_1} & 1 + e^{-iK_3} \\ 1 + e^{-iK_1} & 0 & 1 + e^{iK_2} \\ 1 + e^{iK_3} & 1 + e^{-iK_2} & 0 \end{pmatrix}.$$

Here, we have defined $K_\nu = k \cdot a_\nu/2$, with $\nu = (1, 2, 3)$, $k = (k_x, k_y)$ and $a_3 = -(a_1 + a_2)$. Since the reciprocal lattice vectors are given by $b_1 = \frac{2\pi}{a}(1, \frac{1}{\sqrt{3}})$ and $b_2 = \frac{2\pi}{a}(0, \frac{2}{\sqrt{3}})$, the 1st BZ of 2D Kagome lattice becomes hexagonal shown in Fig. 5(b). The energy eigenvalues are given as $\epsilon_k = 2, -1 \pm \sqrt{3 + 2 \sum_{\nu=1}^{3} \cos (K_\nu)}$. It should be noted that the form $\epsilon_k = 2, -1 \pm \sqrt{3 + 2 \sum_{\nu=1}^{3} \cos (K_\nu)}$ is completely identical with the form of energy band dispersion of nearest-neighbor tight binding model for π-electrons of graphene.

Figure 5(c) shows energy band structure and corresponding density of states of 2D Kagome lattice. There are three subbands in this system, the two lowest subbands have the identical structure with that of 2D honeycomb lattice, i.e., graphene. However, there is the perfect comb lattice, i.e., graphene. However, there is the perfect point has C_{6v} symmetry, which obeys the characteristic table of Table I. At Γ point, the eigenenergies are $\epsilon_1 = -4\gamma$, and $\epsilon_2 = \epsilon_3 = 2\gamma$. The wavefunction is analytically given as

$$\psi_1^\Gamma = \frac{1}{\sqrt{3}} (1, 1, 1),$$

$$\psi_2^\Gamma = \frac{2}{\sqrt{3}} \left(-\frac{1}{2}, -\frac{1}{2}, 1 \right),$$

$$\psi_3^\Gamma = \frac{1}{\sqrt{2}} (1, -1, 0),$$

which are schematically drawn in Fig 6(a). According to the characteristic table of C_{6v}, ψ_1 is A_1 representation, and the degenerate states of ψ_2 and ψ_3 are E_2 representation. Since the polarization vectors belong to E_1 representation, the tensor product $E_1 \otimes A_1 = E_2$ indicates that the optical transition to E_2 is not allowed. However, it should be noted that 2D Kagome lattice contains C_{3v} symmetry if we take the triangle unit as the symmetry center. According to the characteristic table of C_{3v} (see Table II), ψ_1 is A_1 representation, and the degenerate states of ψ_2 and ψ_3 are E representation. Since in C_{3v}, the tensor product is given as $E \otimes A_1 = E$, both of optical transitions T_1 and T_2 are active. Furthermore, the basis functions for ψ_1, ψ_2 and ψ_3 states are given as z, y, x, respectively. The optical transition T_1 and T_2 have x and y polarization, respectively.

Since the wavefunctions are analytically obtained, we can analytically evaluate expectation values of the optical dipole vectors. For linear polarization, we obtain

$$e \cdot \langle \psi_2 | \nabla_k H | \psi_1 \rangle = -\frac{3\sqrt{3}a}{2\sqrt{2}} \sin \phi,$$

$$e \cdot \langle \psi_3 | \nabla_k H | \psi_1 \rangle = \frac{3a}{\sqrt{6}} \cos \phi.$$

This polarization angle dependence is consistent with the numerical calculations as shown in the bottom panel of Fig. 6(a). For circularly polarization, we obtain

$$|e_{LCP} \cdot \langle \psi_j | \nabla_k H | \psi_1 \rangle |^2 = |e_{RCP} \cdot \langle \psi_j | \nabla_k H | \psi_1 \rangle |^2,$$

where $j = 2, 3$. Thus, there is no dependence on direction of circularly polarization at Γ point.
FIG. 6. The real space distribution of wave functions for 2D Kagome lattice and (bottom panel) corresponding angle dependence of optical absorption at high symmetric points: (a) Γ and (b) M₂. Black and white circles indicate the sign of wave functions, and the radius of circles indicates the amplitude of wave functions. Red dots indicate the inversion center (IC) of Kagome lattice. (c) Same for K₂ point. Here, the argument of complex wave function is indicated by green arrows. (d) Absorption intensity and polarization of 2D Kagome lattice, where k-integration for optical conductivity is performed (upper panel) for the whole 1st BZ, (middle panel) for 1/3 regions of 1st BZ containing either M₁, M₂ or M₃ point, (lower panel) for 1/6 region of 1st BZ containing K₂ point.

[2] M point: The M points have C₂ᵥ symmetry, which obeys the character table of Table III. The eigenenergies are ɛ₁ = −2γ, ɛ₂ = 0, and ɛ₃ = 2γ, respectively. For example, the wavefunctions at M₂ point are given as

\[\psi^{M_2}_1 = \frac{1}{\sqrt{2}} (1, 1, 0), \]
\[\psi^{M_2}_2 = (0, 0, 1), \]
\[\psi^{M_2}_3 = \frac{1}{\sqrt{2}} (1, -1, 0), \]

which are schematically shown in Fig. 6 (b). Since C₂ᵥ is 1D representation, we can define two symmetry axes in real space, \(\psi^{M_2}_1, \psi^{M_2}_2 \) and \(\psi^{M_1}_1 \) along the \(x \) (\(y \)) direction are \(A_1, A_2 \) and \(B_1 \left(B_2, A_1 \right. \) and \(A_1 \) \) representations, respectively. Note that the basis functions for \(B_1 \) and \(B_2 \) are \(x \) and \(y \), respectively. Thus, optical transition \(T_1 \) (\(T_2 \)) is active with \(y \) (\(x \)) polarization. For linear polarization, we can explicitly write the expectation value of dipole vector as

\[e \cdot (\psi^{M_2}_2 | \nabla_k H | \psi^{M_2}_1) = -i \sqrt{3} \sin \phi, \]
\[e \cdot (\psi^{M_2}_3 | \nabla_k H | \psi^{M_2}_1) = -i \cos \phi. \]

M₂ point has mirror with respect to \(k_y \) axis, however, \(M_1 \) and \(M_3 \) have the mirror with respect to \(k_y = \frac{\sqrt{3}}{2} k_x \) and \(k_y = -\frac{\sqrt{3}}{2} k_x \), respectively. Thus, polarization angle dependence for \(M_1 \) and \(M_3 \) can be obtained by replacing the result of \(M_2 \) as \(\phi \to \phi - \pi/3 \) and \(\phi \to \phi + \pi/3 \), respectively. Thus, by tuning the angle of linear polarization, the electrons can be optically excited either \(M_1 \), \(M_2 \) or \(M_3 \) point selectively.

[3] K₂ point: The K₁ and K₂ points have C₃ᵥ symmetry. The eigenenergies are \(\epsilon_1 = \epsilon_2 = -\gamma \) and \(\epsilon_3 = 2\gamma \). The
wavefunction at K_2 point is given as

$$
\begin{align*}
\psi_{1K_2} &= \frac{1}{\sqrt{2}}(-\omega^{-1}, 0, 1), \\
\psi_{2K_2} &= \frac{1}{\sqrt{2}}(1 - 2\omega, 2, -\omega^{-1}), \\
\psi_{3K_2} &= \frac{1}{\sqrt{3}}(\omega^{-1}, \omega, 1),
\end{align*}
$$

where $\omega = \exp\left(i\frac{2\pi}{\gamma}\right)$. ψ_3 has A_1 representation, and degenerate states of ψ_1 and ψ_2 have E representation. For degenerate ψ_1 and ψ_2 states, we made the orthonormalization. Since the tensor product leads to $E \otimes E = A_1$, the optical transition from Dirac cone to the flat band is active.

For linear polarization, we can explicitly write the expectation value of dipole vector as

$$
\begin{align*}
e \cdot \langle \psi_3^{K_2} | \nabla_k H | \psi_1^{K_2} \rangle &= -\frac{\sqrt{3}}{2\sqrt{2}} \omega^{-1} \exp(i\phi), \\
e \cdot \langle \psi_3^{K_2} | \nabla_k H | \psi_2^{K_2} \rangle &= \frac{\sqrt{3}}{2\sqrt{2}} \omega^{-1} \exp(-i\phi).
\end{align*}
$$

The polarization angle works only for the phase factor, i.e., no polarization angle dependence. This behavior is shown in the bottom panel of Fig. 6(c). For circularly polarized light, the expectation values of dipole vector are written as

$$
\begin{align*}
e_{RCP} \cdot \langle \psi_3^{K_2} | \nabla_k H | \psi_1^{K_2} \rangle &= -\frac{\sqrt{3}}{\sqrt{2}} \omega^{-1}, \\
e_{LCP} \cdot \langle \psi_3^{K_2} | \nabla_k H | \psi_1^{K_2} \rangle &= 0, \\
e_{RCP} \cdot \langle \psi_3^{K_2} | \nabla_k H | \psi_2^{K_2} \rangle &= \frac{\sqrt{3}}{\sqrt{2}} \omega^{-1}, \\
e_{LCP} \cdot \langle \psi_3^{K_2} | \nabla_k H | \psi_2^{K_2} \rangle &= 0.
\end{align*}
$$

Thus, only RCP light can excite electrons at K_1 points, i.e., valley selective optical excitation. On the contrary, at K_2 points, only LCP light can excite electrons. However, it is noted that the optical absorption is relatively weak compared with those at Γ and M points, owing to the smaller JDOS of Dirac cones.

Absorption intensity: Figure 6 (d) shows the energy dependence of absorption intensity for the linearly and circularly polarized light irradiation, together with the valley selective optical excitation. In upper pannel of Fig. 6 (d), the spectrum is integrated over the whole 1st BZ, and the sharp peaks at $\hbar \omega = 2\gamma$ and 4γ are originated from optical transition at M point, where JDOS diverges logarithmically.

It is intriguing that the lower peak at 2γ is dominated by the optical transition T_1, as shown in middle panel of Fig. 6 (d). This behavior is attributed to the angle dependence at M point showed in Fig. 6 (b). Thus, the lower peak has strong momentum selectivity for the optical absorption. For higher peak at 4γ, no such strong selectivity is found. Also, for circularly polarized light irradiation, such strong polarization dependence does not occur as shown in lower panel of Fig. 6 (d). Instead, the valley selective optical excitation is relatively enhanced around $\hbar \omega = 3\gamma$. Around this energy, optical transition occurs mainly at K points between Dirac cones and flat band. Although the optical absorption intensity is not so large owing to the relatively small DOS near Dirac cones, they show stronger valley selective optical excitation.

* Corresponding author: waka@kwansei.ac.jp
G. D. Mahan, Many-Particle Physics (Springer, 2000).
M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group Theory (Springer-Verlag Berlin Heidelberg, 2008).