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We propose a many-body index that extends Fredholm index theory to many-body systems. The
index is defined for any charge-conserving system with a topologically ordered p-dimensional ground
state sector. The index is fractional with the denominator given by p. In particular, this yields a
new short proof of the quantization of the Hall conductance and of Lieb-Schulz-Mattis theorem.
In the case that the index is non-integer, the argument provides an explicit construction of Wilson
loop operators exhibiting a non-trivial braiding and that can be used to create fractionally charged

Abelian anyons.

PACS numbers: 63.10.+a, 05.30.-d

I. INTRODUCTION.

The use of topology to study condensed matter sys-
tems is among the most influential developments of late
20th century theoretical physics’2. The first major ap-
plication of topology appeared in the context of the quan-
tum Hall effect®® in the early 80, and topological con-
cepts have since been applied systematically to discover
and classify phases of matterS 2. The full classification
for independent fermions is well developed, in particu-
lar by K-theory' 1%, but a fully rigorous mathematical
framework of similar scope is lacking for interacting sys-
tems, except possibly in 1 dimension where there is a
classification of matrix product states'®1? and cellular
automata?0-21,

For non-interacting systems, several topological indices
can be formulated as Fredholm indices®?>2* or, equiva-
lently, as transport through a Thouless pump?®. These
formulations have been influential and insightful, in par-
ticular for non-translation-invariant systems?. For ex-
ample, the quantum Hall conductance?”, the Z,-Kane-
Mele index?®29_ and the particle density can be expressed
as (integer-valued) Fredholm indices.

The aim of this letter is to provide an interacting coun-
terpart to this formalism. In a natural sense, it also gives
rise to fractional indices and to Abelian anyons.

Free fermions. Consider a 2d discrete torus Ty, of L x
L sites i = (i1,i2) and let T’ be the region 0 < i3 <
L/2, see Figure 1. Let P be an orthogonal projection
that we think of as a Fermi projection corresponding to
a one-particle Hamiltonian on the 2-torus, and let U be a
unitary such that [P, U] = 0. These are operators on the
(spinless) one-fermion space £2(T). Let @ (charge) be the
projector on I': Q@ = 1r = >, |i)(i|. We consider the
charge transported by U out of I starting from the filled
Fermi sea, given by tr[P(UTQU — Q)]. One immediately
checks by using [P, U] = 0 and cyclicity of the trance that
this vanishes. This is because the transport at i1 = 0
is offset by an opposite flow at i; = L/2. Separately
however, the flows do not need to be trivial. If U is

sufficiently local, i.e. the matrix elements U (i, j) decay
fast as |i — j| — oo, then UTQU — Q = (UTQU — Q)_ +
(UTQU — Q)4 with (UTQU — Q)+ located around the
boundaries 04 of I'. This follows from the quasi-locality
of U because ( is diagonal in the position basis and equal

to either 0 or 1 away from the boundaries. Then the
charge transport through 0_ is given by
Ind(P,U) = tr[P(UTQU — Q)_]. (1)

If P is also local in the above sense, then Ind(P,U) is
well-defined and it is an integer: Ind(P,U) € Z up to
corrections vanishing for large L. This formula is in-
sensitive to local changes: if we add to any of Q, P,U
an operator B well-localized around d_, then the index
does not change, reflecting its topological nature. Our
presentation, inspired by, was stressing the Thouless
pump picture, and we refer to Appendix A for the con-
nection to a Fredholm index and the omitted proof. In
both cases, the point is that the index is constructed in
a general way out of the minimal data provided by P, U.
In particular, if the index is quantum Hall conductance,
its quantization is shown without recourse to any explicit
bundle.

II. INTERACTING SYSTEMS AND THE
INDEX THEOREM

We consider a many-body setting, either of spins or
fermions on the discrete torus Ty. We say that an ob-
servable O has support X C T;%% if O = Ox ® 1xe. A
local observable is supported in a fixed, L-independent
set X, up to rapidly vanishing tails®”. All our equalities
hold up to finite size corrections of order O(L~>°), i.e.
decaying faster than polynomial in L, as was also the
case above.

We consider a many-body ground state projector P with
some finite rank p (dimension of ground state space).
Even though we use the same symbol, this is very dif-
ferent from the Fermi projection above, which is a one-



particle concept. In the interesting case p > 1, we require
the distinct ground states to be locally indistinghuish-
able, a condition that is also called topological order3'-32

POP = tr(PO)E
P

for any local operator O. The charge operator @) is now
the number of fermions in I, ie. Q@ = >, - n;. This
choice is made for the sake of concreteness, the only im-
portant feature is that @ is made out of a collection of
commuting, local operators with integer spectrum. The
operator U is a unitary process that leaves the ground
state space invariant [P,U] = 0 and that conserves the
total number of fermions, but of course not necessarily
Q. Therefore UTQU — @Q is again a sum of two contribu-
tions Ty = (UTQU — Q)+ located respectively at d_, 0. .
This splitting is in general not uniquely defined and we
choose it to satisfy e2™(@+7T=) = 1, see below for details
and an explanation. Analogously to the free case, we now
consider, for any ground state ¥ € ranP,

Imd(P,U) = (|(UQU - Q) ). (2)

The locality that was crucial in the non-interacting
setting is now implemented as follows: 1) we require the
ground projection P to correspond to a local Hamilto-
nian (sum of local terms) H = ) Hx that is gapped,
uniformly in volume, and 2) For any operator O, the
spatial support of UTOU extends beyond the support of
O by a distance that is at most o(L), i.e. distance/L — 0
as L — oo. Finally, we require the Hamiltonian to
conserve the total charge, which implies that the local
terms Hx can assumed to individually commute with
the total charge.

Index Theorem. The index Ind(P,U) is a multiple of
1/p, i.e. Ind(P,U) € Z/p.

The index (2) is independent of the choice of ¢ in the
ground state sector, as follows from topological order
since UTQU — @ is a sum of local terms. The robustness
enjoyed by the noninteracting index (1) is also present
here. For example, if we add to (Q an observable B that
is a sum of local terms supported around O_, the index
changes by (¢|(UTBU — B)|4). By topological order and
the locality of B, the expression takes the same value for
any ground state and hence it equals %trP(UTBU—B)P.
By [P,U] = 0 and cyclicity of the trace, this vanishes.
The index is also additive. If U;,j = 1,2 are two
unitaries satisfying the assumptions with corresponding
transported charges Tg) then Uf U;QUQ Uy =Q+T_+T4
with T7_ =T + UlTT£2)U1 and hence we get

Ind(P,U) = Ind(P,Uy) + Ind(P, Us). (3)

Both the non-interacting and the interacting setup can
be seen as a Thouless pumps. They construct in a natu-
ral way an index out of P and U. A significant difference

FIG. 1: The charge transported across the circle 90— by the
unitary U is exactly compensated by the charge transported
across O .

is the possibility of rank p > 1, which gives rise to an ra-
tional index in 2Z. Related approaches are found in33-36,
Splitting. As already mentioned, there is a potential
ambiguity in the splitting UTQU —@Q = T_ +T,. Indeed,
if T are valid choices, then so are Ty 4 j1, for any real
number j. There is a canonical physical choice in the
case that U = Te' Jo %G() (time-ordered exponential) for
a family of charge-conserving local Hamiltonians G(s).
Indeed, let G = G_ + G,, + G+ be a splitting of the
Hamiltonian G (in charge-conserving terms) according
to a partition of ' (see Figure 1), then we can set Ty :=
Tei lo ds[G+(s)1) — Q. Because of the commutator and
charge conservation, this is independent of the chosen
splitting of G. Since then @ + T is unitarily conjugated
to @, our condition e2™(@*T%) = 1 is indeed satisfied.
Together with U being translation on the lattice, this
case actually covers all interesting examples known to
us. Let us now argue why the condition 2™ (@+T%) = 1
can be satisfied in general. We split Q = Q_ + Q.,, + Q+
(see Figure 1) so that the three parts commute and have
integer spectrum. We now demand that also Q_+7_ has
integer spectrum (this is equivalent to 27 (Q+7%) = 1) as
it represents the total charge that eventually is present
in a neighborhood of 0_. Let’s prove that such choice
exists: UTQU = (Q- +T-) + Qm + (Q4 + T4) where
the summands have disjoint supports. Since UTQU and
Qm have integer spectrum, the spectrum of (Q+ + 74)
necessarily lies in Z + a and we can choose j such that
(Q+ +T4) has integer spectrum. The remaining freedom
J € Z is harmless to our results.

We point out that this splitting ambiguity is absent
in the non-interacting case because it is really an ar-
tifact of second quantization: In the fermionic setting
with creation and annihilation operators az, a; at site 1,
the identity operator may be assigned any support since
1= ajai + aiaT

e

III. PROOF OF THE INDEX THEOREM

Adiabatic Flux Insertion. Let us define®738

K= / AW () [Q, H]e— it @)



with W a real—valuecl,\ bounded function satisfying
W(t) = O(|t|=>°) and W (w) = - for all |w| > ~, with
~ the spectral gap of the Hamiltonian. The properties
of W yield that [K,P] = [Q, P]. By the total charge
conservation and locality, we see that [Q, H] = J_ + J;.
with Ji localized around Oi. Altogether, this implies
that there are K4 localized around d4 such that

Qi=Q-K_ - K, (5)

satisfies (@, P] = 0, and hence also €2™? commutes
with P. Since @,, has integral spectrum, the uni-
tary decomposes as product of unitaries along 0.,
e2mQ = 2mMQ-2mQ+ with Q4 = Q4+ — K4. By the
‘Locality lemma’ below, each of these unitaries alone
leaves P invariant. In Appendix B we further explain
that e*™@- is the ‘quasi-adiabatic’®® implementation
of 27 flux threading through J_, provided that the
Hamiltonian remains gapped during this process.

Locality Lemma. Let V = V_V, with VL uni-
taries supported around di. Then [P,V] = 0 implies
[P,Vi] = 0. Proof: By exponential clustering?®4!,
PVP = PV_PV,P. Then, on one hand |PVP| =1
by the assumption [P,V] = 0, on the other hand
|PV_PV,P| < ||[PV_P|||[V:P| = ||PV_P|. Hence
||[PV_P| = 1, which is equivalent to [P,V_] = 0.

Core argument. We consider
7Z_ =Ute?miQ- Uefz’”o‘, (6)
which will reveal the non-commutativity of U and flux

insertion €7@~ By the locality of U, Z_ is supported
around J_. We are going to show that

PZ_P = Pe’s'(FT-), (7)

Since the RHS of (6) is a product of 4 unitaries com-
muting with P, we have that det(PZ_P) = 1, and (7)
then implies tr(PT-) € Z. The proof is now concluded
since, as noted before, the topological order condition im-
plies that for any ground state ¢, (¢|T—|¢) = %tr(PT,).
Proof of (7). By integrality of @,, + @+, we can replace
Q_ by Q — K_ in the first exponential of (6). Bringing
Ut(-)U inside the exponential, we write

UNQ-K)U=(Q-+T- —KY)+Qmn+(Q +T4)

where we use a notation OV = UTOU and the three
bracketed terms commute, see again Figure 1. The expo-
nential of the second/third term is 1 by integrality /our
constraint e2™(@+T=) = 1. The exp of the first term
leads to the identity 7. = e2mi(Q@-+T-—KD)o—2miQ_
We now interpolate between 1 and Z_ by the opera-
tor Z_(¢) = ei¢(Q—+T—_Klj)e—i¢Q*, and we prove that
[Z_(¢),P] = 0 for all ¢. Indeed, let us introduce the
corresponding anti-twist Z, (¢) = ei#(Q++Tr—KY) o —igQy

3

Then we see that Z_(¢)Z, (¢) = Ute¥RUe™ % = Z(¢)

because far from Jy, the charge is unaffected by U. By

[Q,P] = 0, Z(¢) commutes with P and hence, by the

Locality Lemma above, so do both Z4(¢) as claimed.
We now differentiate Z_(¢) w.r.t. @,

0s(PZ_(¢)P) = PZ_ ()9~ i(T_—KV+K_)e 9@~ P.

(8)
The quantity in (...), which we name D_ is local-
ized around O_ so we can replace '??-D_e~ 99~ by
e'*QD_e~?? and subsequently commute e **% with P.

Using also [Z_(¢), P] = 0, we then rewrite (8) as
0s(PZ_(¢)P) = iPZ_(¢) P’ PD_Pe~"99.

We now note that PD_P = PT_P by [U,P] = 0 and
the topological order condition. Furthermore, T_ is a
sum of local terms and hence topological order yields
PT_P = P%tr(PT_). This means that we can also drop

the factors e¥%@ because of [P, Q] = 0. We hence end
up with a simple differential equation whose solution,
evaluated at ¢ = 2, is (7).

IV. EXAMPLES

We focus on applications of the index theorem to sys-
tems with degenerate ground state manifold.
Fractional Lieb-Schultz-Mattis theorem. Let U be
spatial translation by a one site to the left. Then T_ =
Q{z,——1} is the charge operator in the hyperplane {z; =
—1}. If the Hamiltonian is translation-invariant then p =
(W|T- |y is the charge in any plane {x; = k} and the
theorem implies that p € Z/p. Of course, p should scale
o L but the result is still meaningful as the equality
holds up to O(L~°). This theorem was already basically
contained in the original treatments3342-44,
Quantization of Hall conductance. While we stay
in the setting of Figure 1, we rename U; = ¢*™9-. Re-
peating the construction starting with a ‘horizontal’ strip
(here, we refer to the right panel of Figure 1), we can
define U; to be the analogous operator with 0_ being re-
placed by the horizontal loop {zs = —1/2}. Specifically,
U, is constructed as U; upon replacing @ by Ziem n;
with T = {0 < iy < L/2}. Just as Uy does, Uy commute
with P by the Locality Lemma. Physically, Us corre-
sponds to the threading of a unit of magnetic flux inside
the torus, see Appendix B. In the presence of a mag-
netic field piercing the torus, this induces a Hall trans-
port across d_. In other words, using U = Us and the
vertical charge ) in the general setting above, T_ is the
charge transported by threading a unit of flux in the 1
direction. This equals the Hall conductance o by the
well-known Laughlin argument®*36. Putting back phys-
ical units, our result is that



This gives a mathematically rigorous proof of fractional
quantization of ¢ in an interacting setting that is shorter
than previous arguments in*>47.

Fractional Avron-Dana-Zak relations. A fractional
quantum Hall sample pierced by a rational flux ¢ has
a Hamiltonian that is invariant under magnetic transla-
tions, which is a composition of a translation and thread-
ing the torus by —¢ flux. Combining the discussions of
FQHE and Lieb-Schultz-Mattis theorem, and relying on
the additivity property (3) of our index, we get the con-
straint p — ¢o € Z/p. This relation was derived in*®
for non-interacting systems (hence p = 1) and in®**4° for
interacting systems.

V. BRAIDING RELATIONS AND ABELIAN
ANYONS

Let Uy, Us be as above in the example of the FQHE.
That is, they correspond to threading a unit of flux in
the 2, 1-direction. Then, the four unitaries in (6) satisfy,

by (7),
USULULUS P = ™5 P, (9)

and we recall that each of them remains unitary when
restricted to ranP. Note that these restricted unitaries
are naturally associated to oriented loops winding around
the torus. If 1 is noninteger, then (9) gives a nontrivial
commutation relation between those loops, see®® 2. In
the case when p > 1 and ¢, p are coprime, and the topolog-
ical quantum field theory (TQFT) describing the ground
state sector ranP is a U(1)-Chern Simons theory, these
loops can be identified with Wilson loops. In particular,
the action of PU;, PU; on any ground state ¢ generates
the full ground state sector. This follows because there is
no representation of (9) on a space of dimension smaller
than p. As far as we know, our approach is the first
explicit construction of such loop operators in generic
two-dimensional microscopic models, cf.?3:%4,

Anyonic quasiparticles. To any region {2, we asso-
clate Qo = Qq — Kpq, where the notation is a re-
minder of the fact that Kpq, defined as in (4) with
Q — Qq, is an operator supported on the boundary of
the domain. By the integrality of the spectrum of Qq,
Ugq = €279 ig a loop operator supported around 99.
We can write it explicitly as Usqg = Te—iJo™ doKoa(®)
where Kpq(¢) = e Q2 Kyqe'?e. Since Kpq is a sum
of local terms, we can choose, albeit not in any canonical
way, to retain only the terms associated to an open string
~ C 092 and this defines U,. Since the Hamiltonian con-
serves charge, all local terms in Kyn commute with the
total charge, see (4), and hence so does U,. For a ground
state ¥, ¢ = Uy is a state with two localized excita-
tions at the endpoints of v, see Figure 2. Indeed, ¢ and
1 are locally indistinguishable away from the endpoints
of 7. The charge of an excitation is the excess charge in
a region R around the excitation that does not extend to

FIG. 2: The unitary U, creates a pair of anyonic excitations
of opposite charge at the endpoints of +.

the other endpoint. It is given by

e = (plQrle) — (¥IQrIV) = (¥, (UIQRU, — Qr)¥).

By charge conservation, U,iQ rU, — QR is supported at
the intersection 0RN+y, so that the excitation has a frac-
tional charge

=21
p

by applying the index theorem. The excitation at the

other end point has opposite charge.

The factor ¢/p also appears when braiding the exci-
tations. For a closed contractible path «, U, is pro-
portional to %, and we set the phase to be 0. When an
excitation is present inside «, the loop is not contractible
anymore, and we obtain by (9)

Uap = Uv(UanUle)w = €2m%90~

Hence, the created excitations are Abelian anyons.

VI. CONCLUSIONS

We described an index for systems with U(1) symme-
try (charge conservation), reminiscent of the Fredholm
index. The index is associated to a charge transported
across a hypersurface and it is rational, with denomi-
nator p being the dimension of a topologically ordered
ground state sector. We relate the index to a commuta-
tion relation on the ground state space, and show that
the relation reveals the existence of anyonic excitations
whenever the index is non-integer.
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Appendix

Firstly, we present the proof, inspired by?°, of the index
theorem for free fermions. Secondly, we give an explicit
expression for the unitary associated with the process of
quasi-adiabatic flux insertion. Although the expression
is new, all its properties are well-known, see®®47.

A. Index theorem for free fermions

We briefly review the setup. Let T = Ty, be the L x L
discrete torus. We say that an operator O on [%(T) has
uniform rapid decay if

sup ‘O¢j| = O(éioo),
i,5,li—j|>¢

where |- | under the sup is the graph distance on T. A re-
striction of the operator to a region €2 is given by Il Allg
with o = > ,c [9)(i], and A — AL is the restriction
to a region of width [ around di, where ¢ — oo but
¢/L — 0. Unlike the many-body setup, there is no ambi-
guity in restricting a single particle operator to a region.
Furthermore, in a single-particle setup, the charge oper-
ator coincide with the projection that restricts to that
region. In particular, Q = Iy is the charge of the re-
gion I with boundaries d+, and Il are projections that
restrict to the boundary regions.

Let P = PT = P? be a projection and U a unitary
such that both have rapid decay, in the sense above, and
such that [P,U] = O(L~*°). We define

Ind(P,U) = tr[P(UTQU — Q)_].

The precise statement of the result in the main text is
that

dist(Ind(P, U), Z) = O(L~°). (10)

We remark that with the conditions given so far we can-
not conclude that Ind(P, U) converges to a fixed integer,
as L — oo, because we did not demand that P,U con-
verge in any way. This could of course easily be done,
but it would distract from the main point. We now prove
(10) in an approach pioneered by Kitaev?'.

We revert to the convention used in the main text that
equalities hold up to O(L~°) corrections. The decom-
position

Ty = (U'QU - Q)+

implies that UTQU commutes with II.. Hence for Q4 +
Ty = HiUTQUHi we get

UQU=Q+T_+Ty,

?miQe+T) — HieZ”iUTQU +(1-14) =1 (11)

In the many-body setting this was a condition on the
choice of Ty.

By rapid decay of P,
K=PQ(1-P)+(1-P)QP

is of the form K = K_ + K, i.e. supported only at
0_ U d4. The operator

Q:QiK—iK-i-a

commutes with P. By rapid decay of U and [P,U] = 0,
we also have that

U'QU=Q+T_-+T; - KY - KY{

commutes with P. Here we have again used the short-
hand OY = UTOU. The two operators Q and UTQU
hence commute with P. On the other hand, their com-
mutator with P can naturally be decomposed into two
terms supported at d+. These two terms hence have to
vanish independently. We conclude that the operator

N=Q+T —-KY-K,
also commutes with P. Next, we consider the expression
7 = UTGQWiQ, Ue—Qﬂ'iQ,

with Q_ = Q — K_. We note that by rapid decay
[e?™@- P] = 0. Let detp(A) = det(PAP + (1 — P)).
Then, since Z_ is a product of four unitaries commuting
with P, we have

detp(UTeQMQ‘ Ue 2miQ- y=1
by the product rule for determinants. On the other hand,

the definition Q_ = @ — K_ implies that UTe?™?-U =
627Ti(UTQU*KH)7 and we conclude using (11) that

Ufezm'(g, Uefzm'(), — 2mi(Q- -KY +T,)6727ri(2,

— 62‘11'1N6727'MQ )

In the second equality, we used again the integrality if
the spectrum of Q,,,, @+ and the fact that K commutes
with operators supported on d_. Since both operators in
the exponentials commute with P, we have

detp(UTe%iQ* [Je—2miQ- ) = p2mi(tr(P(N=Q))

by the relation between determinant and trace. Plugging
the definition of N and using tr(PKY) = tr(PK_) by

[P, U] = 0, this exponential equals e>7(¢*[PT-1) Tt follows
that tr(PT-) is an integer, as was to be proven.

B. Adiabatic Flux Threading

This section refers to the interacting many-body setup.
Therefore, the symbols P,Q,U have now a different
meaning than the ones in the previous section. We use
a unitary modelling adiabatic flux threading through the



loop 0_. Let H(¢) = ¢"*?He "< be a gauge equivalent
‘twist-antitwist’” Hamiltonian corresponding to threading
flux ¢ through J_ and removing it at d;. The ground
state projection is then P(¢) = ¢*Q Pe~**? and the adi-
abatic evolution is generated by Q. Following®®, an alter-

native ‘quasi-adiabatic’ generator K(¢) was constructed
.38
in

K(¢) = / AW ()@, H(g)e M@ (12)

with W a real-valued, bounded, integrable function sat-
isfying W (t) = O(]t|=>°) and W (w) = - for all |w| > 7,
with ~ the spectral gap of the Hamiltonian. It satisfies

9y P(¢) = i[K (), P(9)]-

The advantage of the quasi-adiabatic generator is that
it is manifestly supported only in those regions of space
where the Hamiltonian actually changes. For the present,
charge conserving Hamiltonian, this means that K(¢) =
K_(¢) + K (¢), with K1 (¢) localized around the loops
O+. Furthermore, it satisfies K(¢) = e?QKe %% (we
write K = K(0)) and from this it follows that the unitary

V(p) = (Q—K) ,—idQ (13)

implements the ground state evolution:
V(o) PV (9).

Of course, the physically more interesting deformed
Hamiltonian is one where the flux through 9_ is not re-
moved at 0. It is denoted by H_(¢) and defined*>*” to
be equal to H(¢) around 0_ and to H otherwise. Un-
like H(¢), it is not unitarily equivalent to H. If the gap
remains open for H_(¢) then (12) with H replaced by
H_ is the quasi-adiabatic generator associated to H_(¢)
and by locality it is equal to K_(¢). It follows that the
ground state projection P_(¢) of H_(¢) is obtained by
replacing K — K_ in (13), i.e.

P(g) =

P_(¢) =V_(¢)PV_()T, V_(¢) = Q- K-)g=i0Q

In this case and by integrality of the spectrum of @,
e2m(@=K-) corresponds to a 27 flux insertion across 0_,
leaving the GS invariant:

29 Pl=0(L™), Q- -=Q-K_. (14

A remarkable fact*® is that (14) holds even if the gap
closes at some ¢ # 0.
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