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We propose a many-body index that extends Fredholm index theory to many-body systems. The
index is defined for any charge-conserving system with a topologically ordered p-dimensional ground
state sector. The index is fractional with the denominator given by p. In particular, this yields a
new short proof of the quantization of the Hall conductance and of Lieb-Schulz-Mattis theorem.
In the case that the index is non-integer, the argument provides an explicit construction of Wilson
loop operators exhibiting a non-trivial braiding and that can be used to create fractionally charged
Abelian anyons.
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I. INTRODUCTION.

The use of topology to study condensed matter sys-
tems is among the most influential developments of late
20th century theoretical physics1,2. The first major ap-
plication of topology appeared in the context of the quan-
tum Hall effect3–5 in the early 80’, and topological con-
cepts have since been applied systematically to discover
and classify phases of matter6–12. The full classification
for independent fermions is well developed, in particu-
lar by K-theory13–15, but a fully rigorous mathematical
framework of similar scope is lacking for interacting sys-
tems, except possibly in 1 dimension where there is a
classification of matrix product states16–19 and cellular
automata20,21.

For non-interacting systems, several topological indices
can be formulated as Fredholm indices22–24 or, equiva-
lently, as transport through a Thouless pump25. These
formulations have been influential and insightful, in par-
ticular for non-translation-invariant systems26. For ex-
ample, the quantum Hall conductance27, the Z2-Kane-
Mele index28,29, and the particle density can be expressed
as (integer-valued) Fredholm indices.

The aim of this letter is to provide an interacting coun-
terpart to this formalism. In a natural sense, it also gives
rise to fractional indices and to Abelian anyons.
Free fermions. Consider a 2d discrete torus TL of L×
L sites i = (i1, i2) and let Γ be the region 0 < i1 ≤
L/2, see Figure 1. Let P be an orthogonal projection
that we think of as a Fermi projection corresponding to
a one-particle Hamiltonian on the 2-torus, and let U be a
unitary such that [P,U ] = 0. These are operators on the
(spinless) one-fermion space `2(T). Let Q (charge) be the
projector on Γ: Q = 1Γ =

∑
i∈Γ |i〉〈i|. We consider the

charge transported by U out of Γ starting from the filled
Fermi sea, given by tr[P (U†QU −Q)]. One immediately
checks by using [P,U ] = 0 and cyclicity of the trance that
this vanishes. This is because the transport at i1 = 0
is offset by an opposite flow at i1 = L/2. Separately
however, the flows do not need to be trivial. If U is

sufficiently local, i.e. the matrix elements U(i, j) decay
fast as |i− j| → ∞, then U†QU −Q = (U†QU −Q)− +
(U†QU − Q)+ with (U†QU − Q)± located around the
boundaries ∂± of Γ. This follows from the quasi-locality
of U because Q is diagonal in the position basis and equal
to either 0 or 1 away from the boundaries. Then the
charge transport through ∂− is given by

Ind(P,U) ≡ tr[P (U†QU −Q)−]. (1)

If P is also local in the above sense, then Ind(P,U) is
well-defined and it is an integer: Ind(P,U) ∈ Z up to
corrections vanishing for large L. This formula is in-
sensitive to local changes: if we add to any of Q,P,U
an operator B well-localized around ∂−, then the index
does not change, reflecting its topological nature. Our
presentation, inspired by30, was stressing the Thouless
pump picture, and we refer to Appendix A for the con-
nection to a Fredholm index and the omitted proof. In
both cases, the point is that the index is constructed in
a general way out of the minimal data provided by P,U .
In particular, if the index is quantum Hall conductance,
its quantization is shown without recourse to any explicit
bundle.

II. INTERACTING SYSTEMS AND THE
INDEX THEOREM

We consider a many-body setting, either of spins or
fermions on the discrete torus TL. We say that an ob-
servable O has support X ⊂ TL56 if O = OX ⊗ 1Xc . A
local observable is supported in a fixed, L-independent
set X, up to rapidly vanishing tails57. All our equalities
hold up to finite size corrections of order O(L−∞), i.e.
decaying faster than polynomial in L, as was also the
case above.
We consider a many-body ground state projector P with
some finite rank p (dimension of ground state space).
Even though we use the same symbol, this is very dif-
ferent from the Fermi projection above, which is a one-
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particle concept. In the interesting case p > 1, we require
the distinct ground states to be locally indistinghuish-
able, a condition that is also called topological order31,32

POP = tr(PO)
P

p

for any local operator O. The charge operator Q is now
the number of fermions in Γ, i.e. Q =

∑
i∈Γ ni. This

choice is made for the sake of concreteness, the only im-
portant feature is that Q is made out of a collection of
commuting, local operators with integer spectrum. The
operator U is a unitary process that leaves the ground
state space invariant [P,U ] = 0 and that conserves the
total number of fermions, but of course not necessarily
Q. Therefore U†QU −Q is again a sum of two contribu-
tions T± ≡ (U†QU −Q)± located respectively at ∂−, ∂+.
This splitting is in general not uniquely defined and we
choose it to satisfy e2πi(Q+T±) = 1, see below for details
and an explanation. Analogously to the free case, we now
consider, for any ground state ψ ∈ ranP ,

Ind(P,U) ≡ 〈ψ|(U†QU −Q)−|ψ〉. (2)

The locality that was crucial in the non-interacting
setting is now implemented as follows: 1) we require the
ground projection P to correspond to a local Hamilto-
nian (sum of local terms) H =

∑
X HX that is gapped,

uniformly in volume, and 2) For any operator O, the
spatial support of U†OU extends beyond the support of
O by a distance that is at most o(L), i.e. distance/L→ 0
as L → ∞. Finally, we require the Hamiltonian to
conserve the total charge, which implies that the local
terms HX can assumed to individually commute with
the total charge.

Index Theorem. The index Ind(P,U) is a multiple of
1/p, i.e. Ind(P,U) ∈ Z/p.

The index (2) is independent of the choice of ψ in the
ground state sector, as follows from topological order
since U†QU −Q is a sum of local terms. The robustness
enjoyed by the noninteracting index (1) is also present
here. For example, if we add to Q an observable B that
is a sum of local terms supported around ∂−, the index
changes by 〈ψ|(U†BU −B)|ψ〉. By topological order and
the locality of B, the expression takes the same value for
any ground state and hence it equals 1

p trP (U†BU−B)P .

By [P,U ] = 0 and cyclicity of the trace, this vanishes.
The index is also additive. If Uj , j = 1, 2 are two
unitaries satisfying the assumptions with corresponding

transported charges T
(j)
± then U†1U

†
2QU2U1 = Q+T−+T+

with T− = T
(1)
− + U†1T

(2)
− U1 and hence we get

Ind(P,U) = Ind(P,U1) + Ind(P,U2). (3)

Both the non-interacting and the interacting setup can
be seen as a Thouless pumps. They construct in a natu-
ral way an index out of P and U . A significant difference
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FIG. 1: The charge transported across the circle ∂− by the
unitary U is exactly compensated by the charge transported
across ∂+.

is the possibility of rank p > 1, which gives rise to an ra-
tional index in 1

pZ. Related approaches are found in33–36.

Splitting. As already mentioned, there is a potential
ambiguity in the splitting U†QU−Q = T−+T+. Indeed,
if T± are valid choices, then so are T± ± j1, for any real
number j. There is a canonical physical choice in the

case that U = Tei
∫ 1
0
dsG(s) (time-ordered exponential) for

a family of charge-conserving local Hamiltonians G(s).
Indeed, let G = G− + Gm + G+ be a splitting of the
Hamiltonian G (in charge-conserving terms) according
to a partition of Γ (see Figure 1), then we can set T± :=

Tei
∫ 1
0
ds[G±(s),·]Q − Q. Because of the commutator and

charge conservation, this is independent of the chosen
splitting of G. Since then Q+T± is unitarily conjugated
to Q, our condition e2πi(Q+T±) = 1 is indeed satisfied.
Together with U being translation on the lattice, this
case actually covers all interesting examples known to
us. Let us now argue why the condition e2πi(Q+T±) = 1
can be satisfied in general. We split Q = Q−+Qm +Q+

(see Figure 1) so that the three parts commute and have
integer spectrum. We now demand that also Q−+T− has
integer spectrum (this is equivalent to e2πi(Q+T±) = 1) as
it represents the total charge that eventually is present
in a neighborhood of ∂−. Let’s prove that such choice
exists: U†QU = (Q− + T−) + Qm + (Q+ + T+) where
the summands have disjoint supports. Since U†QU and
Qm have integer spectrum, the spectrum of (Q± + T±)
necessarily lies in Z ± a and we can choose j such that
(Q±+T±) has integer spectrum. The remaining freedom
j ∈ Z is harmless to our results.

We point out that this splitting ambiguity is absent
in the non-interacting case because it is really an ar-
tifact of second quantization: In the fermionic setting

with creation and annihilation operators a†i , ai at site i,
the identity operator may be assigned any support since

1 = a†iai + aia
†
i .

III. PROOF OF THE INDEX THEOREM

Adiabatic Flux Insertion. Let us define37,38

K :=

∫
dtW (t)eitH i[Q,H]e−itH (4)
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with W a real-valued, bounded function satisfying

W (t) = O(|t|−∞) and Ŵ (ω) = 1
iω for all |ω| ≥ γ, with

γ the spectral gap of the Hamiltonian. The properties
of W yield that [K,P ] = [Q,P ]. By the total charge
conservation and locality, we see that [Q,H] = J− + J+.
with J± localized around ∂±. Altogether, this implies
that there are K± localized around ∂± such that

Q̄ := Q−K− −K+ (5)

satisfies [Q̄, P ] = 0, and hence also e2πiQ̄ commutes
with P . Since Qm has integral spectrum, the uni-
tary decomposes as product of unitaries along ∂±,

e2πiQ̄ = e2πiQ̄−e2πiQ̄+ with Q̄± = Q± − K±. By the
‘Locality lemma’ below, each of these unitaries alone
leaves P invariant. In Appendix B we further explain
that e2πiQ̄− is the ‘quasi-adiabatic’39 implementation
of 2π flux threading through ∂−, provided that the
Hamiltonian remains gapped during this process.

Locality Lemma. Let V = V−V+ with V± uni-
taries supported around ∂±. Then [P, V ] = 0 implies
[P, V±] = 0. Proof : By exponential clustering40,41,
PV P = PV−PV+P. Then, on one hand ‖PV P‖ = 1
by the assumption [P, V ] = 0, on the other hand
‖PV−PV+P‖ ≤ ‖PV−P‖ ‖V+P‖ = ‖PV−P‖. Hence
‖PV−P‖ = 1, which is equivalent to [P, V−] = 0.

Core argument. We consider

Z− ≡ U†e2πiQ̄−Ue−2πiQ̄− , (6)

which will reveal the non-commutativity of U and flux
insertion e2πiQ̄− . By the locality of U , Z− is supported
around ∂−. We are going to show that

PZ−P = Pe
2πi
p tr(PT−). (7)

Since the RHS of (6) is a product of 4 unitaries com-
muting with P , we have that det(PZ−P ) = 1, and (7)
then implies tr(PT−) ∈ Z. The proof is now concluded
since, as noted before, the topological order condition im-
plies that for any ground state ψ, 〈ψ|T−|ψ〉 = 1

p tr(PT−).

Proof of (7). By integrality of Qm+Q+, we can replace
Q̄− by Q −K− in the first exponential of (6). Bringing
U†(·)U inside the exponential, we write

U†(Q−K−)U = (Q− + T− −KU
−) +Qm + (Q+ + T+)

where we use a notation OU = U†OU and the three
bracketed terms commute, see again Figure 1. The expo-
nential of the second/third term is 1 by integrality/our
constraint e2πi(Q+T±) = 1. The exp of the first term

leads to the identity Z− = e2πi(Q−+T−−KU
−)e−2πiQ̄− .

We now interpolate between 1 and Z− by the opera-

tor Z−(φ) = eiφ(Q−+T−−KU
−)e−iφQ̄− , and we prove that

[Z−(φ), P ] = 0 for all φ. Indeed, let us introduce the

corresponding anti-twist Z+(φ) ≡ eiφ(Q++T+−KU
+ )e−iφQ̄+

Then we see that Z−(φ)Z+(φ) = U†eiφQ̄Ue−iφQ̄ ≡ Z(φ)
because far from ∂±, the charge is unaffected by U . By
[Q̄, P ] = 0, Z(φ) commutes with P and hence, by the
Locality Lemma above, so do both Z±(φ) as claimed.

We now differentiate Z−(φ) w.r.t. φ,

∂φ(PZ−(φ)P ) = PZ−(φ)eiφQ̄−i(T−−KU
−+K−)e−iφQ̄−P.

(8)
The quantity in (. . .), which we name D− is local-

ized around ∂− so we can replace eiφQ̄−D−e
−iφQ̄− by

eiφQ̄D−e
−iφQ̄ and subsequently commute e−iφQ̄ with P .

Using also [Z−(φ), P ] = 0, we then rewrite (8) as

∂φ(PZ−(φ)P ) = iPZ−(φ)PeiφQ̄PD−Pe
−iφQ̄.

We now note that PD−P = PT−P by [U,P ] = 0 and
the topological order condition. Furthermore, T− is a
sum of local terms and hence topological order yields
PT−P = P 1

p tr(PT−). This means that we can also drop

the factors e±iφQ̄, because of [P, Q̄] = 0. We hence end
up with a simple differential equation whose solution,
evaluated at φ = 2π, is (7).

IV. EXAMPLES

We focus on applications of the index theorem to sys-
tems with degenerate ground state manifold.
Fractional Lieb-Schultz-Mattis theorem. Let U be
spatial translation by a one site to the left. Then T− =
Q{x1=−1} is the charge operator in the hyperplane {x1 =
−1}. If the Hamiltonian is translation-invariant then ρ =
〈ψ|T−|ψ〉 is the charge in any plane {x1 = k} and the
theorem implies that ρ ∈ Z/p. Of course, ρ should scale
∝ L but the result is still meaningful as the equality
holds up to O(L−∞). This theorem was already basically
contained in the original treatments33,42–44.
Quantization of Hall conductance. While we stay
in the setting of Figure 1, we rename U1 ≡ e2πiQ̄− . Re-
peating the construction starting with a ‘horizontal’ strip
(here, we refer to the right panel of Figure 1), we can
define U2 to be the analogous operator with ∂− being re-
placed by the horizontal loop {x2 = −1/2}. Specifically,
U2 is constructed as U1 upon replacing Q by

∑
i∈Γ2

ni
with Γ2 = {0 < i2 ≤ L/2}. Just as U1 does, U2 commute
with P by the Locality Lemma. Physically, U2 corre-
sponds to the threading of a unit of magnetic flux inside
the torus, see Appendix B. In the presence of a mag-
netic field piercing the torus, this induces a Hall trans-
port across ∂−. In other words, using U = U2 and the
vertical charge Q in the general setting above, T− is the
charge transported by threading a unit of flux in the 1
direction. This equals the Hall conductance σ by the
well-known Laughlin argument34,36. Putting back phys-
ical units, our result is that

σ =
q

p

e2

h
.
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This gives a mathematically rigorous proof of fractional
quantization of σ in an interacting setting that is shorter
than previous arguments in45–47.
Fractional Avron-Dana-Zak relations. A fractional
quantum Hall sample pierced by a rational flux φ has
a Hamiltonian that is invariant under magnetic transla-
tions, which is a composition of a translation and thread-
ing the torus by −φ flux. Combining the discussions of
FQHE and Lieb-Schultz-Mattis theorem, and relying on
the additivity property (3) of our index, we get the con-
straint ρ − φσ ∈ Z/p. This relation was derived in48

for non-interacting systems (hence p = 1) and in34,49 for
interacting systems.

V. BRAIDING RELATIONS AND ABELIAN
ANYONS

Let U1, U2 be as above in the example of the FQHE.
That is, they correspond to threading a unit of flux in
the 2, 1-direction. Then, the four unitaries in (6) satisfy,
by (7),

U†2U1U2U
†
1P = e2πi qpP, (9)

and we recall that each of them remains unitary when
restricted to ranP . Note that these restricted unitaries
are naturally associated to oriented loops winding around
the torus. If q

p is noninteger, then (9) gives a nontrivial

commutation relation between those loops, see50–52. In
the case when p > 1 and q, p are coprime, and the topolog-
ical quantum field theory (TQFT) describing the ground
state sector ranP is a U(1)-Chern Simons theory, these
loops can be identified with Wilson loops. In particular,
the action of PU1, PU2 on any ground state ψ generates
the full ground state sector. This follows because there is
no representation of (9) on a space of dimension smaller
than p. As far as we know, our approach is the first
explicit construction of such loop operators in generic
two-dimensional microscopic models, cf.53,54.
Anyonic quasiparticles. To any region Ω, we asso-
ciate Q̄Ω = QΩ − K∂Ω, where the notation is a re-
minder of the fact that K∂Ω, defined as in (4) with
Q → QΩ, is an operator supported on the boundary of
the domain. By the integrality of the spectrum of QΩ,
U∂Ω = e2πiQ̄Ω is a loop operator supported around ∂Ω.

We can write it explicitly as U∂Ω = Te−i
∫ 2π
0

dφK∂Ω(φ)

where K∂Ω(φ) = e−iφQΩK∂Ωe
iφQΩ . Since K∂Ω is a sum

of local terms, we can choose, albeit not in any canonical
way, to retain only the terms associated to an open string
γ ⊂ ∂Ω and this defines Uγ . Since the Hamiltonian con-
serves charge, all local terms in K∂Ω commute with the
total charge, see (4), and hence so does Uγ . For a ground
state ψ, ϕ = Uγψ is a state with two localized excita-
tions at the endpoints of γ, see Figure 2. Indeed, ϕ and
ψ are locally indistinguishable away from the endpoints
of γ. The charge of an excitation is the excess charge in
a region R around the excitation that does not extend to

γ

α

R

∂R

ǫ

-ǫ

FIG. 2: The unitary Uγ creates a pair of anyonic excitations
of opposite charge at the endpoints of γ.

the other endpoint. It is given by

ε = 〈ϕ|QR|ϕ〉 − 〈ψ|QR|ψ〉 = 〈ψ, (U†γQRUγ −QR)ψ〉.

By charge conservation, U†γQRUγ − QR is supported at
the intersection ∂R∩γ, so that the excitation has a frac-
tional charge

ε =
q

p

by applying the index theorem. The excitation at the
other end point has opposite charge.

The factor q/p also appears when braiding the exci-
tations. For a closed contractible path α, Uαψ is pro-
portional to ψ, and we set the phase to be 0. When an
excitation is present inside α, the loop is not contractible
anymore, and we obtain by (9)

Uαϕ = Uγ(U†γUαUγU
†
α)ψ = e2πi qpϕ.

Hence, the created excitations are Abelian anyons.

VI. CONCLUSIONS

We described an index for systems with U(1) symme-
try (charge conservation), reminiscent of the Fredholm
index. The index is associated to a charge transported
across a hypersurface and it is rational, with denomi-
nator p being the dimension of a topologically ordered
ground state sector. We relate the index to a commuta-
tion relation on the ground state space, and show that
the relation reveals the existence of anyonic excitations
whenever the index is non-integer.
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Appendix

Firstly, we present the proof, inspired by30, of the index
theorem for free fermions. Secondly, we give an explicit
expression for the unitary associated with the process of
quasi-adiabatic flux insertion. Although the expression
is new, all its properties are well-known, see45,47.

A. Index theorem for free fermions

We briefly review the setup. Let T = TL be the L×L
discrete torus. We say that an operator O on l2(T) has
uniform rapid decay if

sup
i,j,|i−j|≥`

|Oij | = O(`−∞),

where | · | under the sup is the graph distance on T. A re-
striction of the operator to a region Ω is given by ΠΩAΠΩ

with ΠΩ =
∑
i∈Ω |i〉〈i|, and A 7→ A± is the restriction

to a region of width l around ∂±, where ` → ∞ but
`/L→ 0. Unlike the many-body setup, there is no ambi-
guity in restricting a single particle operator to a region.
Furthermore, in a single-particle setup, the charge oper-
ator coincide with the projection that restricts to that
region. In particular, Q = ΠΓ is the charge of the re-
gion Γ with boundaries ∂±, and Π± are projections that
restrict to the boundary regions.

Let P = P † = P 2 be a projection and U a unitary
such that both have rapid decay, in the sense above, and
such that [P,U ] = O(L−∞). We define

Ind(P,U) = tr[P (U†QU −Q)−].

The precise statement of the result in the main text is
that

dist(Ind(P,U),Z) = O(L−∞). (10)

We remark that with the conditions given so far we can-
not conclude that Ind(P,U) converges to a fixed integer,
as L → ∞, because we did not demand that P,U con-
verge in any way. This could of course easily be done,
but it would distract from the main point. We now prove
(10) in an approach pioneered by Kitaev30.

We revert to the convention used in the main text that
equalities hold up to O(L−∞) corrections. The decom-
position

U†QU = Q+ T− + T+, T± = (U†QU −Q)±

implies that U†QU commutes with Π±. Hence for Q± +
T± = Π±U

†QUΠ± we get

e2πi(Q±+T±) = Π±e
2πiU†QU + (1−Π±) = 1. (11)

In the many-body setting this was a condition on the
choice of T±.

By rapid decay of P ,

K = PQ(1− P ) + (1− P )QP

is of the form K = K− + K+, i.e. supported only at
∂− ∪ ∂+. The operator

Q̄ = Q−K− −K+,

commutes with P . By rapid decay of U and [P,U ] = 0,
we also have that

U†Q̄U = Q+ T− + T+ −KU
− −KU

+

commutes with P . Here we have again used the short-
hand OU = U†OU . The two operators Q̄ and U†Q̄U
hence commute with P . On the other hand, their com-
mutator with P can naturally be decomposed into two
terms supported at ∂±. These two terms hence have to
vanish independently. We conclude that the operator

N = Q+ T− −KU
− −K+

also commutes with P . Next, we consider the expression

Z− = U†e2πiQ̄−Ue−2πiQ̄−

with Q̄− = Q − K−. We note that by rapid decay

[e2πiQ̄− , P ] = 0. Let detP (A) = det(PAP + (1 − P )).
Then, since Z− is a product of four unitaries commuting
with P , we have

detP (U†e2πiQ̄−Ue−2πiQ̄−) = 1

by the product rule for determinants. On the other hand,
the definition Q̄− = Q −K− implies that U†e2πiQ̄−U =

e2πi(U†QU−KU
−), and we conclude using (11) that

U†e2πiQ̄−Ue−2πiQ̄− = e2πi(Q−−KU
−+T−)e−2πiQ̄−

= e2πiNe−2πiQ̄.

In the second equality, we used again the integrality if
the spectrum of Qm, Q+ and the fact that K+ commutes
with operators supported on ∂−. Since both operators in
the exponentials commute with P , we have

detP (U†e2πiQ̄−Ue−2πiQ̄−) = e2πi(tr(P (N−Q̄))

by the relation between determinant and trace. Plugging
the definition of N and using tr(PKU

−) = tr(PK−) by

[P,U ] = 0, this exponential equals e2πi(tr[PT−]). It follows
that tr(PT−) is an integer, as was to be proven.

B. Adiabatic Flux Threading

This section refers to the interacting many-body setup.
Therefore, the symbols P,Q,U have now a different
meaning than the ones in the previous section. We use
a unitary modelling adiabatic flux threading through the
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loop ∂−. Let H(φ) = eiφQHe−iφQ be a gauge equivalent
‘twist-antitwist’ Hamiltonian corresponding to threading
flux φ through ∂− and removing it at ∂+. The ground
state projection is then P (φ) = eiφQPe−iφQ and the adi-
abatic evolution is generated by Q. Following55, an alter-
native ‘quasi-adiabatic’ generator K(φ) was constructed
in38

K(φ) =

∫
dtW (t)eitH(φ)∂φH(φ)e−itH(φ), (12)

with W a real-valued, bounded, integrable function sat-

isfying W (t) = O(|t|−∞) and Ŵ (ω) = 1
iω for all |ω| ≥ γ,

with γ the spectral gap of the Hamiltonian. It satisfies

∂φP (φ) = i[K(φ), P (φ)].

The advantage of the quasi-adiabatic generator is that
it is manifestly supported only in those regions of space
where the Hamiltonian actually changes. For the present,
charge conserving Hamiltonian, this means that K(φ) =
K−(φ) +K+(φ), with K±(φ) localized around the loops
∂±. Furthermore, it satisfies K(φ) = eiφQKe−iφQ (we
write K = K(0)) and from this it follows that the unitary

V (φ) = eiφ(Q−K)e−iφQ (13)

implements the ground state evolution: P (φ) =
V (φ)†PV (φ).

Of course, the physically more interesting deformed
Hamiltonian is one where the flux through ∂− is not re-
moved at ∂+. It is denoted by H−(φ) and defined45,47 to
be equal to H(φ) around ∂− and to H otherwise. Un-
like H(φ), it is not unitarily equivalent to H. If the gap
remains open for H−(φ) then (12) with H replaced by
H− is the quasi-adiabatic generator associated to H−(φ)
and by locality it is equal to K−(φ). It follows that the
ground state projection P−(φ) of H−(φ) is obtained by
replacing K → K− in (13), i.e.

P−(φ) = V−(φ)PV−(φ)†, V−(φ) = eiφ(Q−K−)e−iφQ.

In this case and by integrality of the spectrum of Q,
e2πi(Q−K−) corresponds to a 2π flux insertion across ∂−,
leaving the GS invariant:

[e2πiQ̄− , P ] = O(L−∞), Q̄− = Q−K−. (14)

A remarkable fact45 is that (14) holds even if the gap
closes at some φ 6= 0.
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