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Motivated by the recent discovery of higher-order topological insulators, we study their coun-
terparts in strongly interacting bosons: “higher-order symmetry protected topological (HOSPT)
phases”. While the usual (1st-order) SPT phases in d spatial dimensions support anomalous (d — 1)-
dimensional surface states, HOSPT phases in d dimensions are characterized by topological boundary
states of dimension (d—2) or smaller, protected by certain global symmetries and robust against dis-
orders. Based on a dimensional reduction analysis, we show that HOSPT phases can be built from
lower-dimensional SPT phases in a way that preserves the associated crystalline symmetries. When
the total symmetry is a direct product of global and crystalline symmetry groups, we are able to
classify the HOSPT phases using the Kiinneth formula of group cohomology. Based on a decorated
domain wall picture of the Kiinneth formula, we show how to systematically construct the HOSPT
phases, and demonstrate our construction with many examples in two and three dimensions.

PACS numbers:

I. INTRODUCTION

The discovery of topological insulators'™ (TIs) un-
veiled a large class of symmetry protected topological
(SPT) states*®, which in d spatial dimensions feature
symmetry-protected surface states on (d—1)-dimensional
open boundaries, such as one-dimensional (1d) helical
edge states in two-dimensional (2d) quantum spin Hall
insulators® and 2d Dirac fermions on the surface of three-
dimensional (3d) topological insulators®. Recently a new
family of “higher-order” topological insulators has been
revealed” 27, which do not have gapless surface states,
but exhibit gapless modes on hinges and corners of the
system. Generally a k-th order TT in d dimensions hosts
robust gapless excitations on (d — k)-dimensional open
boundaries of the system: such as 0-dimensional corner
states in 2nd-order 2d TIs and 3rd-order 3d TIs, as well as
1d hinge states in 2nd-order 3d TIs. In this terminology,
the usual TTs can be called 1st-order TIs. These lower
dimensional boundary excitations are robust against any
small perturbations such as disorders and crystal distor-
tions, as long as the global symmetry Gy is protected,
analogous to the stability of the TT surface states. It has
been shown that the higher-order TIs usually also pre-
serve certain crystalline symmetries in addition to the
global symmetry” 131828 While most of the efforts so
far are focused on higher-order topological phases within
band theory of non-interacting fermions, little is known
about their strongly-interacting counterparts in e.g. in-
teracting boson systems?*30. How to understand the
higher-order SPT phases in a generic interacting boson
system?

The goal of this work is to address this issue. We
provide the classification and explicit construction for
“strong” higher-order SPT (HOSPT) phases of interact-
ing bosons with various global (i.e. onsite) symmetry Go
and crystalline symmetry G., whose lower-dimensional
boundary excitations are protected only by onsite sym-

metry G and hence robust against disorders and crystal
distortions. To do this, we construct the k-th order SPT
phases in d spatial dimensions by stacking (d + 1 — k)-
dimensional Gp-SPT phases in a way which preserves
crystalline symmetry G.. This construction generalizes
the decorated domain wall picture set out in Ref. 4 to
include the crystal symmetry.

The consistency conditions in a decorated domain wall
construction are phrased in terms of cohomology groups.
In particular, for total symmetry G = Gy x G, as a direct
product of onsite symmetry Gy and crystalline symmetry
G, we show that all (k + 1)-th order SPT phases in d
dimensions are classified within the group cohomology

HE (G2, 1R (Go, U(D))). (1)

where G is isomorphic to crystalline group G, by regard-
ing each orientation-reversing symmetry operation as an
anti-unitary operator3'32. The above classification also
provides a procedure to construct these HOSPT phases
from building blocks of (d — k)-dimensional SPT phases
protected by onsite symmetry G only, as illustrated in
many examples.

Expanding Eq. using the Kiinneth formula will yield
several terms. By using our construction, we will see that
each of these terms is naturally associated with a partic-
ular domain wall configuration. However, since Eq. is
believed to classify bosonic SPT phases3?, we conjecture
that our construction yields the correct states and clas-
sification groups.

This work is organized as follows. First in section II
we discuss the physical picture behind HOSPT phases
based on a dimensional reduction point of view. Then
we show the general classification of HOSPT phases in
section IIT A based on the Kennuth formula of group co-
homology, and how to the construct the HOSPT phases
using the decorated domain wall picture in section III C.
The classification and construction are demonstrated for
2nd-order SPT phases in two (section IV) and three (sec-
tion V) dimensions, and 3rd-order SPT phases in three



dimensions (VI). We conclude with a few remarks in
section VII.

II. THE PHYSICAL PICTURE

Before introducing the mathematical classification for
higher-order SPT phases, we first discuss an intuitive
physical picture which shows how higher-order SPT
phases can be built by stacking lower-dimensional SPT
phases. Throughout this work, we will focus on the sim-
plest situation where the total symmetry group G =
G x G is a direct product of crystalline symmetry group
G. and onsite (i.e. global) symmetry group Gj.

By definition, a k-th order SPT phase in d dimensions
is characterized by symmetry protected gapless states on
boundaries of (d — k) dimensions. For example, as il-
lustrated in FIG. 2, a 2nd-order SPT phases in d = 2
with 4-fold rotational symmetry G. = Cy4 hosts gapless
zero modes at each corner of a square-shaped system,
which are protected by onsite symmetry Gy. Based on
this example and without loss of generality, below we
present two arguments to establish a dimensional reduc-
tion picture for the HOSPT phases: while the 1st argu-
ment (section ITA) shows why a k-th order SPT phase
in d dimensions is related to the usual Gy-SPT phases
in (d 4+ 1 — k) dimensions, the 2nd argument (section
II B) explicitly demonstrates how to build such a HOSPT
phase from lower-dimensional SPT phases. While the
1st argument explains why the classification of HOSPT
phases is determined by the classification of (d + 1 — k)-
dimensional SPT phases, the 2nd argument shows which
of the (d+1—k)-dimensional SPT phases can consistently
lead to a gapped symmetric k-th order SPT phases in d
dimensions, to be compatible with the crystalline sym-
metry G.

A. Corner/hinge states as gapless defects on the
gapped open surface

We consider a generic HOSPT phase |¢) of order k > 2
on a d-dimensional open manifold A (such as the square-
shaped system in FIG. 1), which is gapped almost every-
where except for a (d—k)-dimensional submanifold on the
boundary d.A (such as the four corners with k = d = 2
in FIG. 1). Since by definition the (d — 1)-dimensional
boundary 0.A is gapped, this is not a “strong” SPT phase
protected by onsite symmetry Gy only, and hence there
exists a finite-depth quantum circuit? U

Uly) = IT) 2)

which continuously evolves the HOSPT state |¢) into a
trivial product state |T'), while preserving onsite symme-
try Go. We label the finite depth of circuit U as dy.

As illustrated in FIG.1, next we divide the total system
A into two regions: its (simply-connected) interior By

(both white and gray in FIG.1), and boundary By =
A\ By. We can then define a finite-depth (dy) quantum
circuit Ug, = Pg, UPB0 by restricting quantum circuit U
into region By, such that

Us,|$) = |Ts) ® [5) 3)

where B C By is the interior (white in FIG. 1) of By,
differing from By only by a “cushion” region (gray in
FIG. 1) whose width is of the order ~ dy. Here |T3)
denotes the trivial product state on region 5. In other
words, finite-depth quantum circuit Up, can continuously
tune the interior region B of HOSPT phase into a triv-
ial product state without closing the gap or breaking on-
site symmetry Gy, while keeping the boundary states (on
By) untouched. As a result, through finite-depth quan-
tum circuit U, B, Which preserves onsite symmetry G, the
HOSPT ground state is disentangled into a trivial prod-
uct state |Tg) in the bulk B, and a state |[¢z) on its
(d — 1)-dimensional surface 3.

Notice that in addition to preserving onsite symme-
try Gy, the (d — 1)-dimensional state |¢g) is mostly
gapped except for hosting gapless modes on its (d — k)-
dimensional submanifolds. Therefore, the gapless cor-
ner/hinge states in a HOSPT can be viewed as gap-
less (d — k)-dimensional defects on a gapped (d — 1)-
dimensional surface state |1;3) with onsite symmetry Gy.
As argued in Ref. 33,34, the classification of such a defect
falls in the classification of a (d+ 1 — k)-dimensional SPT
phases protected by the same onsite symmetry Gg.

These corner or hinge modes have two important prop-
erties. First, they are protected by G and possibly also
by G.. As we will see below, there are two types of action
of G, on the boundary modes: either it permutes them or
acts on-site. We are mostly interested in the first type,
but will enumerate both below. Second, the boundary
modes are protected in the thermodynamic limit. Try-
ing to attach a k& + 1-dimensional state to trivialize k-
dimensional corner or hinge modes cannot be done with
a symmetry-respecting finite-depth quantum circuit in
the limit of infinite system size.

For example, in a 2nd-order SPT phase in d = k = 2,
the gapless corner states in e.g. FIG. 1 can be viewed
as gapless 0-dimensional domain walls on the gapped 1d
edge. Therefore they are reduced to the 1-dimensional
G-SPT phases. Similarly for a 2nd-order SPT phase in
d = 3, the gapless hinge states can be viewed as gapless
1d domain walls on a gapped 2d surface, therefore related
to 2-dimensional Gp-SPT phases. For a 3rd-order SPT
phase in d = k = 3, the gapless corner states should
be viewed as gapless 0-dimensional point defects on the
gapped 2d surface with symmetry Gg, hence reduced to
1-dimensional Gy-SPT phases.



Figure 1: Disentangling the gapped bulk with gapless cor-
ner states. The interior region B is colored in white, while
the “cushion” region Bg \ B is colored in gray. Finite-depth
quantum circuit U B, preserving onsite symmetry Go will triv-
ialize the interior B into a product state, while keeping the
boundary By = A\ By (including the gapless corner states)
untouched.

B. Building HOSPT phases from
lower-dimensional SPT phases

In the previous argument, we have shown that the gap-
less (d — k)-dimensional boundary states in a k-th order
SPT phase in d dimensions can be reduced to the classi-
fication of (d+ 1 — k)-dimensional SPT phases preserved
only by onsite symmetry Go. However, not all of the
Go-SPT phases can lead to a gapped HOSPT phase that
preserves crystalline symmetry G.: certain compatibil-
ity conditions must be satisfied to ensure a gapped bulk.
Here we provide another argument based on the dimen-
sional reduction approach3® 37, which explicitly builds
the k-th order SPT phases in d dimensions out of (d —k)-
dimensional Gy-SPT phases.

Without loss of generality, we demonstrate this dimen-
sional reduction argument using the 2nd-order 2d SPT
phase with G, = Cj point group symmetry, as shown in
FIG. 2). We first divide the whole open manifold A into
4 disconnected shaded regions {R;|1 < i < 4} in FIG.
2 which are related by C; symmetry, while both the Cy
inversion center and 4 gapless corners lie in the rest of
the space A\ (|, R;). Following the same construction
as used in the previous argument, we can construct a
Go-preserving finite-depth quantum circuit Ugr, by re-
stricting circuit U in region Ry, such that

URl |/(/)> = ‘T31> ® ’wR1> (4)

where |Tgr, ) represents the trivial product state on region
R;. By symmetrizing circuit Ugr, w.r.t. C4 rotations, we
can construct a symmetric finite-depth quantum circuit

3
U™ = 11(Ca)'Ur, (Ca) ™,

i=0

R=JR. (5

which preserves both onsite symmetry Gy and crystalline
symmetry G, such that

U™ 1) = 1Tr) @) 1r) (6)
In other words, symmetric finite-depth circuit U™ triv-

ializes most of the manifold 4, except for the four 1d sys-
tems connecting the gapless corner to the rotation center.
As argued previously, now that each corner state carries
a projective representations of onsite symmetry Gy as the
boundary state of a 1d Go-SPT phase, each 1d system
connecting the corner to the Cy rotation center must be
a 1d Go-SPT phases with a topological index

v e H*(Go,U(1)). (7)

Note that as a part of the gapped bulk, the C; rotation
center where the ends of the four 1d Go-SPT chains must
form a linear representation of onsite symmetry Gy i.e.

dv ~0 € H*(Go,U(1)). (8)

This compatibility condition comes from the fusion of
a number of edges of 1d SPTs dictated by the crystal
symmetry G, = Cy:

¢ HTF(Go,UQL)) » HUHG,UL)  (9)

Physically, the fusion map ¢ encodes a notion of compat-
ibility between onsite symmetry G and crystalline sym-
metry G, so that the bulk of the full system is trivial and
gapped. Constructing the map ¢ is generally a difficult
mathematical problem for an arbitrary symmetry group
G with both onsite and crystalline symmetries. In this
paper we consider the simplest case, where the symmetry
group G = Gy x G, is a direct product of onsite symmetry
Gy and global symmetry G.. As we will show later, this
allows a direct reduction via the Kiinneth formula, where
the compatibility conditions between (d — k)-dimensional
Go-SPT phases and crystalline symmetry G, in d spatial
dimensions are captured by group cohomology formula
D).

Finally, we recall that certain SPT phases are be-
yond the group cohomology classification, such as the
3d time-reversal-SPT phase with efmf surface topologi-
cal orders3®39 classified by cobordism*®*! and Kitaev’s
chiral 2d Ej state*?43. We have also considered these
beyond-group-cohomology HOSPT phases built from the
FEjg state, as highlighted in red in TABLE II.

III. CLASSIFICATION AND CONSTRUCTION
FROM KUNNETH FORMULA

A. General classification of HOSPT phases

In this work, we will focus on the cases where the to-
tal symmetry group G is a direct product of crystalline
symmetry G, and onsite symmetry Gg:

G =G, x Gy. (10)
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Figure 2: Dimensional reduction analysis of a 2nd-order SPT
phase with G. = Cy crystalline symmetry, where the black
dots represent robust corner zero modes protected by onsite
symmetry Go. Shaded regions are trivialized by the action of
a local, finite-depth quantum circuit. Dashed lines represent
“effective” one-dimensional (1d) Go-SPTs, as building blocks
for the 2nd-order SPT phase in two dimensions. Note that the
four endpoints of the 1d Go-SPT phases must fuse to a linear
representation in the bulk (circle in the middle), imposing a
compatibility condition on the topological index of 1d Go-SPT
phases.

In this situation, there is a simple mathematical for-
mula based on group cohomology, which gives the full
classification of higher-order SPT phases. It has been
shown?3!32 within the group cohomology classification of
SPT phases, that all Gs-symmetry protected topological
phases of interacting bosons in d spatial dimensions is
given by

HTH(G*,U(1)) = HTTH (G x Go,U(1)) (11)

where G7 is isomorphic to G, obtained by replacing
each orientation-reversing element of crystalline symme-
try group G. by an anti-unitary operation of the same
rank. According to the Kiinneth formula for group
cohomology** 46 we have

HIT(GE x Gy, U(1)) = H¥2(G x Go,Z)
= @ HE (G IR (G, 2))
= UG U1)) & HH(GE HY (Go, Z2))
Dy HE (G, HE R (G, U(1))). (12)

The 1st term HO(G:,U(1)) classifies crystalline SPT
phases protected only by crystalline symmetry G.323°.
The 2nd term H4 (G, H' (Go, Z)) vanishes for any fi-
nite group?%, as in the case considered here where G, is
a point group or magnetic point group.

Therefore we shall focus on the last line of the above
Kiinneth formula (12). Each term in

HE (G, 1R (Go, U (1)),

can be interpreted as the classification of (k4 1)-th order
SPT phases in d spatial dimensions, protected by onsite

0<k<d  (13)

symmetry Gy and cystalline symmetry G.. Such a SPT
phase is featured by robust gapless states on proper (d —
k — 1)-dimensional open boundaries, which are protected
by onsite symmetry Gq alone. For example, the k = 0
term in (13)

HO(GE, HT (Go, U(1))) = HTH(Go, U(L))  (14)

corresponds to the 1st-order (i.e. the usual “strong”) SPT
phases protected by onsite symmetry Gy, featured by
gapless modes on (d — 1)-dimensional boundaries.

2nd-order SPT phases in d > 2 are all captured by
k=1 term in (13)

H (G, HY(Go, U(D))) (15)

which host gapless (or anomalous topological orders when
d > 4) excitations on (d—2)-dimensional boundaries pro-
tected by onsite symmetry Gj.

Similarly, 3rd-order SPT phases in d > 3 are all cap-
tured by k = 2 term in (13)

H2 (G, HIH(Go, U(1))) (16)

which host gapless (or anomalous topological orders when
d > 5) excitations on (d—3)-dimensional boundaries pro-
tected by onsite symmetry Gg, such as corner states in
d=3.

B. “Strong” HOSPT phases versus “weak”
crystalline SPT phases

As mentioned previously, we define k-th order SPT
phases in d dimensions by the presence of robust (d —
k)-dimensional topological boundary states, protected
by onsite (or global) symmetry Gy only. These are
“strong” SPT phases, whose boundary excitations do
not require protection from the crystalline symmetry
G.. In comparison, there are also “weak” crystalline
SPT phases, whose topological boundary excitations are
protected by crystalline symmetries (in addition to on-
site symmetries)®247 49 In fact, in addition to strong
HOSPT phases which are the focus of this paper, certain
weak crystalline SPT phases are encoded inside the whole
Kunneth formula (12), such as those colored in green in
TABLE III. Before systematically analyzing and con-
structing HOSPT phases in detail, we briefly discuss the
weak crystalline SPT phases.

First of all, the k = d 4+ 1 term H™(G3,U(1)) in
Kunneth formula clearly describes weak SPT phases pro-
tected only by the crystalline symmetry G..

Next, we comment on k = d term in (13):

H(Gr M (Go, U(1))). (17)

The physics of this term is to assign onsite symme-
try charges (linear representation %' (Go, U(1)) of onsite
symmetry Gg) to defects of the crystalline symmetry G..



In a simplest example, for the k = d = 1 case of 1d insula-
tors (G = U(1)) with inversion symmetry I (G. = ZZ),
we have H' (U(1),U(1)) = Z and hence

HY (G HY (UQ),UL))) =H (2] .2) =Z, (18)

The nontrivial element of the above Zs classification cor-
responds to assigning an odd number of U(1) charges to
the inversion center, while the trivial element corresponds
to having an even number of U(1) charge on the inver-
sion center. There is no gapless boundary excitations for
either of the two phases in 1d.

However in & = d > 2, weak SPT phases with
boundary states protected by crystalline symmetry gen-
erally can appear in the Kunneth formula (12). For
example in £ = d = 2 case with mirror symmetry
Ge = ZM, H?(Z3M, H' (Go,U(1))) corresponds to as-
signing G charges to each domain wall of mirror sym-
metry M on the 1d mirror axis of the 2d system.
This leads to gapless boundary states if the boundary
of the system preserves mirror symmetry. Similarly
in d = k = 3 case with n-fold rotational symmetry
G.=C,, H? (C’,,,?—l1 (GO, U(l))) corresponds to assign-
ing Gy charges to each domain wall of C,, rotational sym-
metry on the 1d rotation axis. This leads to weak 3d
crystalline SPT phases, hosting gapless (or anomalous)
boundary states if the boundary preserves C,, symmetry.

Another example is k = d—11in (13). Take d =3, k =
2 for instance, considering mirror symmetry G, = Zé\"
again, H?2 (ZZM,’;’-[2 (Go, U(l))) corresponds to assigning
1d Go-SPT phases classified by H?2 (GO,U(l)) to each
mirror domain wall on the 2d mirror plane. This can lead
to gapless (or anomalous) boundary states protected by
both mirror and onsite Gy symmetry, if the boundary
preserves mirror symmetry M.

As we mentioned before, the boundary states of these
weak crystalline SPT phases will generally be destroyed
by perturbations that break the crystalline symmetry,
such as disorders and crystalline distortions. Meanwhile,
their interpretation in the Kunneth formula can be quite
tricky, as shown in the above examples. Hereafter we will
be focusing on the strong HOSPT phases, whose topo-
logical boundary excitations are robust even if crystalline
symmetries are broken on the surface.

C. Decorated domain wall construction

Here we briefly describe how to explicitly construct the
higher-order SPT phases in d spatial dimensions, using
Go-SPT phases in lower dimensions. In particular, the
group cohomology formula (13) provides a clear physi-
cal meaning for such a construction, similar to the dec-
orated domain wall construction®® for the usual (“Ist-
order”) SPT phases.

First we consider 2nd-order SPT phases in d dimen-

sions, classified by 1st group cohomology
{vi(g0,91) € H¥(Go,U(1))|g: € G5}
e H' (Gr 1Y (Go, U (1)) (19)

These are nothing but linear representations of the sym-
metry group G

Uy =m(1,9) € HY(Go,U(1)), ge€Gr. (20)
satisfying the 1-cocycle condition
Uy~ Up® = Uy, (21)

s(g) = %1 for g = unitary/anti-unitary.

Uy valued in ’Hd(Go, U (1)) physically represents a do-
main wall labeled by symmetry element g, decorated by
(d — 1)-dimensional Go-SPT phases labeled by elements
in #%(Go,U(1)). The above 1-cocycle condition can be
viewed as a compatibility condition between the addi-
tion rules of (d — 1)-dimensional Go-SPT phases and the
addition rules (g - h = gh) of domain walls, in order to
ensure a gapped bulk spectrum. To understand this, we
see that a domain wall of the G symmetry is labeled by
a group element g1 € GX. The (d — 1)-dimensional SPT
phase associated with this domain wall is labeled by an
element my € H%(Go,U(1)). The fusion of two domain
walls g1 - g2 combines these (d — 1)-dim G(-SPT’s into
m1 + mo. However, the fusion must respect the group
structure of H?¥(Gy,U(1)), and this consistency condi-
tion is exactly captured by Eq. (13). Therefore each
element of %' (G, H%(Go,U(1))) describes a way to as-
sign (d — 1)-dimensional Gy-SPT phases on the domain
walls of crystalline symmetry G., which is compatible
with a gapped bulk.

Next we consider 2nd-order SPT phases in d dimen-
sions, classified by 2nd group cohomology

{V2(90391792) € Hdil(GOa U(l))|gi € G?}
€ H2(Gs, 1Y (Go, U(1))) (22)

They are nothing but projective representation of sym-
metry group G

Uy - U = w(g, U, g,h € G (23)
w(g,h) = va(l,g,9h) € HIH(Go,U(1)).  (24)

satisfying the 2-cocycle (or associativity) condition

w(g, h)w(gh, k) = w(g, hk)w™ ) (h, k), g.h,k € G7(25)
Since Uy represents the (d — 1)-dimensional domain wall
labeled by element g of crystalline symmetry G, w(g, h)
naturally represents the (d — 2)-dimensional manifold
where three domain walls Uy, Uy and Ugyp)-1 intersect.
The fact that w(g,h) takes values in H?1(Gy,U(1))
physically means that these domain wall intersections are
decorated by (d — 2)-dimensional Go-SPT phases, which
are classified by group cohomology H?~! (Go, U (1))



As a simplest example, we consider the n-fold rota-
tional symmetry G, = C,. Each of the n domain walls
of the C,, symmetry can be decorated by the same (d—1)-
dimensional Go-SPT phase, such that n copies of these
Go-SPT phases intersect at the C), rotational axis. For
the system to be gapped on the rotational axis, these n
copies of Go-SPT phases together must fuse to a triv-
ial phase with no gapless boundary states. This ex-
actly corresponds to 2nd-order SPT phases classified by
HY(Cy ~ Zy, H?(Go,U(1))). Meanwhile at the intersec-
tion of n domain walls of C),, symmetry, the rotational
axis itself can also be decorated by a (d — 2)-dimensional
Go-SPT phases, which corresponds to the 3rd-order SPT
phases classified by H?(Cy; ~ Z,,, H*"*(Go,U(1))).

Another example is the mirror reflection symmetry
G. = Z3', where the orientation-reversing mirror sym-
metry M should be regarded as an anti-unitary sym-
metry when computing the group cohomology. For
k = d = 2, the 2nd-order SPT phases in classified by
HY(Z4, H?(Go,U(1))) can be understood as assigning
a 1d Go-SPT phases on each mirror plane.

Below we will classify 2nd-order SPT phases in d = 2,3
(TABLE LII) and 3rd-order SPT phases in d = 3 (TA-
BLE III), for various choices of onsite symmetry Go
and crystalline (and magnetic crystalline) symmetry G..
We will also explicitly construct these higher-order SPT
phases using the decorated domain wall picture as de-
scribed above, in section IV-VI.

IV. 2ND-ORDER SPT PHASES IN TWO
DIMENSIONS

As shown in (15), the 2nd-order SPT phases in d spa-
tial dimension are classified by H*=! (Gz, He (Go, U(l))),
i.e. the linear representation of group G} whose coeffi-
cients take value in the (d — 1)-dimensional SPT clas-
sification H%(Go,U(1)). For d = 2 case, the building
blocks of 2nd-order SPT phases in two dimensions are
1d SPT phases protected by onsite symmetry Gg. Below
we provide a full classification for 2nd-order SPT phases
in d = 2 with all possible 2d point group and magnetic
point group symmetries, and describe how to use 1d SPT
phases to construct these 2nd-order 2d SPT phases.

A. Classification

To compute H! (GZ,Hd(Go,U(l))), first we need to
obtain the group G from crystalline symmetry G.. As
mentioned earlier, G} is isomorphic to G., obtained by
replacing each orientation-reversing element g of G. by
an anti-unitary operation ¢* of the same rank. For ex-
ample we have

Ge=Cp = G~ Z,; (26)
Ge=Cp X Z3" = G ~ Z, % Z]; (27)
G.=CJ, or Sy, = G ~. (28)

where we use ZJ to denote a group generated by an
anti-unitary operator 7 of ranking 2n.

After obtaining G, the next step is to compute
H4(Go,U(1)), the coefficient of the desired linear repre-
sentation H!. For d = 2 case, H? (Go7 U(l)) corresponds
to the classification of 1d SPT phases®' % protected by
onsite symmetry Gg: it always forms a finite Abelian
group, as summarized in the last line of TABLE 1.

Generally the classification of SPT phases with on-
site symmetry Gy always form a discrete Abelian group,
which holds for the group cohomology classification
H¥(Goy,U(1)) and beyond. One important relation for
group cohomology is

H* (G, A x B) = HF (G, A) x H*(G,B).  (29)

Therefore to compute H' (G5, H*(Go,U(1))) in (15), we
only need to know H! (G,Z), and "Hl(G, Za) for any fi-
nite integer a € Z. Since H? (GO,U(l)) is always a fi-
nite Abelian group, making use of relation (29), we can
compute H! (GZ,HQ (Go, U(l))) purely based on knowl-
edge of H'(G,Z,) for any finite integer a. Below we list

H! (G, Zy,) for all d = 2 point groups and magnetic point
groups G.:
(Cp)* = Zp, (S8T.)" = Zon,
HY (Zn,Za) = Lin o (30)
(Cr)* = (Cp 0 ZPMTY ~ 7050 ZT
HY (Zn % 2]\ Z0) = Linay X Liz.a); (31)
(CT)" = (San)* = Z,;
H (2], 20) = Li2,0; (32)
(Dn,a)* z( Oy % 23" = 28, % Zs,
H (2, % Za, La) = Ly 4 (33)
(Dp)* =~ (Cyy % ZPTY* ~ Z,, 3 Zs,
HY(Zn % Z2,24) = Ln,a2) X Lia,2); (34)
(Cpn)* = (Cp x ZE) =~ Z, x ZF ,
HYZn % 2] Za) = Ln,a,2) X Li2,0); (35)
(Dpn)* = (Zy % Za) x ZF ,

HY((Zn % Z2) X 2], Lo) = Linaz) X Ly oy (36)

Using relation (29) and the above results (30)-(36), we
acquire the classification of all 2nd-order SPT phases in
d = 2, as summarized in TABLE 1.

B. Examples

The simplest examples of 2nd-order SPT phases are
protected by n-fold rotational symmetry G, = C,, clas-
sified by

H (Zn, H? (Go, U(1))) (37)



k=1,d=2 Onsite symmetry Go
z3 SO(3) or | SO(3) x z3 Za X Zy Za X 29
Crystalline symmetry G. U(1) x Zz |or U(1) x Z3
Cn Ln,2) Ln,2) Ln,2) ZLn,a.b) Ln,2) X Ln,a,2)
Cry = Cr 3 ZM Linoy X Lo |Linpy X La| L3, 00 X 23 | Linap) X L2,a8) |Lin2) X Ln,a2) X Lo X Lia )
CT, = {(czn - T)™0 < m < 2n} Zo Lo 75 Z(2,a,b) Ly X La,2)
C % Z3™ Z3 73 73 Zi3.a) Z3 X L}, 2
Cp 3 Z2T Zin2) X L2|Linzy X La| Loy X 25 |Zzmap) X L2,ap)|Lin2) X Lin,a2) X Lo X Liay2)
[d=1Go-SPTs: H2(Go,U) | 2, | 2z, | 73 Zias) Zo X Loz

Table I: 2nd-order bosonic SPT phases (k = 1) in d = 2 spatial dimensions, protected by symmetry group Gs = G. X Gg
where G. and Gg represent the crystalline and onsite symmetry group respectively. The general classification is given by linear
representation H' (G, H?(Go,U(1))) as shown in (15) with d = 2. Through a dimensional reduction procedure they are all
constructed from Go-SPT phases in d = 1 dimension, classified by > (Go,U(1)) in the last line (blue).

They can all be built from 1d SPT phases protected by
onsite symmetry Gg, where the 1d Go-SPT phases are
aligned in a C),-symmetric manner as shown in FIG. 3
for G. = C5 case. Since the endpoints of n copies of 1d
Go-SPT phases intersect at the center of the system (see
FIG. 3), they must form a linear representation of onsite
symmetry Gy to ensure a gapped symmetric bulk. This
provides a compatibility condition for the 1d Go-SPT
phases, manifested in the group cohomology formula

HY (Zn,Z4) = Lina (38)

where (n,a) is the greatest common divisor of integers n
and a.

Formula (38) can be understood as follows. The group
cohomology H* (Zn, Za) stands for linear representation
{Uglg € Z,,} of Z,, group with coefficients in Z,-valued
phase factors

Zo={u;=e™5|0<v<a, jcl} (39)

Denoting the generator of Z, group as R with R" = 1,
we have

Ugr|lv) = uy|lv) = Ui—pn = (UR)" = un, =1 (40)

and as a result
a

(n,a)’

where (n, a) denotes the greatest common divisor of inte-
gers a and n. Physically this means the topological index
v € Z, of the 1d Go-SPT phase decorated on each C,, do-
main wall must be a multiple of ﬁ, to ensure the bulk
to be gapped at the rotation axis where the n domain
walls intersect. Hence there are (n,a) distinct 2nd-order
SPT phases with C), symmetry, characterized by the 1d

Go-SPT phase with v = 0, ﬁ, 2%, --- on each do-
main wall. This corresponds to the Z, ,) classification
in formula (38).

One immediate physical consequence is the presence

of zero-energy corner modes located on each corner of

nv=0 moda=v=m 0<m < (n,a).(41)

Figure 3: 2nd-order SPT phases with G. = C5 point group
symmetry, where each of the three C3 domain walls is deco-
rated by the same 1d Go-SPT phase meeting at the rotation
center. The projective representations at the end of each 1d
Go-SPT phase must form a linear representation to ensure
a gapped bulk, as manifested in group cohomology formula
(15).

the C)-symmetric finite system shown in FIG. 3. Each
corner mode is nothing but the boundary states of 1d
Go-SPT phases with v = 0 mod ﬁ, which carries a
projective representation of onsite symmetry Gg. Notice
that with only C),, symmetry, the 1d Go-SPT phases can
together be rotated around the C), center by an arbitrary
angle, and therefore the zero-energy corner states will

only appear in certain (but not all) finite systems.

2. Ge=Chyp=CnxZM or C, x 23MnT

Consider point group G. = C,, v, generated by n-fold
rotation R with R™ = 1 along Z-axis, and mirror reflec-
tion M, whose mirror plane is parallel to Z-axis. As de-
scribed earlier, the associated 2nd-order SPT phases are
classified by the linear representation (1st group coho-
mology) of (C,,v)* =~ Z,, x Z] , with coefficients in 1d G-
SPT phases classified by #? (Go, U(l)). The decorated-
domain-wall construction of these 2nd-order SPT phases



with C),, symmetry can be implied from the following
formula
HY(Zy % 2], La) = Loy % Liza (42)
The 1st factor Z, ) labels the 1d Go-SPT phases as-
signed on each C),, domain walls and intersected at the
C,, rotation center, illustrated by the red lines in FIG.
4. On the other hand, the 2nd factor Z; 4) labels the 1d
Go-SPT phases placed on each of the n mirror planes,
illustrated by the green lines in FIG. 4. The linear repre-
sentation {Ug,Ur} corresponding to H! (Zn X ZQT,ZG)
satisfies the following algebraic conditions:
(Ur)" =UsUr = UrUr(UrUr)* =1 (43)
Similar to G, = (), case discussed earlier, in (42) the
linear representation of n-fold rotation Ug is given by

Urlv) = wpy|v), o, = @™, vp =0 mod (n;‘”a)(.m)

While Up, is invariant under any gauge transformation on
the basis vectors of the linear representation, this is not
the case for anti-unitary operator 7 = M3. Specifically

. 2mi .
under a gauge rotation by phase factor e”« on all basis
vectors, the linear representation of anti-unitary operator
T changes as

Urlv) = uy, vy, |v)— e%\w -
2mi 2w

Ur=u,, »ea uy (e "o )" =uy 4o.

(45)

This indicates that 1d Go-SPT index v on each mirror
plane is only well-defined modulo 2, leading to the Z (5 q)
factor in formula (42). This result has a straightforward
physical interpretation: two 1d Go-SPT phases of the
same topological index can be merged from two sides
into the mirror plane, hence changing the 1d topological
index on the mirror plane by any even integer without
closing the bulk gap.

Unlike in the previous G. = C,, case where the n copies
of 1d Go-SPT phases can be rotated by an arbitrary an-
gle, here due to the presence of n mirror planes (related
by C,, rotations), all 1d Go-SPT phases are assigned to
the mirror planes. As a result, as long as the corners
of the finite system lie on the mirror planes, they will
give rise to zero-energy corner modes protected by onsite
Gy symmetry. However as illustrated in FIG. 4, there
are two different types of corners, terminating the green
lines only versus terminating both green lines. These
two types of corners generally support different types of
projective representations of onsite symmetry Gy.

Finally, it is straightforward to show that the above
classification and construction remain true for magnetic
point group G, = C),, % Zé\/lvM“T, generated by rota-
tion C), around Z-axis and 2-fold anti-unitary magnetic
rotation M, My T around an in-plane (such as %) axis.

Figure 4: 2nd-order SPT phases with G. = C3 point group
symmetry, where each of the three Cs domain walls is deco-
rated by the same 1d Go-SPT phase meeting at the rotation
center, illustrated by red lines. Meanwhile each mirror plane
can also be decorated by another 1d Go-SPT phase, labeled
by the green lines.

V. 2ND-ORDER SPT PHASES IN THREE
DIMENSIONS

A. Classification

2nd-order SPT phases in d = 3 are classified
by H'(G%, H3(Go,U(1))), i.e. linear representation of
group G with coefficients valued in H3(Go, U(1)). Phys-
ically this means the building blocks for 2nd-order SPT
phases in d = 3 are simply 2d Go-SPT phases, classified
by H3 (GO,U(l)) within the group cohomology frame-
work.

Unlike 1d Go-SPT phases which always form a finite
Abelian group, 2d Go-SPT phases can be an infinite
Abelian group, as shown in the last line of TABLE II.
Therefore to classify 2nd-order SPT phases in d = 3, we
need to compute H' (Gj7 Z) in addition to knowledge of

H (G2, Z,) in (30)-(36). Below we summarize H! (G, Z)



k=1,d=3

Onsite symmetry Go

U(1) U) % Zy |SO@3) x 23 Za, Za X 29
Crystalline symmetry G, or SO(3)
C’fl 7 Z(n,Q) Z(n,2) Z(n,a) Z%n,ag)

Chn,v or Cp x ZéMvM“T Za X Lo

Z% X Z(n,z) X Lo

Ln2) X Lo

Ln,a) X L2,a) X Lo

Lina2) % Lia)

Cnyh =C, X Zévlh Ty X Tio

Z% X Z(n’g) X Lo

Z(n,Q) X Lo

Lin,a,2) X L2,a) X Lo

2 2
Lipa2) X Lia2

Dy = Cy % Z3" ™M or € 3 23T A Zinp X Lo | Dnz) X L2 | Dinazy X L) |Lipaoy X Liuny
Dn,h = Cmv X Zéwh Zia X Do Zg X Z(n,2) X Lo Z(nyg> X Z% Z(n,a,?) X Z%Z,a) X Lo Z?n,a,Q) X Z?a,z)
C7, or San = {(can - Mu)™0 < m < 2n} | Z2 x Z> 73 X 7y Zy Z2,0) X Lo Z3.4)
Dpa = San % 23 or CF, x 23 Ty X Lo 73 X Lo 72 L35 4y X Lo Ly o
ST, = {(con - My -T)™0 < m < 2n} 74 Zs Zs Z(2n,0) 73, 5
|d =2 Go-SPTs: H*(Go,U(1)) plus Es state]| ZxZ | ZxZoxZ | Zo Zo X 7 22, 4

Table II: (color online) 2nd-order bosonic SPT phases (k = 1) in d = 3 spatial dimensions, protected by symmetry group
Gs = G. X Go where G, and Gg represent the crystalline and onsite symmetry group respectively. The general classification is
given by linear representation #' (GZ, H3 (GO, U (1))) as shown in (15) with d = 3, except for the “beyond-cohomology” states
colored by red. Through a dimensional reduction procedure they can all be built from Go-SPT phases in d = 2 dimension,
classified by H> (GO,U (1)) in the last line. Red-colored “beyond-cohomology” states are built from the chiral bosonic FEg

state??43,

for all axial point groups and magnetic point groups G.:

(CR)* ~ Zy, (8T ) =~ Zop,

HY (Zn,2) = L (46)
(Cr)* = (Cp 3 ZPM T ~ 7050 ZT
HY(Z,, x Z] 7)) = Ly; (47)
(CI)* = (San)* = Z1,;

' (2],.2) = Ls; (48)

(Dpa)* =~ (CT, x Z3")* ~ 2], % Zs,
HY(Z], % Z2,7) = Ly; (49)

(Dp)* =~ (Cp % Z3TY* ~ Z, % Zs,
HY(Zyy % Zo,2) = Ln; (50)

(Cpn)* = (Cp x ZE) =~ Z, x ZF ,
HY(Z, x Z] ,7) = Ly; (51)
(Dp1n)* = (Zy ¥ Zs) x Z3

HY((Zn % Zo) x Z] | L) = Lo. (52)

Using relation (29) and results (30)-(36), (46)-(52), we
are able to compute H' (G}, H?(Go,U(1))) for various
onsite symmetry Gy. The classification of 2nd-order SPT
phases in d = 3 is summarized in TABLE II.

It is known that there are certain 2d short-range-
entangled (SRE) bosonic phases (without intrinsic topo-
logical order) exhibiting chiral edge states*?*3  which are
beyond the description of group cohomology classifica-
tion. These SRE bosonic phases have an integer (Z) clas-
sification, generated by the Eg state with a chiral central
charge c_ =8

One can also build higher-order SPT phases out of the
bosonic Ey states, as highlighted by the red color in TA-
BLE II. The constructions for Eg are analogous to the
examples below for other chiral boson states, except that

the hinges are decorated with Eg phases. The bulk must
be trivial and gapped, so the total chiral central charge
in the bulk must vanish.

B. Examples

One physical signature of 2nd-order SPT phases in
d = 3 is the existence of gapless states on certain 1d
hinges of the system. Below we elucidate the procedure
of constructing 2nd-order SPT phases in d = 3 using the
data of H!(Gz, H?(Go,U(1))), based on the decorated
domain wall construction where the building blocks are
2d Go-SPT phases and bosonic Eg states. We also show
how this construction leads to gapless hinge states in 3d
2nd-order SPT phases.

In the simplest case of n-fold rotational symmetry
G. = C,, the 2nd-order SPT phases in 3d can be con-
structed by decorating each C,, domain wall by the same
2d G-SPT phase, as illustrated in FIG. 5. Similar to 2d
cases discussed earlier, a gapped bulk provides strong
constraints on the compatible 2d Gp-SPT phases, en-
coded in the following group cohomology formulae:

HY(Zn,Z4) = Lina) (53)

and
HY(Z,,2) =7y (54)

This means if the 2d Go-SPT phases has an integer classi-
fication i.e. H3(Go,U(1)) = Z, none of these SPT phases



Figure 5: 2nd-order SPT phases in d = 3 spatial dimensions,
preserving C's rotational symmetry. Similar to d = 2 case in
FIG. 3, they can be constructed by assigning the same 2d
Go-SPT phases on each C3 domain wall.

are compatible to a gapped bulk when decorated on the
C), domain walls. On the other hand, if the 2d G¢-SPT
phases form a finite group such as H? (Go, U(l)) = Zq,
only those with a topological index v =0 mod ﬁ can
lead to a gapped spectrum at the C,, rotation center, in-
dicated by (41) discussed earlier. Similar to d = 2 cases
in section IV, these 2d Go-SPT phases can be rotated to-
gether by an arbitrary angle around the C,, axis. Notice
that 1d gapless hinge modes are not always present in a
finite system: they only appear when the hinge intersects
with the plane of each 2d Go-SPT phase.

2. Gc = Cn,'u

Considering point group G, = C,, , or magnetic point
group C), X ZévahT, the construction of associated 2nd-
order SPT phases in d = 3 is completely in parallel to
d = 2 cases illustrated in FIG. 4. Specifically, two types
of 2d Gy-SPT phases are assigned to each mirror plane:
one type (red lines in FIG. 4) meeting at the C,, rotation
center corresponds to the linear representation Ug of n-
fold rotation generator R, the other type (green lines
in FIG. 4) on each mirror planet corresponds to linear
representation Upq, of mirror operation M,. They are
constrained by the following compatibility conditions for
a gapped bulk. When H?3 (Go, U(l)) i.e. the classification
of 2d G(-SPT phases is a finite group, we have

HY (Zn % Z] \Za) = Lin,a) % L(2,0) (55)

where Ugr € Z(n,q) and Upq, € Z(2,4), the same as dis-
cussed in section IV for d = 2 case.

Meanwhile if the classification of 2d G¢-SPT phases is
an infinite group labeled e.g. by an integer topological
index v € Z, we have

HY (Z, % 2], Z) = Z, (56)
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Figure 6: 2nd-order SPT phases with point group symmetry
Ss or magnetic point group C9 = {(R-7T)'i =0,1}.

where Urp = up € Z; and Up, = Uypy, mod2 € Zs.
Physically, for the C,, rotation center to be gapped, one
can only assign a trivial 2d phase on each C;, domain wall,
corresponding to the trivial representation Ug = up. On
the other hand, each mirror plane can be decorated by
any 2d Go-SPT phase with topological index va,. The
2nd-order SPT phases is only characterized by the parity
of topological index v, mod 2, since a pair of the same
2d Go-SPT phases can always be merged onto the mirror
plane without closing the bulk gap.

As shown in FIG. 4, the gapless hinge states will ap-
pear in a finite system as long as the hinge lies within a
mirror plane. The gapless 1d modes on the two opposite
hinges of the same mirror plane are generally different
from each other, as illustrated by the green hinges versus
green-plus-red hinges in FIG. 4.

3. Ge=Sopn or Ge =Cd,

Point group Sz, is generated by a 7 rotation R along

z-axis followed by a mirror My, w.r.t. to [001] plane:
Sop ={S1<i<2n}, S=R- My = S =1.(57)

Operation § is usually referred to as an improper rota-
tion or a rotoreflection. For both point group Ss, and
magnetic point group C7 . defined below

C] ={(R-T)1<i<2n} (58)

they share the same classification for 2nd-order SPT
phases since

(S2n)* = (CF,)" = 73, (59)

where ZJ] is generated by an anti-unitary operator of
rank 2n. The following group cohomology formulae de-
termine the classification of 2nd-order SPT phases with
So,, or CJ symmetry:

H (230, %a) = Lo (60)



Figure 7: 2nd-order SPT phases with point group symmetry
D, ,qa. There is a 2-fold rotoreflection axis along Z-axis and
a 2-fold in-plane axis (colored red). 2d Go-SPT phases with
topological index S are decorated on each mirror plane, while
2d Go-SPT phases with index vg, are decorated on vertical
planes crossing each Ro axis.

and
H' (Z],,Z) = Zs (61)

They are determined by solving the following conditions
for linear representation Ug € Z,, Z:

UsUs = 1. (62)

They can be understood similar to the mirror symme-
try My in the G. = (), case, where we have Us =
Uys mod 2 and the topological index vs of the 2d Go-
SPT phase is only well defined modulo 2. To construct
these So,-symmetric 2nd-order SPT phases, we decorate
each § domain wall by a 2d Gy-SPT phase with topo-
logical index vs mod 2, in a staggered fashion as shown
in FIG. 6. Again we can always merge two identical G-
SPT phases into each S domain wall without closing the
bulk gap, which will change the topological index of 2d
Gy SPT phase on this S domain wall by an even inte-
ger. This physically explains why the topological index
for the 2d Gy-SPT phase vs decorated on each S domain
wall is only defined modulo 2, manifested in the Z, o)
and Zs classification in (60) and (61).

4. Ge= Dy a= San x Z3" or CF, x Z3"W

Point group D,, 4 is generated by 2n-fold rotoreflection
S = R- M, around Z-axis as discussed earlier in G. = S,
case, and a mirror plane M, parallel to zZ-axis. The group
Dy, 4 can be summarized as

Dpa={S"(Ry)|1 <iy<2n,1<iy <2} (63)
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where we defined Ry = S - M, as a 2-fold rotation
along an in-plane axis (colored red in FIG. 7), so that
8" = (8§ My)? = 1. The linear representation
H' (Ge HP (Go,U(1)) = {Us,Ur, € H*(Go,U(1))}

must satisfy the following algebraic conditions:

UsUz =1, (64)
(Ur,)* =1, (65)
Ur,Us(Ug,Us)* = 1. (66)

If 2d Go-SPT phases has a finite classification such as
H3(Go,U(1)) = Zq, the linear representations are classi-
fied as

M (2], % Z2,La) = L2, ) (67)

given by
Us = e Vs, vyg~uvs+2, (68)
Ugr, = €& "%, 2up =0 mod a. (69)

where vs and vg, are the topological indices of 2d G-
SPT phases decorated on § and Ry domain walls respec-
tively.

If 2d Go-SPT phases has an infinite classification such
as H*(Go,U(1)) = Z, we have

HY(Z], % Z2,7) = Lo (70)
where

vs =0,1~vs+2, vg,=0. (71)
Physically, the 2d Go-SPT phases decorated on each S
domain wall (chosen to lie within a mirror plane) have
topological indices vs = 0,1 defined modulo 2, for the
same reason described previously in G, = S, case. They
are illustrated by black color in FIG. 7. On the other
hand, the topological index vr, >~ —vg, decorated on
each Ry, domain wall must be non-chiral, and hence must
be trivial when H3 (G, U(1)) = Z. These vg,-indexed 2d
Go-SPT phases are decorated on vertical planes parallel
to each R, axis, as illustrated by the green plane in FIG.
7.

Clearly the hinges of a finite system can host 1d gapless
modes for these 2nd-order SPT phases, if the hinge lies
within a mirror plane or a vertical plane containing one
2-fold axis. Generally the gapless modes on these two
types of hinges will be different.

5. Ge=Dpp=Chyx 23
Finally we consider the following point group
D = {(R.)"™ (Ry)"? (M) "™Mlin € Zy,in,ipm € Z2}(72)

As shown in FIG. 8, it is generated by n-fold rotation R,
along Z-axis, 2-fold rotation R, along Z-axis and mirror



v

Figure 8: 2nd-order SPT phases with D,, 1, point group sym-
metry. 2d Go-SPT phases with topological indices vr,, vr,
and vp, are assigned to red, green and blue mirror planes
respectively.

My, w.r.t to the z-y (or [001]) plane (colored in blue in
FIG . 8). Its linear representation {Ug,,Ur.,Unr, €
H3(Go,U(1))} € Hl(D;h,H?’(GO,U(l))) satisfies the
following conditions:

(Ur.)" = (Ur,)* = (Ur,Ur.)* =1, (73)
Ut Uy, = 1, (74)

Ur.Um, (Ur.Unm,)" =1, (75)
Ur,Um,(Ur,Um,)" = 1. (76)

When 2d Go-SPT phases have a finite classification,
e.g. H*(Go,U(1)) = Z, we have

H' ((Zn % Z2) X 2], Za) = Lnaz) X Liny  (77)

where
Up, = & "= € Ly .9y, nvp, =2vp, =0 mod a,(78)
Ur, (79)
UM}, = Q%VM}; (= Z(a,2)7 UmM, = 0, 1 mod 2. (80)

= VR € Zia,2y, 2vR, =0 mod a,

Meanwhile if 2d Go-SPT phases have an infinite classifi-
cation, e.g. H*(Go,U(1)) = Z we have

H ((Zn % Zo) x Z] | Z) = Ly (81)

where

v, =vgp, =0, vapm, =0,1 mod2eZ,  (82)
Physically, both R, and R, domain walls must be deco-
rated with non-chiral 2d Go-SPT phases due to the mir-
ror symmetry My, as denoted by red (vg.) and green
(vgr,) in FIG. 8. Meanwhile, the M}, mirror plane can
be decorated with a (possibly chiral) 2d G,-SPT phases

with index vy, , as denoted by blue in FIG. 8.

12

From the above construction, we can see that there are
three types of hinges hosting different gapless 1d modes in
the system: (i) 1d hinge modes lying in the mirror M),
plane (colored in blue) has topological index va4,; (ii)
1d hinge modes lying in vertical mirror R, - My plane
(colored in green) has index vg,; (iii) 1d hinge modes
lying in vertical mirror R, - R, - My plane (colored in
red) has index vg_ .

VI. 3RD-ORDER SPT PHASES IN THREE
DIMENSIONS

The 3rd-order SPT phases in d = 3 are classified by
2nd group cohomology H? (GZ, H? (Go, U(l))) whose co-
efficients take value in H?2 (GO,U(I)). Physically they
can be constructed by stacking 1d Go-SPT phases i.e. el-
ements of H? (Go, U(l))7 in a way which preserves (mag-
netic) crystalline symmetry G.. Specifically as previously
discussed in the decorated domain wall picture in section
IIIC, they can all be built by decorating 1d intersec-
tions of domain walls with 1d Go-SPT phases. Below we
first classify these 3rd-order SPT phases in d = 3 dimen-
sions, for various onsite symmetry Gy and (magnetic)
point group G.. Then we illustrate how to explicitly
construct these states in a few examples.

A. Classification

To compute the group cohomology
H2(G:,H?(Go,U(1))) for 3rd-order SPT phases,
we first notice that the classification of 1d G¢-SPT
phases always form a finite discrete Abelian group,
which are products of the cyclic group Z, for a fi-
nite a € Z. Therefore according to relation (29), we
only need to know 2 (GZ,ZQ) in order to compute

H2(G2, H2(Go. U(1)).

Below we list the results for various point groups and
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k=2,d=3 Onsite symmetry Go
Z3, SO(3) SO(3) x z3 Za X Zy Za X 29
Crystalline or U(1) x Z» or U(1) x Z3
symmetry G,
Chn Z(2,n) Lia ) Z(n,a,b) Z2,n) X La,2,n)
Chv Zn,2) X L, 5) % Z(n,a,b) X Zn,2) X Ln,a,2) ¥
Chnn Zn2) X Lz X L3, 5y X T3 X Zn,ap,2) X La,p2) X Zn2) X Lz X Lina,2) X La,2) ¥
D, Zn2) X Z3 L3, 5) X L3 Zinap,2) X Lizap) Lin,2) X L3 X Lin,a,2) X Lia 2
Cp o Z3T Zn,2) X Z?mQ) X Ln,a,p,2) ¥ Zn2y X Ln,a2) X
Dpn L3, 9) X L X L0y X T3 X Ll ain2) X Liap,2) X Loy X Lo X Ly 49y X Liga2) X
C7, or Sap Zs 73 Z(2,0.b) Zo X Do)
CJ, x ZM Zo X 73 x Ziap2) X Zo X La,2) ¥
Dy 73 x 74 x Llop2) X 73 X L, 9 %
S, L Z3 ZL(2n,a,b) Ly X Lia,2)
T~ A Zs 73 Zz,ap) X Li2,a.b) Zy X La,2)
T, =T x Z% 73 x 75 x Lisap) X 23 X Ly o) X
[#2(Go,U) | Zs | z3 | Za.p) Z3 X Lia,2)

Table I11: 3rd-order bosonic SPT phases (k = 1) in d = 2 spatial dimensions, protected by symmetry group Gs = G. X Go where
G. and Gy represent the crystalline and onsite symmetry group respectively. The general classification is given by projective
representation (G5, H?(Go,U(1))) as shown in (16) with d = 3. Through a dimensional reduction procedure they are all
constructed from Go-SPT phases in d = 1 dimension, classified by H?(Go, U(1)) in the last line (blue). To be contrasted with
the strong 3rd-order SPT phases in black, the weak crystalline SPT phases included in #? (GZ,?’-{,2 (Go, U(l))) are colored in

green.

magnetic point groups G,:

They are projective representations of group G with co-
efficients valued in Z,. Using these results and relation

(Cn)* = Zn, (83,)" = Zon,
H? (ZnaZa) = Z(n,a);

(Cpy)* = (Cp X ZéMVMhT)* ~ Zy X ZQTa
HQ((Cn X ZéMVMhT)*aZa) = Z(n,a,Z) X Z(n,a) X Z(2,a);(84)

H?((Cny)*, Za) = Lin,ay X
(CT)" = (San)* = 73,
H2(Z],, Ca) = L2,0);
(D.a)* = (CT, % ZM)* ~ ZT %1 Zs,
H*((Dn,a)* s Za) = L, 4 %
H2((CF, % 257)* Za) = Li2,0) X
(Dn)* 2 (Co 0 20T )" = Z, % Z,

H2((D7l)*’Za) = Z(n,a,Q) X Z%“72)7

H2((Cn % Z3T)* Z0) = L a9) %
(Cnn)* = (Cp x ZQI)* ~ Zyp X Z2T,
H2 (Zn X Zg—aZa) = Z(n,a,Q) X Z(Q,a) X
(Dpn)* =~ (Zy, x Za) x 2],
H2<(Dn7h>*7 Za) = Z%n,a@
T :’A4 = (Z2 X ZQ) X Zg,
H2 (A4, Za) = L3,0) X L2,0);
(Th)* ~ Ay x Z]
H2(Ay x Z] | L) = Z%2,a) X

) X Z(2,a) X

(29), we obtain the classification of 3rd-order SPT phases
(83) for these (magnetic) point groups G, and various onsite
symmetry Gg, as summarized in TABLE III.

B. Examples

First we consider point group C),, generated by rota-
(87) tion R along e.g. z-axis. Its 2nd group cohomology is
classified by
(88)
H*(Zn,Z4) = Lina) (95)
(89) which can be understood as follows. As described in
(90) section II1 C, the 2nd group cohomology H? (Zn, Za) are
projective representations {w(g,h) € Zq|g,h € Z,} val-
ued in Z, = {e*a 7|y € Z}, defined below

(91)

Uy - U = w(g, h)Uygn, (96)
(92) w(g, h)w(gh, k) = w(g, hk)w*9) (h, k). (97)

For our group (Cy,)* ~ Z,, with R™ = 1, we have
(93)
n—1

- (Up)" =we, -1, we, = [[w®B R) = e ven € Z498)
94 i=1



Figure 9: 3rd-order SPT phases with magnetic point group
symmetry Cy, X Z;\AVM“T with n = 2. The topological indices
of 1d Go-SPT phases are labeled by vr (colored blue, along
n-fold vertical rotation axis R), v¢ (colored red, along 2-fold
horizontal magnetic rotation axis C) and vre (colored green,
along 2-fold horizontal magnetic rotation axis R - C).

since U; = 1. Notice that we can always redefine the
symmetry operation by an extra phase factor valued in
Lq
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" Ug (99)

Ur — e
which leads to equivalence relation

ve, ~ve, +n moda € Z(n,a)' (100)

where (n,a) is the greatest common divisor of integers n
and a. This leads to the 2nd group cohomology formula
(95).

Physically, as argued in section III C, we decorate each
C,, rotational axis by a 1d Gp-SPT phase with topological
index v¢,. Notice that we can always merge n copies of
the same 1d Gp-SPT phases into the rotational axis in
a Cp-symmetric manner, without closing the bulk gap.
This physically explains the equivalence relation (100).

Unlike 2nd-order SPT phases in d = 3 which hosts
gapless 1d hinge states, 3rd-order SPT phases in d = 3
only supports gapless zero modes at the corners of cer-
tain finite systems, which carry projective representa-
tion of onsite symmetry Gy. For example here for point
group G, = C, or magnetic point group G. = SJ, =
{(ST)!|1 < i < 2n}, there will be protected zero modes
at every corner of the finite system lying on a C,, rota-
tonal axis.

2. Ge=Chx 22" and C, .,

Next we consider magnetic point group C,, X ZQAVM“T

and point group C, ., which share the same
G~ Zy % Z] . (101)

Take magnetic point group G, = C), X ZéMVMhT for ex-
ample: generated by n-fold vertical rotation R and 2-fold
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horizontal magnetic rotation axis C = M M7, it’s de-
fined by the following algebraic relations

R"=C?>=(R-C)*=1. (102)

where both C and R-C corresponds to in-plane (horizon-
tal) 2-fold magnetic rotation axes. Its projective repre-
sentation

/HQ (Zn X Zg—,Za) = Z(n,a,2) X Z(n,a) X Z(2,a) (103)

is characterized by Z,-valued factors

2mi

(Ur)" =we, =e’a ¥On, (104)
UcUf = we = ™o e, (105)
UrUc(UrUc)* = wpe = e & Wretve), (106)

It is straightforward to show that the solutions to the
factors are

(107)
(108)
QVRC = NVRc = 0 moda=— VRc € Z(n,a,?)' (109)

ve, ~ve, +n mod a € Zy, g,
2vc =0 mod a = v¢ € Z(n,a,2),

as shown earlier in (84). Physically they correspond to
the topological index of 1d Go-SPT phases decorated on
the C,, rotation axis (v¢,, colored blue in FIG. 9), on
each horizontal C axis (v¢, colored red in FIG. 9), and on
each horizontal R - C axis (vgrc, colored green in FIG. 9),
as shown in FIG. 9.

Clearly there are robust corner states at each inter-
section of the surface with the 3 types of rotation axes:
vertical n-fold rotation R, horizontal 2-fold magnetic ro-
tation C and R -C. All these corner states are protected
by onsite symmetry Gy and are robust against disorders
and crystal distortions.

Compared to magnetic point group C, X
the point group G. = C), case is different. In addition to
n-fold vertical rotation axis R, it also has vertical mir-
ror planes M, and R - M,. Although the Kunneth for-
mula (85) yields the same outcome as the magnetic point
group in (84), the factors have different meanings. While
ve,, still labels the topological index of 1d Go-SPT phase
decorated on the vertical C,, rotation axis, v¢ and vge
correspond to weak crystalline SPT indices. They char-
acterize whether each 2d mirror plane, M, and R - M.,
are 2d SPT phases protected by mirror and Gy symme-
tries. Although there can be gapless boundary states if
mirror symmetry is preserved by the surface, they are
generally not stable against perturbations breaking the
mirror symmetry on the surface.

MM T
Z "

3. G.=T

Point group T is generated by 2-fold rotations R, .
along ¢ and 2 axes, as well as 3-fold rotations Rs along
(111) axis:

T ={Riy R R$iy.. € Zs, i3 € Zs}. (110)



Figure 10: 3rd-order SPT phases with point group symmetry
T. They are constructed by decorating the four 3-fold axes
(green) with 1d Go-SPT phases with topological index vs, and
the three 2-fold axes (red) with topological index vs.

The group multiplication rules are set by the following
algebraic identities:

(Ry)2 = (RZ)2 = (Rsz)Q = (R3)2 =1,
RsR.R;' = R,R., R3R,R;'=R,.

(111)
(112)

Its projective representation are determined by the fol-
lowing phase factors

(Ugr,)? = (Ur.)? = (Up,Ug.) = wy = €& 2 € Z(113)

(Ur,)? = ws = e* a7 € Zy,. (114)
It’s straightforward to show that
v3~v3+3 moda = v3 € Z(,y3), (115)
vy =—vo mod a=> vy € L, (116)
leading to the group cohomology classification
HA(T* ~ Ay, Zy) = Z(z,0) X L2,0) (117)

As shown in FIG. 10, the T-symmetric 3rd-order SPT
phases are constructed by decorating all four of the 3-
fold axes (green in FIG. 10) by 1d Go-SPT phases with
topological index v3 € Z(3 4), and decorating all three of
the 2-fold axes (red in FIG. 10) by 1d G,-SPT phases
with topological index vy € Z(3 4)-

Now we discuss GGy symmetry protected corner states
in the system. If the surface intersects with any of the 2-
fold or 3-fold axes, it will host gapless corner modes pro-
tected by onsite symmetry Gy at the intersection. Gen-
erally the projective representations for corners on the
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-t e e e e —

e mm=—_-t = - -

Figure 11: 3rd-order SPT phases with point group symmetry
T, classified by three topological invariants vi,23. Among
them v 3 correspond to the topological indices of 1d Go-SPT
phases along the 2 types of high-symmetry axes colored by
red and green, while 11 + v labels whether each mirror plane
(perpendicular to red axis) is a 2d SPT protected by both
mirror and onsite symmetry Go.

2-fold and 3-fold axes will be different. Take a spin-1
system with Gy = SO(3) symmetry for example, there
will only be gapless spin-1,/2 modes at each corner on the
%, § and £ axes, but not on (111) axis.

4. Ge=Th=TxZ%

Finally we consider the point group T}, which is a di-
rect product of group T and the rank-2 group ZZ gen-
erated by inversion Z. In addition to algebraic relations
(111)-(112), we also have

2 =1, (118)

IR, I '=R,, a=y,z3. (119)

This leads to 3 more phase factors, in addition to ws 3
considered in G. = T case:

27i

UrUf =w) =e™a 11| (120)
UrUf, Ur'Ug! = ws =", (121)
UzUf, U Ul = ws = *5° 5. (122)

It is straightforward to show that wss =1, and
2v; =0 moda=v; € Zp,, i=12,3 (123)

This results in the 2nd group cohomology classification
H (T ~ Ay x 2], Za) = Ly o (124)

Physically similar to G, = T case discussed earlier, v 3
still correspond to the topological indices of 1d Go-SPT



phases, assigned along the 2 types of high-symmetry axes
(and their symmetry-related partners) colored by red
(with index 1) and green (with index v3) as shown in
FIG. 11. As a result, if the surface of an open system in-
tersects with one of these axes, it will host gapless corner
modes protected by onsite symmetry Gg. A difference
between this case and the previous G, = T example is
that due to inversion symmetry, each 1d SPT phase deco-
rated along a high-symmetry axis must be its own inverse
phase, leading to w; = w} = £1.

Meanwhile v; has a slightly different physical mean-
ing. Notice that there are 3 mirror planes associated with
mirror reflection symmetry M, =7 - R, for a = z,y, 2.
Since each mirror symmetry serves as a onsite Zs sym-
metry within its 2d mirror plane, he projective represen-
tation of the mirror symmetry

UMQU.X/((, = UIU}*%(, U%URQ = wiwsy € Z(an)' (125)
corresponds to whether each 2d mirror plane is a SPT
phase protected by both Zs mirror symmetry and onsite
symmetry Gg. In other words, wiws = +1 labels whether
the mirror domain wall within each mirror plane is dec-
orated by a 1d Gp-SPT phase or not. Therefore wyws is
an index for weak crystalline SPT phases, and generally
does not host corner/hinge modes robust against small
mirror-breaking perturbations.

VII. DISCUSSIONS

In summary, to understand the HOSPT phases of in-
teracting bosons with robust symmetry protected cor-
ner/hinge states, we provide a physical picture based on
dimensional reduction analysis and a classification and
construction based on the Kunneth formula of group co-
homology. These strong HOSPT phases support topo-
logical boundary excitations robust against general per-
turbations such as disorders and crystalline distortions,
and should be differentiated from weak crystalline SPT
phases whose surface states are protected by crystalline
symmetries. Focusing on the case where the total sym-
metry G = G, x Gy is a direct product of crystalline
symmetry G, and onsite symmetry Gy, we show that
a (k 4+ 1)-th order SPT phase in d spatial dimensions
can be built from Go-SPT phases in (d — k) dimensions,
and is fully classified within group cohomology formula
H*(Gz, HIT7F(Go,U(1))). Based on a decorated do-
main wall picture for this group cohomology formula, we
show how to explicitly construct a HOSPT phase using
lower-dimensional SPT phases as building blocks.
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To conclude, we briefly discuss the limitations of the
group cohomology classification (I) of HOSPT phases
from Kunneth formula. One implicit assumption for the
above classification is that the local Hilbert space al-
ways forms a linear representation of the total symmetry
group. If we consider the local Hilbert space S(«) at a
high-symmetry Wyckoff position «, such as the Cy rota-
tion center in FIG. 2, the local Hilbert space should also
preserve the “local symmetry” G.(a) = Cy in addition to
the onsite symmetry Gg. In the group cohomology clas-
sification (I), we always require such a local Hilbert space
S(a) to form a linear representation of local symmetry
G.(a) x Gy. In particular, the local crystalline symme-
try operations in G.(a) must commute with all onsite
symmetry in Go. Failure of this requirement (i.e. pro-
jective representations of local symmetry G.(a) X Gp)
may lead to even more interesting consequences, such as
Lieb-Schultz-Mattis theorems forbidding a short-ranged-
entangled ground state3”, which are beyond the descrip-
tion of formula (I).

One natural direction to expand this work is to go be-
yond a direct product of onsite and crystalline symme-
tries, and to consider the HOSPT phases with a generic
symmetry group. While the Kunneth formula does not
simply apply for a generic symmetry group, the dimen-
sional reduction arguments appear to remain valid. An-
other interesting direction is to use the same approach to
study HOSPT phases of interacting fermions. We leave
these for future works.
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