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A zero-site density matrix renormalization algorithm (DMRGO) is proposed to minimize the energy of matrix
product states (MPS). Instead of the site tensors themselves, we propose to optimize sequentially the “mes-
sage” tensors between neighbor sites, which contain the singular values of the bipartition. This leads to a local
minimization step that is independent of the physical dimension of the site. Conceptually, it separates the op-
timization and decimation steps in DMRG. Furthermore, we introduce two new global perturbations based on
the optimal low-rank correction to the current state, which are used to avoid local minima. They are determined
variationally as the MPS closest to the one-step correction of the Lanczos or Jacobi-Davidson eigensolver, re-
spectively. These perturbations mainly decrease the energy and are free of hand-tuned parameters. Compared
to existing single-site enrichment proposals, our approach gives similar convergence ratios per sweep while the
computations are cheaper by construction. Our methods may be useful in systems with many physical degrees
of freedom per lattice site. We test our approach on the periodic Heisenberg spin chain for various spins, and on

free electrons on the lattice.

I. INTRODUCTION

The density matrix renormalization group (DMRG), intro-
duced by White [1} 2]], provides a very powerful approach
to study quantum systems in one dimension. The success of
the method is based on the fact that its variational wavefunc-
tion efficiently captures the local entanglement properties of
ground states. Besides static properties, it has been extended
to study excited states, dynamics, etc.; see [3] for a recent re-
view. Nevertheless, key challenges need to be resolved for
a broader applicability of DMRG, most notably for quantum
systems in higher dimensions. Here, the area law of entan-
glement makes the algorithm exponentially costly. Therefore,
improving the DMRG approach remains an important goal,
both theoretically and for applications.

A key conceptual development was the realization that the
DMRG ansatz gives a ground state of matrix product state
(MPS) form [4],15]
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Here, o; (of dimension d; with i = 1,2,..., L) labels the physi-
cal degree of freedom of the site i for a system of L sites. M; is
arank-3 tensor of dimensions m;_; X d; X m;. In this language,
the variational optimization is carried over objects formed out
of the tensors M; (see below), while the decimation involves
restricting the dimensions to some fixed bond dimension m,
namely m; < m. Keeping a fixed upper bound m on the bond
dimension of each M; entails an exponential compression of
the basis of states. The reformulation of the DMRG in terms
of MPS has led to new applications and improvements [6]], as
well as placing the DMRG in the more general context of ten-
sor networks [7]. This is the language we will use here; the
graphical representation of the state is explained in Fig.
The DMRG algorithm involves four main steps: /) a choice
of basic object or block to optimize; 2) the optimization proce-
dure; 3) an enrichment in order to avoid local minima; and 4)
the decimation step. In MPS terms, White’s approach corre-
sponds to a 2-site DMRG: the object being optimized has two
physical indices. At a given step, this is shown in the upper
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Figure 1. MPS representation of DMRG. Black circles represent the
tensors in the ansatz (I)); a vertical line corresponds to a physical in-
dex, while horizontal lines are bond indices. A line connecting two
dots means index-contraction. The object in the blue box is being op-
timized. We choose a canonical representation, where matrices A; to
the left of the optimized object are left-normalized; similarly matri-
ces Bj to the right are right-normalized. White’s two-site algorithm
is shown in the upper panel, and the single site DMRG is displayed
in the middle panel. Our work introduces the 0-side DMRG, showed
here in the lower panel. At step i, we optimize the m x m matrix C;
that contains the singular values of the bipartition.

part of Fig. |1} with the basic block denoted by M. This quan-
tity has two physical indices and hence lives on a space bigger
than the basic MPS tensors. This leads to an enrichment of
the variational space. After the optimization, the 2-site object
M is re-expressed in terms of the MPS tensors M;, as shown
in the right part of the figure.

From this perspective, a natural modification is to opti-
mize directly the tensors M;, and this leads to the single-site
DMRG [8]. We illustrate this method in the middle panel
of Fig. [ Changing the optimization from 2-site blocks to
a single-site block decreases the dimension of the variational
matrices from md x md to md X m, and is expected to decrease
the optimization time by a factor of order d. Two aspects are



worth emphasizing. First, the extra site in the 2-sitt DMRG
played an important role in enriching the variational space, so
the single-site DMRG needs an independent enrichment step.
This is required to make sure that the most relevant states are
present in the reduced density matrix, and hence avoid local
minima. The other point is that only m out of the md rows of
M; can be linearly independent. As a result, the optimization
step entails a decimation.

In this work we propose the 0-site DMRG (DMRGO),
where the m x m singular-value matrices C; (obtained by de-
composing M;F = A?"Ci) are optimized. See the lower panel
in Fig.[T] Implementing the O-sitt DMRG is important for var-
ious reasons. Conceptually, it formulates the optimization of
the wavefunction (which dominates the costs in DMRG) con-
sidering only a pure bipartition at a time, that is, asking for
the optimal wavefunction expressed in terms of the system S
and the environment E renormalized basis (both of size m). In
contrast, current computational schemes [3} [8H13] explicitly
include one or two sites as part of S and/or E when the lo-
cal optimization step is performed. Thus the system becomes
tripartite at this step. Another aspect is that we now expect
the local optimization cost to be independent of the physical
dimension d, as opposed to the single and 2-site algorithms,
where the cost depends explicitly on d. This is a very attrac-
tive feature for the simulation of systems with a large number
of degrees of freedom per site Another theoretical advantage
is that the optimization and decimation steps are clearly dis-
tinct in DMRGQO: the optimization occurs over a full-rank m
metric C;. There is no redundant information here, as opposed
to the single-site algorithm that optimizes over md X m matri-
ces. Finally, we mention that DMRGO may be interesting for
tangent-space methods [[14]], where the message matrix C; and
its optimization appear naturally.

However, an important obstacle to this approach could be
that the reduced variational space of the C; may not be rich
enough to include important fluctuations between the system
and the environment. This can exacerbate the problem of lo-
cal minima. A successful realization of DMRGO necessarily
needs to face this challenge. An important part of this work
will then be to solve this in an efficient manner. This leads
us to introduce an enrichment step based on the optimal low-
rank correction to the global state. We will show that this
method markedly increases the convergence of the algorithm
and avoids metastable solutions. We will compare it with ex-
isting enrichment methods, finding various advantages related
to global convergence properties and the absence of arbitrary
external parameters that need to be tuned during the enrich-
ment step.

The goal of this work is to describe and implement the
DMRGO algorithm. The outline of the paper is as follows. In
Sec. [l we present the zero-sitt DMRG and explain its basic
properties. In Sec. [I[II] we introduce the enrichment step, with

! Tt is worth emphasizing that we are referring here to the local optimization
cost. The independence with d does not eliminate the more fundamental
limitation that the amount of entanglement may just be too large to simulate
with a bounded bond dimension, as occurs for instance in gapless systems.

two approximate schemes (Lanczos and Jacobi-Davidson) to
obtain the optimal low-rank correction. We also review the
previous approaches [8, [12| [13], and establish the equiva-
lence between [8] and [13] . Sec. summarizes our algo-
rithm. Sec. [V] presents numerical results for the Heisenberg
spin chain with spins S =1, § =3 and S =5, and for free
fermions, and compare with existing single-site enrichment
methods. Sec.[V]contains our conclusions and perspectives.

II. ZERO-SITE DMRG

A quantum state ¥ of the form () is called a matrix prod-
uct state (MPS); see [3]] for a detailed review. While the rep-
resentation is exact for sufficiently large bond dimensions m;,
in practice m; < m. This is a key part of the decimation or
renormalization of the relevant degrees of freedom.

An important property of the MPS is its gauge degree of
freedom. For arbitrary invertible matrices X;, the identity
I, = Xf'Xi can be inserted between M; and M;, effectively
changing the matrices to M? = X,-_le’Xi_1 while keeping the
state invariant. It allows us to choose the so-called left (right)
normalization for the matrices M7 = A? (M? = B?) satisfying

Y (A7) A =1 or Y. BP(BY) =1 )
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We now introduce (as in [15]]) the MPS zero-site canonical
form at site i:

ly)= Y AY . A7CBI' . .Bi*|oy...00), (3)
01...0,

similar to the single-site canonical form where the central ma-
trix M, is decomposed as

M2 =A7C;. 4)
The matrix A; is left-normalized, and C; contains the singular
values of M;. Note that C; does not contain the physical index
o; and its dimension d; — we associate it to the link between A;
and Bj; 1. We illustrate this in the lower panel of Fig. [T} One
advantage of this representation is its local expression for the
square norm (y|y) = tr(ClTCi). We refer to C; as the “mes-
sage” between site tensors — it contains the singular values
and the entanglement of the bipartition in this case. In DMRG
terminology, the products A{"... A% and B{'%'...Bf" represent
the left and right renormalized basis for S (system) and E (en-
vironment) respectively, and C; is the (strictly bipartite) wave-
function.

If the Hamiltonian is also written as a matrix product oper-
ator (MPO),

, ®)
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then the energy of a normalized state y is

E = (y|A|y) = C/ (diy|A|9iy)C; = CHy, Ci,  (6)



where |0;y) is the derivative of |y) with respect to C; in (3).
The effective operator H{W = (d;w|H|d;y) does not depend
on C;, and can be calculated recursively using the transfer ma-
trices for A,

Hyy =LiRis1 . (7)

Here, L; = Li 1 TA, R; = TBR;+y with Lo =Ry = 1, TA
(AG) WZCAS, and T8 is the
right transfer matrix 7% = (Blf’)Jr WO°B?, fori=1,2,...,.L

Our zero-site DMRG proposal (DMRGO) is to optimize one
tensor C; at a time. In a DMRG step, the position i and the
renormalized operators L;, R;; are fixed while the wavefunc-
tion C; is updated. E and C; are the lowest eigenvalue and
eigenvector, respectively, of the effective Hamiltonian H{W
An iterative eigensolver like Lanczos is used to diagonalize
starting from the previous C; until a given tolerance is
reached. The position i is then changed to i+ 1 in (3), perform-
ing a matrix decomposition of M7 | = CiB? | = Az+1C+1 An
analogous step is performed for the change from itoi— 1.

As discussed in Sec. [} the main problem to solve in this
approach is how to avoid local minima. To this end, we will
now present a new enrichment method based on the optimal
low-rank correction.

the left transfer matrix TA

III. ENRICHMENT VIA OPTIMAL LOW-RANK
CORRECTION

The MPS ansatz is highly non-linear in its parameters, the
matrices M?. Despite the success of the DMRG proposal to
optimize one tensor at a time, there is the danger of being
trapped in local minima, especially for single-site effective
wavefunction approaches. For our DMRGQO, in principle we
expect an even worse situation; we will analyze this in exam-
ples below in Sec. [V] The development of an efficient space
enrichment method is then central to the success of DMRGO.

The space enrichment methods [8} [12} |13]] are local, i.e.
they enrich only one site-tensor at a time. They are based on
the application of renormalized operators living on S (of di-
mension md) to the single-site wavefunction of dimensions
md x m. This introduces the possibility that the renormal-
ization from md to m changes the wavefunction. We review
these approaches in Sec. establishing the formal equiv-
alence between [8]] and [13]]. These ideas, however, are not
directly applicable to our DMRGO because the effective wave-
function C; is a full-rank m X m matrix with entries on S and
E basis, both of size m. In Sec. [[IIB|] we present our new
global proposal for the optimal correction, and two approxi-
mate schemes for obtaining it.

A. Previous approaches and equivalence

To simplify the explanation, let us focus on the decima-
tion step in DMRG. Given a bipartition {S,E} equipped with
their respective basis, a state |y) corresponds to a matrix M.
The reduced density matrix for S is p = MM . In the original

DMRG [11 2], p is diagonalized p = UDU", its eigenvalues
D are truncated to D containing the m largest values, and U
is truncated to U containing the corresponding m eigenvec-
tors, that is, p ~ UDU". In this approximation, the opera-
tors in S are renormalized according to O = UTOU, and the
states according to 7 = UTv. In particular, |y) transforms as
M=U'M.

The first approach to enrich the space was introduced by
S. White in [8]. Anticipating later incorporations of relevant
states in the environment basis, the density matrix of § is per-
turbed using the Hamiltonian terms living in S,

p=p+BY Ly (Ly) . ®)
Y

This replaces p by p in the decimation step above. Here, the
number 2 is a small weight tuned by hand, and L, (Ry) are
the renormalized operators of S (E) appearing in the Hamil-
tonian H =Y, L, ® R, for the given bipartition {S,E}. The
resulting density matrix p is renormalized to keep the largest
m eigenvalues.

The second approach [12]], as part of the alternating mini-
mal energy (AMEn) algorithm, enriches the space by directly
enlarging the wavefunction M to M = (M P ). The tech-
nique is called subspace expansion. Starting from the innocu-
ous transformation (adapted to our notation):

ey (o)

M

where I, 0 are the appropriate identity and null matrices, re-
spectively, Ref. [12]] uses M to grow the subsystem S basis. In
the next step, this allows to choose a richer state by chang-
ing the initially vanishing components in (9). Choosing P
as the single-site wavefunction of the (aproximate) residual
(H—FE)|y), with E = (y|H|y), this method guarantees con-
vergence to the global minima [[16].

The third approach [13], as part of the DMRG3S algorithm,
also uses the subspace expansion technique, and is based on a
perturbation of the form

=P ( LiM LM .. LYM) . (10)
It makes a singular value decomposition (SVD) M = UysVT,
followed by a truncation M ~ U,5V' containing the largest
m singular values of s. Because some reordering of M
takes place during this truncation, the original state is mod-
ified/enriched. The basis of S is rotated with U, and the new

state is
st'\‘/*.(f)). (11)

Results comparable to [8] are obtained at a lower computa-
tional cost. Note that § in assigns the same weight to
all the states used for enrlchment this is not necessarily the
optimal choice [12].

Let us discuss the connection between [8] and [13]. For
this, we note that the density matrix calculated from M given
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(TO) is the same as (8). Therefore the enrichment steps are
equivalent in the S subsystem. In more detail, since p = M -
M, the diagonalization of p = UZDU; can be extracted from
the SVD of M = U,sV" where D = s2. The state M obtained
after truncation using p ~ U, DU, is

0

:U;M.((’)) Q,U;Uzs-w.“)

=N, (12)

M=0"M=0" (M P).(’>

which means that both approaches are equivalent also for the
wavefunction within the truncation error. They differ, how-
ever, in the representation, and this is responsible for the dif-
ference in computational time.

B. Optimal correction

A anatural way to enlarge our variational space while keep-
ing the computation tractable is to add a new state

oay+py, o eR, 13)

where the current (normalized) state y is fixed and { is the
perturbation. We enrich the space by adding the new direction
W, and determine the coefficients o, by the Rayleigh-Ritz
method. That is, the pair (o, )" is the lowest eigenvector of
the 2 X 2 matrix:

Hy, = (alH|b) , a,b € {y, ¥} (14)

We note that the alternating linear scheme “ALS(t + z)”
method [[L6], developed to solve linear systems, also enriches
the approximate solution ¢ by adding the residual z.

We propose to obtain the perturbation {/ by extremizing the
energy,

(59| [aPAlY) +BPA - )PIW)] =0, (15)

Here A is a Lagrange multiplier coming from the normal-
ization condition. The projector P = 1 — |y)(y/|, satisfying
Py =0 and Py = W, implements the orthogonality condition
(Wly) =0.

Eq. (T3) is the exact condition that determines the optimal
correction. It can be cast as an inhomogeneous eigenvalue
problem of the form A¥ = AX + for the Hermitian matrix A =
PHP, b = —PH|y), ¥ = B/a P|). See e.g. [17] for methods
to solve such problems in linear algebra.

We now present two approximate iterative schemes for
solving (I3)); they are motivated by considering a small cor-
rection to the current state y, but are more broadly applicable.
A small correction < o gives rise to a residual (or Lanc-
z0s) scheme, while approximating A ~ E = (y|H|y) obtains
a Jacobi-Davidson scheme. Both perform very well, and their
strengths and weaknesses are inherited from the respective
original methods. The Lanczos iteration is fast and straight-
forward to implement as a direct computation; it is sensitive to

the loss of orthogonality, it is problematic when there are (ex-
act or approximate) degenerate states, and it is hard to apply to
the interior eigenvalues due to the shift-and-invert mechanism
required. On the other hand, the Jacobi-Davidson iteration is
determined by a more involved inverse problem, which in turn
must be solved iteratively; it is sensitive to the use of precon-
ditioning, but it is very powerful even for degenerate states or
interior eigenstates.

1. Lanczos correction

If f < a=+/1—B2~1— 1B we approximate
(0w [PA|y) — ABP|§)] =0, (16)

recalling that at this stage A is unknown. Eq. implies that
 is parallel to PH|y) ,

9) o< [1 = [W) (W] Aly) = (A -E) |y). (17)

The perturbation is then determined by a global residual cal-
culation (T7), which is similar to both the ALS(t+z) and the
AMERn algorithms.

In our zero-site DMRG framework, numerical experiments
show that the above correction implemented as a global
correction after each DMRG sweep works well, see for in-
stance Fig. 1. We will choose /1 = m, but note that one can
take even /m = 2m, while keeping the global computational
cost governed by the optimization step. See Secs. [[V|and
for more details.

The self-consistency of the residual (T7) as an approximate
solution to the optimal correction could be checked by
direct substitution. However, this is not of our concern here,
since the goal is to enrich the space using some well-motivated
perturbation.

2. Jacobi-Davidson correction

Eventually, if the residual correction @[) becomes insuffi-
cient, the following method can be applied. It can be verified
that A represents the energy of the new state oty + B when
Eq. (T3) is solved exactly. Motivated by the Jacobi-Davidson
algorithm, we take A ~ E = (y|H|y) in (15), obtaining

) < — [P(H —A)P] ' PAy). (18)

We keep the symbol A because in our calculation scheme
some energy better than E is usually available. The approx-
imate solution of a linear system like (I8 has a well estab-
lished algorithm in the DMRG community, see for instance
the calculation of Green’s function response of [18520]. In
our case, some additional remarks concerning the presence of
the projector P are needed. Ignoring the normalization of | ),
and retaking the variational principle (T5), we obtain

(SWIH —Aly) — (SW|H — Aly)(y|)
—(8Wly)(ylA —A|)
HOWIY)(E —A)(w]§) = —(89|PH|w).



As dictated by DMRG, we fix the canonical position i to
find one tensor (C; of | 7)) at a time. In this context, the rela-
tion | ) = |0;W)C; implies |6 ) = |9;¥)8C;, and we have the
following equation for C;

{Hl =10 (et =) (€| (19)
-wE+AH¢B<¢ﬂ—A}w»:pf>_5k?%

where |x) corresponds to the matrix X treated as a vector, ¢/ =

(31| ). and ¢© = (3,7 w).

An iterative algorithm can be used to solve (I9) starting
from the previous C;. For instance, we can apply the gen-
eralized minimal residual method (GMRES [17]]), with com-
putational cost similar to the Lanczos diagonalization of (7).
The Jacobi-Davidson correction appears to be more expensive
than the residual correction; it would be interesting to perform
a comparison of the convergence ratios of both methods.

IV. ALGORITHM

We summarize the previous results in the following algo-
rithm.

Let us call a sweep to the sequence of positions from i = 0
to i = L (sweeping right) followed by its reverse form i = L
down to i = 0 (sweeping left).

(1) Initialize y with random matrices and canonicalize
them to the position i = 0. Set the current error € = 1
(arbitrarily large).

(ii) Make a standard sweep for (y|H|y) calculating the
ground state Y using tolerance ~ 0.1€ to diagonalize
each Hy,, in Eq. .

(iii) Set ¥ = (H — E)y; starting from the exact MPO-MPS
product apply the zip-up algorithm [21] to compress
to bond dimension 7.

(a) If desired, an additional sweep setting { as
the Jacobi-Davidson correction (I8)), can be
used. The quantities ({|H|{), (¥|y) should also
be swept to solve (I9).

(iv) Update y using the compression of oy + B to bond
dimension m. Set € = E — A; where A, is the first eigen-
value of the 2 x 2 matrix H in (14). Since (¥|y) # 0
the overlap matrix O = (a|b) with a,b € {y, ¥} should
be taken into account, yielding a generalized eigenvalue
problem HX = AOX with Hermitian positive-definite
2 x 2 matrix O.

Steps (ii-iv) are repeated until the energy E (or A;) does not
change. Step (ii) is the zero-site DMRG (DMRGO0), while
(iii-iv) are the basis enrichment steps, in this case, based on
the Lanczos (DMRGO-L) or Jacobi-Davidson (DMRGO0-JD)
correction. Optionally, n successive perturbations can be ap-
plied; the respective algorithms are denoted by DMRGO-Ln
and DMRGO-JDn.

As usual, the diagonalization (ii) is the most time-
consuming part; its cost per site scales as O(2m3wK ), where
w is the MPO bond dimension and X is the number of eigen-
solver iterations. Notice the absence of the physical site di-
mension d in this cost. To control the number K we need
both a good starting point (already provided) and we should
avoid iterations far beyond the renormalization error of the
MPS. Step (iv) provides an appropriate error quantity € to ask
for during the diagonalization, keeping K in the order of few
tens during the entire calculation. For comparison, the single-
site scheme scales as O(2m*wdK + d*>m*w?K) with a typical
larger value for K because the local problem is d times bigger.

Concerning our enrichment proposal, the cost of the Lanc-
zos correction is similar to that of the subspace expansion
(I0) in DMRG3S. It is dominated by the SVD compression
of a mw x md matrix, which scales as O(m*wd?). The cost
of compressing the sum of two MPSs is negligible O(8m’d).
White’s density matrix perturbation (8) costs O(2m*wd?), but
it can be reduced to that of DMRGS3S if the equivalence of the
approaches is taken into account.

The Jacobi-Davidson correction (T9) is more expensive
than the Lanczos one because the GMRES solver required K
iterations, scaling as 0(2m3wK ), similar to the diagonaliza-
tion step (ii). However, the missing factor d can be used to
compensate the greater cost of the single-site diagonalization.
The advantage is the splitting into smaller problems, which
typically decreases K.

Step (iii) can be replaced by = Hy, which mathemat-
ically brings us to the same new state Eq. (T3). We find
some cases where, starting from the compression of the ex-
act y = (H — E) v, the sweeping (W|H|y) setting = Hy
improves the energy of the compression at step (iv).

V. RESULTS

In this section we present results for our algorithm for the
Heisenberg spin S chain and for free fermions. The first case
is a standard benchmark in the literature [8| (12} [13]], and it
will allow us to analyze the effects of the physical dimension
d by increasing the size of the spin representation, d = 2S5+ 1.
The case of free fermions gives rise to a gapless system in
the thermodynamic limit, and exhibits a situation where the
entanglement is too large to be captured with a bounded MPS.
We will also compare our results with those obtained using
single-site DMRG (DMRG3S), finding similar or improved
convergence.

The Heisenberg Hamiltonian is

L
H=Y 8-S, (20)
i=1

and the site dimension corresponds to d =25+ 1 . Fig. 2]
shows the convergence of the energy E using DMRGO and
DMRGS3S for § =1 and L = 100. The top panel presents
the methods without enrichment. As expected, DMRGO gets
stuck in a considerably greater energy than DMRG3S does
for the same bond dimension m. This is because DMRGO
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Figure 2. Normalized error vs sweeps of the ground state energy
for the periodic S = 1 (d = 3) Heisenberg spin chain, L = 100. Top
panel: DMRGO compared to the single-site DMRG, both without
enrichment. Bottom panel: DMRG3S vs DMRGO using one Lanczos
or two Jacobi-Davidson corrections. We take Ey = —140.148404 as
the reference value [8].

updates only m? parameters for each position i, compared to
DMRG3S which updates m?d. In fact, the updates of DMRGO
do not cover the number of parameters per site m>d of the
MPS ansatz.

On the other hand, the observed convergence ratios at the
bottom panel of Fig. [2] for DMRGO-L and DMRG-JD2 are
surprising. Particularly, DMRGO-L makes only m? updates
per site at step (ii) enriched by a cheap direct residual calcu-
lation in step (iii). DMRG-JD2 would cost in principle like
DMRG3S, although we remark that the former deals with d
problems of 1/d smaller size.

One of the important features of our method is that the op-
timization step (ii) does not depend on d, which opens up the
possibility of analyzing systems with large d. Although we
postpone a more detailed study of this aspect to a future work,
let us briefly present results for the Heisenberg model (20)
with S =3, namelyd =2S+1="7,and S=5,i.e. d =11. The
results are shown in Fig.[3] We find that the Jacobi-Davidson
correction in DMRGO outperforms the convergence speed of
DMRGS3S. This is due to the fact that our global enrichment
method is more powerful than the one used in [[13]. The ap-
proach in [13] uses a homogeneous weight f3 for enrich-
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Figure 3. Same as Fig. [2bottom panel with S =3 (d =7)and § =5
(d=11), L =20, m =200. We take Ey = —202.74942 and Ey =
—537.49987, respectively, obtained by calculating the ground-state
energy with DMRG3S for m = {100, 133, 200, 286, 500, 1000} and
extrapolating to 1/m — 0.

ment, while our approach is motivated by finding the optimal
correction.

Finally, we study free fermions with periodic tight-binding
Hamiltonian

H:Z(Cjﬂci-i—cjciﬂ)a 21
;

where c:-r creates a fermion at site i, and i = 1,...,L. The
system is gapless in the infinite size limit, with an entropy
that grows like S(R) = %logR, for a region with R sites. For
this reason, the system cannot be simulated with an MPS of
fixed bond dimension, and the problem is quite challenging
for DMRG. Fig. [] shows the ground state energy error for
L =100. The problem of the growth in MPS dimension is not
ameliorated by any optimization method. Capturing the log-
arithmic growth in the entropy requires changing the ground-
state ansatz, for instance using MERA [22].

VI. CONCLUSIONS AND PERSPECTIVES

In this work, we have presented the zero-site DMRG, a new
algorithm to find MPS ground states, with the feature that
the local optimization does not depend on the site dimension.
We have also proposed a new space enrichment method that
avoids local minima and speeds up the convergence ratios to
the level of state-of-the-art single-site algorithms. Conceptu-
ally, the local optimization of the wavefunction and the renor-
malization and enrichment become separate steps.

Both the DMRGO and the enrichment methods (Lanczos
and Jacobi-Davidson) open up the possibility of several de-
velopments and extensions. Since the optimization approach



1072 T T T T T
dmrg3s —=—
free electrons dmrg-L
dmrg-JD B
107 % 1
= \
BN
o 0t 7
& \
AN '
107 F *E B
TRw g |
e WU ST,
10—6 | | | | | | | |
2 4 6 8 10 12 14 16 18 20

Half-sweeps

Figure 4. Comparison of DMRG3S and DMRGO (Lanczos and
Jacobi-Davidson) for free electrons in a one-dimensional periodic
chain. The exact result for the ground state energy is Ey =
—63.6410319075.

is independent of d (the site physical dimension), DMRGO
could be well-suited to analyze systems with large d. This
limit is interesting both theoretically as well as for its applica-
tions, such as in the Kondo lattice, dimensional reductions on

cylinders, SYK-like non-Fermi liquids, holographic models,
etc.

It would also be interesting to investigate in more detail the
Lanczos and Jacobi-Davidson methods that we introduced.
More nontrivial combinations of these approaches are pos-
sible. The Jacobi-Davidson corrections can also be applied
to obtain excited states. The global enrichment could be re-
placed by a sequential local enrichment similar to [12, [16].
It would also be important to apply this to the single-site
scheme, where we expect improvements over the local homo-
geneous enrichment methods used so far.
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