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We develop a method for calculating the fundamental electronic gap of semiconductors and insu-
lators using grand canonical Quantum Monte Carlo simulations. We discuss the origin of the bias
introduced by supercell calculations of finite size and show how to correct the leading and sublead-
ing finite size errors either based on observables accessible in the finite-sized simulations or from
DFT calculations. Our procedure is applied to carbon, silicon, and molecular hydrogen crystals,
and compared to experiment for carbon and silicon.

I. INTRODUCTION

Insulator and semiconductors are characterized by a
non-vanishing fundamental gap [1], defined in terms of
the ground state energies of a system of fixed ions as the
number of electrons is varied:

∆Ne
= E0(Ne + 1) + E0(Ne − 1)− 2E0(Ne) (1)

where E0(Ne) is the ground state energy of an Ne elec-
tron system.

Within density functional theory (DFT), it is common
to interpret the eigenvalues of the Kohn-Sham equations
as excitation energies, the gap being the minimum excita-
tion energy. However, the resulting band gap within the
local density approximation (LDA) is typically found too
small [2]. This qualitative failure can be alleviated either
by hybrid functionals or by adding corrections based on
GW many-body perturbation theory, although the pre-
cise value depends on the underlying functional and ap-
proximation scheme involved [1]. In principle, the funda-
mental gap can be calculated from any method for ground
state energies based on the above formula. High pre-
cision methods for correlation energies as, for example,
provided by quantum Monte Carlo (QMC) [3–6] or cou-
pled cluster methods [7, 8] can be used. In this paper,
we propose a new method for accurate calculations of
the fundamental gap within explicitly correlated meth-
ods and demonstrate its use with fixed-node Diffusion
Monte Carlo (DMC) benchmark studies on solid H2, C,
and Si.

Methods based on correlated many-body wave func-
tions are usually applied to finite sized systems, e. g.
limited to supercells containing only few unit cells. QMC
calculations of single particle excitations for adding and
removing electrons [9–12] crucially rely on the imposed
extrapolation law (e.g. finite-size error ∝ 1/L in [12]
opposed to 1/L3 in [11] where L denotes the linear ex-
tension of the supercell). This introduces considerable
uncertainty in the results. Heuristically, single particle
excitations are expected to converge slowly for electronic

systems, inversely proportional to L, due to the interac-
tion of charges across the periodic boundaries [13, 14].
Extrapolations with respect to the size of the supercells
are then essential to obtain reliable values of the gap in
the thermodynamic limit.

Most of the QMC calculations [15–24] have therefore
addressed charge neutral, particle-hole excitations, where
faster convergence with respect to the size of the supercell
is expected. Although the comparison with experiment
is appealing [5], a later, more extended DMC study [25]
of simple semiconductor materials with larger supercells
observed a 1/L dependence of the gap on the size of the
supercell for both, charged single particle and charge-
neutral particle-hole excitations. In addition, fixed-node
energy differences are not constrained to be upper bounds
for particle-hole excitations [26] since orthogonality to
the ground state cannot be strictly guaranteed. Further-
more, all QMC calculations so far have addressed exci-
tations at selected symmetry points contained inside the
supercell of the simulation. The fundamental gap was
then estimated indirectly by introducing a “scissor oper-
ator” [27] which assumes a rigid shift of the underlying
DFT band structure over the whole Brillouin zone.

In this paper, we show that twisted boundary condi-
tions within the grand canonical ensemble can be used
to determine the fundamental gap from QMC without
relying on the “scissor” approximation. We prove that
to leading order, finite size effects due to two-body corre-
lations are of order 1/L, and are related to the dielectric
constant of the material. Such effects can be understood
and corrected for by using the long wavelength properties
of the electronic structure factor. For that, we extend the
approach described in Ref. [28, 29] which discusses the
correction of finite size effects on the ground state energy
based on information contained in the static correlation
functions of the finite system. Using the static structure
factor from simulation, it is possible to obtain estimates
of finite size corrections for the band gap, and its asymp-
totic functional form without the need for explicit studies
at different sizes or referring to DFT or to experimental
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information external to the QMC calculation.
The paper is organized as follows. In section II, we de-

scribe the main ideas behind our new band gap method
based on the grand canonical ensemble. In section III, we
derive finite size corrections to energy differences based
on an explicit many-body wavefunction and exact dia-
grammatic relations. In section IV, we describe the com-
putational methods used to calculate the fundamental
gap. In section V, we show results for H2, C, and Si
crystals and compare with available experimental values
of the gap in section VI. Finally in section VII, we sum-
marize general features of the method and outline possi-
ble extensions and applications.

II. GRAND-CANONICAL TWIST AVERAGED
BOUNDARY CONDITION (GCTABC)

In the following, we consider Ne electrons in a perfect
crystal, neglecting both zero point and thermal motion
of the ions. A uniform background charge (depending
on Ne) is added to assure global charge neutrality when
adding or subtracting electrons to a charge neutral sys-
tem. The background charge will introduce a rigid shift
in the density of states. However, the fundamental gap,
Eq. (1), is unaffected, because the background charge
needed when adding an electron cancels against the one
needed when removing an electron. Periodic boundary
conditions of the charge densities are used to eliminate
surface effects.

The energetic cost of adding an electron to the system
at fixed volume, V = L3, defines the chemical potential

µ+
Ne

= E0(Ne + 1)− E0(Ne). (2)

A non-vanishing gap implies a discontinuity in the chem-
ical potential from Eq. (1).

It is convenient to work in the grand-canonical ensem-
ble. There, the chemical potential µ is treated as an inde-
pendent variable and we minimize E0(Ne)−µNe with re-
spect to Ne at zero temperature and fixed volume. Insu-
lators then represent an incompressible electronic state;
for values of µ within the gap, ∂Ne/∂µ = 0.

To reduce finite size effects, we employ twisted bound-
ary conditions on many-body wave function. As an elec-
tron is moved across the supercell, e.g. by moving an
electron a distance equal to the size of the box in the x
direction:

Ψ(r1 + Lxx̂) = eiθxΨ(r1). (3)

the phase of the many-body wavefunction changes by θ.
The ground state energy then depends on the twist an-
gle, E0(Ne, θ). Twist averaging can significantly accel-
erate the convergence to the thermodynamic limit [30].
Within the grand-canonical ensemble [28, 29], the opti-
mal number of electrons N̄e(θ) will depend on θ for given
chemical potential µ. To fix nomenclature, we define the

mean electronic density

ne(µ) = (MθV )−1
∑
θ

N̄e(θ), (4)

and the ground-state energy density

e0(µ) = (MθV )−1
∑
θ

E0(N̄e(θ), θ). (5)

ne is determined by minimizing the free energy density

f =
1

MθV

∑
θ

min
Ne

[E0(Ne, θ)− µNe] , (6)

where the sum is over a uniform grid containing Mθ twist
angles. For any single electron theory the electronic den-
sity ne(µ) and the ground state energy density e0(µ) coin-
cide exactly with the corresponding thermodynamic limit
values for a sufficiently large value of Mθ, e.g. when the
sum over twists becomes an integral over the Brillouin
zone. Size effects remaining after twist averaging are due
to electron-electron correlations.

Figure 1(a) illustrates e0(µ) and ne(µ) for solid molec-
ular hydrogen, computed from HSE functional and from
QMC (see section IV for details). The value of the
band gap can be directly extracted from the width of
the incompressible region. Alternatively, if we eliminate
µ in favor of ne, and plot e0 as a function of ne (as in
Fig. 1(b)), the fundamental gap is obtained by the dis-
continuity of the derivative, according to Eq. (1).

The definition of the fundamental gap can apply to
different symmetry sectors. For a perfect crystal, the to-
tal momentum of the electrons modulo reciprocal lattice
vectors, i.e. the crystal momentum, is conserved. By
requiring the total crystal momentum of the electrons
to be fixed, e.g. using Bloch type orbitals in the Slater-
determinant, the full band structure in the Brillouin zone
can be mapped out. For a spin-independent Hamiltonian,
one can also impose the total spin to determine the fun-
damental gap in each spin sector. In practice, the charge
gap in the spinless sector can be determined by adding
or removing pairs of electrons. The extensions of our
definitions and formulas to this case are straightforward,
e.g. ∆Ne

= [E0(Ne + 2) +E0(Ne − 2)− 2E0(Ne)]/2. We
follow this procedure of spin-neutral excitations in the
remainder of the paper.

III. FINITE SIZE EFFECTS

A. Potential energy

A key quantity in understanding size effects is the
long wavelength behavior of the static structure fac-
tor, SNe

(k) = 〈ρ−kρk〉/Ne where ρk =
∑
j e
ik·rj is the

Fourier transform of the instantaneous electron density.
The structure factor for a homogeneous system obeys the
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FIG. 1. GCTABC analyses of the C2/c-24 structure of solid hydrogen at rs = 1.38 (234GPa). (a) the electron density, ne, as
a function of the chemical potential µ obtained from HSE functional in comparison to QMC, the inset illustrates the energy
density, e0, as a function of µ from HSE functional. (b) energy density, e0, as a function of ne using QMC, the inset shows the
derivative discontinuity where δne is the change of the electronic density with respect to the insulating state. Size corrections
as discussed in the text are included.

bound [1, 18]

SNe
(k) ≤ h̄k2

2mωp

(
1− 1

εk

)1/2

, (7)

where ωp = 4πh̄2e2ne/m is the plasma frequency and εk
the static dielectric constant for wavevector k (To sim-
plify the notations, we will suppress the dependence on
the wave vector in the following). This inequality is de-
rived by applying the plasmon-pole approximation to the
sum rules of the dynamic structure factor S(k, ω). It im-
plies that the structure factor must vanish quadratically
as k → 0 [31]. Equality will be obtained if S(k, ω) reduces
to a single delta function at small k. The 1/Ne finite-size
corrections of the energy per electron is a direct conse-
quence of this behavior of SNe

(k) [28]. However, these
leading order corrections are not sufficient for excitation
energies, since the energy gap is of the same order as
finite size corrections to the total energy.

As we will show below, the key to understanding size
effects of energy differences is encoded in the change of
SNe(k) as electrons are added or removed. In particular,
the limiting behavior of SNe±1(k) as k → 0 will provide
the dominant finite size correction.

For concreteness, we will assume a Slater-Jastrow form
for the ground state wave function Ψ0 ∝ D exp[−U ]. The
determinant, D, is built out of Bloch orbitals, φqn(r)
with q inside the first Brillouin zone, n is the band in-
dex, and U is a general, symmetric n-body correlation
factor [32]. For simplicity we assume it is two body:
U =

∑
i<j u(ri, rj). Let us consider the action of eik·rj

on a single particle orbital φqn(rj) in the Slater determi-

nant of the ground state. In the limit of small k, this can
be approximately written as φq+kn(rj). Expanding the

determinant in terms of its cofactors δD
δφqn(rj)

and making

the excitation we have

ρkΨ0 ∝
∑
j

∑
q,n

δD

δφqn(rj)
eik·rjφqn(rj)e

−U . (8)

and the resulting determinant after summation over j
vanishes for small k if the Bloch orbital (q + k, n) is al-
ready occupied in the ground state determinant. Consid-
ering Ne ± 1 electron wave functions, Ψ0(Ne ± 1;±q,m)
where Ne corresponds to the insulating state with fully
occupied bands in the Slater determinant, and qm de-
notes the additional particle/ hole orbital, we get

lim
k→0

ρkΨ0(Ne ± 1;q,m) ∼ ±Ψ0(Ne ± 1;q + k,m) (9)

for k 6= 0 where different sign for particle or hole ex-
citations on the r.h.s. is chosen to match the most
common sign convention, e.g. of Ref. [33]. The limit
k → 0 is discontinuous since ρk=0Ψ0(Ne ± 1;q,m) ≡
(Ne ± 1)Ψ0(Ne ± 1;q,m).

Kohn [33, 34] has pointed out that in the insulating
state the matrix elements

lim
q′→q

〈Ψ0(Ne ± 1;q,m)|ρq−q′ |Ψ0(Ne ± 1;q′,m)〉 = ±1

ε

(10)

approach the inverse dielectric constant, ε−1, up to a sign.
Substituting Eq. (9) into Eq. (10), suggests the follow-

ing finite size behavior of the static structure factor of
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insulators

lim
k→0

S±k = α± +O(k2), (11)

S±k ≡ (Ne ± 1)SNe±1(k)−NeSNe
(k), (12)

where α± is proportional to ε−1. However, α± in general
differs from ε−1 unless Eq. (9) is an exact equality.

Figure 2 shows the behavior of S±k for carbon and sil-
icon crystals. Note that these functions extrapolate to a
nonzero value as k → 0.

The long wavelength behavior of the structure factor,
Eq. (11), then gives rise to size corrections to excitation
energies through the potential energy term∫ d3k

(2π)3
− 1

V

∑
k6=0

 vk
2
S±k ' α±

|vM |
2

, (13)

where we have defined the Madelung constant as

vM =

 1

V

∑
k6=0

−
∫

d3k

(2π)3

 vk ∼ L−1 ∼ N−1/3e . (14)

For the Coulomb potential, vM is proportional to L−1,
the inverse linear extension of the simulation cell. The
negative proportionality constant depends on the bound-
ary conditions, e.g. cell geometry, and can be calculated
by the Ewald image technique [35].

B. Kinetic energy

Following Ref. [29], we now discuss the kinetic energy
contribution h̄2[∇U ]2/2m which arises from electron cor-
relation. For a two-body Jastrow U =

∑
k ukρkρ−k/2V ,

and we are only interested in the long-wavelength limit,
k → 0, of the electron-electron correlation, with wave
vectors smaller than the reciprocal lattice vectors of the
crystal, G. Isolating the singular contributions involving
ρk=0 ≡ Ne in the spirit of the rotating (random) phase
approximation (RPA) we have〈

[∇U ]
2
〉

= − 1

V 2

∑
k6=0,k′ 6=0

(k · k′)ukuk′〈ρk+k′ρ−kρ−k′〉

' 1

V 2

∑
k 6=0

Nek
2u2k〈ρkρ−k〉. (15)

Therefore, for systems with explicit long-range correla-
tions uk ∼ k−2, the kinetic energy will contribute also to
the leading order size corrections with∫ d3k

(2π)3
− 1

V

∑
k6=0

 neh̄2k2u2k
2m

S±k ' α±c
|vM |

2
, (16)

where c = limk→0 neh̄
2k2u2k/(mvk) is approximately

given by the ratio of the 1/Ne finite-size corrections of
the kinetic to potential energy of the ground state en-
ergy per particle due to two-body correlations [29].

C. Total gap corrections from Coulomb singularity

Up to now, we have shown how the long range behavior
of the structure factor and Jastrow factor can give rise
to a 1/L correction to the excitation gap with a pro-
portionality factor determined by the structure factor
changes. In the following, we will further demonstrate
that, given that the trial wave functions coincide with
the exact ground state wave function for Ne and Ne ± 1
electrons, this proportionality factor is indeed given by
the dielectric constant

∆∞ −∆V =
|vM |
ε

+O
(

1

V

)
, (17)

as phenomenologically assumed in previous work [14, 25].
We prove this by an independent argument based

on commutation relations. Let us denote the exact
insulating ground state of the Ne electron system as
|ΨNe

0 〉, its energy as ENe
0 , and the exact excited state

of the Ne ± 1 electron system as |ΨNe±1
k 〉 with energy

ENe±1
k ; k indicates that the additional/subtracted elec-

tron adds/subtracts the crystal momentum k. We have

ENe+1
k − ENe

0 =
〈ΨNe+1

k |
[
H, a†k

]
|ΨNe

0 〉
〈ΨNe+1

k |a†k|ΨNe
0 〉

(18)

for particle and

ENe−1
k − ENe

0 =
〈ΨNe−1

k | [H, ak] |ΨNe
0 〉

〈ΨNe−1
k |ak|ΨNe

0 〉
(19)

for hole excitations. In second quantization, the Hamil-
tonian, H = T + Vee, is given by

T =
∑
k

[
h̄k2

2m
a†kak +

∑
G

u(G)a†k+Gak

]
, (20)

Vee =
1

2V

∑
q6=0

vq [ρqρ−q −Ne] , (21)

where ak is the annihilation operator for plane wave
states of wave vector k, u(G) the periodic crystal poten-
tial, and vq is the Coulomb potential between electrons,

ρq =
∑

k a
†
k+qak, and Ne =

∑
k a
†
kak.

The commutator involving the single-particle energy
term is [

T, a†k

]
=
h̄2k2

2m
a†k +

∑
G

u(G)a†G+k. (22)

There are corresponding terms for hole excitations, but
none of these terms involve singular contributions respon-
sible for anomalous size effects, so that these terms do not
contribute at leading order. However,[

Vee, a
†
k

]
=

1

V

∑
q6=0

vq

[
ρqa
†
k−q − 1

]
(23)
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and

[Vee, ak] = − 1

V

∑
q 6=0

vqρqak+q (24)

involve terms approaching the Coulomb singularity, vq ∼
q−2 →∞ for q → 0.

From these terms we get the leading order size correc-
tions by noting that

lim
k,q→0

〈ΨNe+1
k |ρqa†k−q|ΨNe

0 〉
〈ΨNe+1

k |a†k|ΨNe
0 〉

=
1

2

[
1

ε
+ 1

]
(25)

and

lim
k,q→0

〈ΨNe−1
k |ρqak+q|ΨNe

0 〉
〈ΨNe−1

k |ak|ΨNe
0 〉

= −1

2

[
1 +

1

ε

]
. (26)

Both relations can be obtained [36] by extending Kohn’s
diagrammatic approach [33] (see supplementaryry mate-
rial [37]). Integrating around the vq singularity for small
q in Eq. (23), we obtain the leading order finite size cor-
rections. As before, this involves the Madelung constant,

Eq (14). In the particle channel we get |vM |2

(
1
ε − 1

)
and

in the hole channel, |vM |2

(
1
ε + 1

)
. The corrections inde-

pendent of ε correspond to the change in the background
charge which cancel for the fundamental gap and we ob-
tain Eq. (17).

Previous, heuristic approaches [25] have suggested that
one can use experimental or DFT values of the dielectric
constant for finite-size extrapolation. Our approach fur-
ther suggests that this value can be determined from the
QMC structure factor extrapolated to zero wave vector

2

ε
≡ (1 + c) lim

Ne→∞
lim
k→0

[
S+
k + S−k

]
, (27)

with the singular behavior of the Jastrow factor deter-
mining c. We emphasize that the order of the limits
involved above is crucial.

An independent estimate is based on the inequality of
Eq. (7). We can bound and estimate the value of dielec-
tric constant using the structure factor of the insulating
ground state. By extrapolating 1− Γ2

k vs. k to k = 0 we
obtain an upper bound to the inverse dielectric constant,
where Γk ≡ 2mωpSNe

(k)/h̄k2. This involves only the ex-
tensive part of the density-density correlations, thus, it
is less sensitive to noise and has much smaller statistical
uncertainty. In Fig. 3, we show that for C and Si, this
inequality gives accurate values of the dielectric constant.

D. Twist correction of two particle correlations

The above size effects explain the leading order 1/L
correction to the single particle gap. However, as we will
see in our results, the asymptotic region, where this law
can be reliably applied, may still be difficult to reach
for currently used system sizes and next-to-leading or-
der effects are important. Here, we show that an impor-
tant part can be corrected for, by further restoring the

full symmetry properties in the contribution of the direct
Coulomb interaction.

For inhomogeneous systems, it is convenient to sepa-
rate the mean density from its fluctuating components in
the static structure factor [29], i.e.

SNe
(k) =

1

Ne
〈ρk〉〈ρ−k〉+ δSNe(k) (28)

δSNe
(k) =

1

Ne
〈(ρk − 〈ρk〉) (ρ−k − 〈ρ−k〉)〉 (29)

For crystals with periodic density distributions, the
Fourier components of the mean density, 〈ρk〉, only con-
tribute for reciprocal lattice vectors, k ∈ G. The long
wavelength behavior of the structure factor is entirely
due to the fluctuating part δSNe

(k), which therefore con-
tains the leading order size effects [29]. However, the
mean single particle density, 〈ρ(r)〉 = V −1

∑
k〈ρk〉eik·r,

of the finite system may significantly differ from the infi-
nite one, particularly in cases where the supercell is not
compatible with the full symmetry group of the crystal.

Averaging over twisted boundary conditions is de-
signed to restore the symmetry of the crystal and thus
accelerate the convergence of single particle densities to
the thermodynamic limit. In the following, we denote
the twist averaged expectation value by

O ≡ 1

Mθ

∑
θ

〈O〉Ne,θ (30)

where we have explicitly indicated the Ne and θ depen-
dence on the expectation value on the r.h.s. For any sin-
gle particle theory, ρ(r) approaches its thermodynamic
limit for calculations at fixed Ne by averaging over a
dense grid of twist angles (Mθ → ∞). Within many-
body calculations, twist-averaging [30] takes over large
part of this property to any observable linear in the den-
sity. Here, we extend this approach to correct also the
quadratic expression entering the two-body contributions
of the total energy.

For the potential energy, this correction to the twist
converged QMC calculation is

δV sNe
=

1

2V

∑
k

vkδC(k)

δC(k) = ρk ρ−k − ρkρ−k. (31)

For the ground state energies, this correction provides
only a small improvement over our previous correc-
tion [28, 29].

For the gap, many terms entering Eq. (31) cancel and
the expression can be simplified. Let us consider the
case of adding/removing one electron at twist φ to the
insulating ground state, denoting Π±k the difference of
the respective densities

Π±k ≡ 〈ρk〉Ne±1,φ − 〈ρk〉Ne,φ (32)

In the thermodynamic limit, the density of the ground
state system with Ne electrons coincides with the twist
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averaged ground state density ρk, whereas we obtain ρk+
Π±k for the density of theNe±1 electron system. Inserting
into Eq. (31), we obtain the correction for the difference
between the two states

δV sNe±1,φ − δV sNe
=

1

V

∑
k∈G

vkRe
[
(ρk − 〈ρk〉Ne,φ) Π±−k

]
(33)

where only wave vectors of the reciprocal crystal lattice
contribute to the sum. The corresponding finite size cor-
rection for the gap, denoted by δ∆s in the following, is
order 1/Ne or smaller, mainly determined by the changes
of the ground state densities at the first Bragg-peaks due
to twist averaging.

Equation (33) can be understood quite intuitively: it
corrects the direct Coulomb interaction between the elec-
tron/hole in the excited state (Π±) with the unexcited
electrons. The density of those electrons is expected to
change by ρk − 〈ρk〉Ne,φ in the thermodynamic limit.

Converged ground state densities are naturally calcu-
lated within GCTABC. It is straightforward to apply the
correction Eq. (33) to all excitation energies. Alterna-
tively, the corresponding DFT densities may be used.
This removes the stochastic error at the cost of intro-
ducing a small bias in the next-to-leading order size cor-
rection.

IV. COMPUTATIONAL METHODS

We have performed electronic QMC calculations on
three insulating solids: molecular hydrogen at high pres-
sure, and carbon and silicon in the diamond structure at
zero pressure. Since we are interested in the spin-neutral
charge gap, we used an equal number of spin up and
spin down electrons. We used a Slater-Jastrow trial wave
function with backflow corrections [38, 39]. The Jastrow
and backflow functions were fully optimized within Vari-
ational Monte Carlo including the long-range (reciprocal
lattice) contributions. The orbitals in the Slater determi-
nant were taken from DFT calculations using Quantum
Espresso [40, 41]. The carbon and silicon orbitals were
generated using the LDA functional, whereas the hydro-
gen orbitals were generated using the PBE functional,
which has been shown to provide a good trial QMC wave
function [42, 43].

Molecular hydrogen was placed in the C2/c-24 struc-
ture [44] at two different densities (rs = 1.38 and rs =
1.34), roughly corresponding to pressures of 234GPa and
285 GPa, respectively. Energies and structure factors
were obtained from Reptation Quantum Monte Carlo
calculations using the BOPIMC code [45]. For carbon
and silicon, Diffusion Monte Carlo calculations have been
performed with the QMCPACK code [46] at the ex-
perimentally measured zero pressure valence densities,
rs = 1.318 and rs = 2.005, respectively. The crys-
tal structures were optimized by DFT using the vdW-
DF1 functional. For hydrogen, the QMC calculations

have been done with the bare Coulomb interaction. The
PAW pseudo-potential has been used for the DFT results
shown in Fig. 1. For carbon and silicon, psuedopoten-
tials were used to remove the core electrons: carbon ions
modeled by the Burkatzki-Filippi-Dolg (BFD) pseudo-
potential [47], and silicon ions by the Trail-Needs (TN)
pseudo-potential [48]. These are considered good pseudo-
potentials for correlated calculations, but their use within
DFT calculations produces slightly different results from
the literature even with the same functional. For hydro-
gen, we used a supercell with 2× 2× 1 primitive cells so
that the supercell is nearly cubic and contained 96 pro-
tons. For carbon, we used two system sizes: the cubic cell
containing 8 atoms and a 2 × 2 × 2 supercell containing
64 atoms. For silicon, in addition to these systems, we
used a 3× 3× 3 supercell containing 216 atoms. For hy-
drogen, the twist convergence has been achieved using a
8× 8× 8 twist grid. For C and Si, the twist grid density
decreases with increasing system size. The supplemen-
tary material [37] contains the QMC calculated energies
and variances of the insulating ground states of the vari-
ous systems obtained after twist averaging and two-body
finite size corrections.

V. RESULTS

For any single-particle theory, such as Kohn-Sham
DFT, the densities and energies, ne(µ) and e0(µ), are
obtained by occupying all single particle states below
the chemical potential µ. By construction, the gap, as
determined from the incompressible region of ne(µ) or
from the discontinuity in the derivative of de0/dne (see
Fig.1), then coincides with the one obtained from the
band structure.

The LDA band gaps of carbon and silicon in the dia-
mond structure are indirect and lie along the ΓX direc-
tion where Γ is the origin of the Brillouin zone and X the
Brillouin zone boundary in the (100) direction. By look-
ing directly at the HOMO and LUMO states with LDA,
it is found that the carbon gap is 3.89 eV and the silicon
gap is 0.34 eV. The bands immediately above and be-
low the gap can be fit to a quadratic form which implies
e0(µ) = µ±ne(µ) + b±ne(µ)5/3. Therefore, the derivative

de0/dne = µ± + 5b±

3 n
2/3
e has a discontinuity at ne = 0

and behaves as n
2/3
e above and below the gap. Apply-

ing our GCTABC procedure to a single-particle theory,
all states with energies below the chemical potential are
occupied. Varying the chemical potential thus scans the
underlying density of states. The band gap is then deter-
mined by locating the band edges, µ±, disregarding the
location in the Brillouin zone [49]. Figure 5 illustrates
the density of states obtained from GCTABC giving an
LDA gap of 3.95 eV for the carbon gap and 0.38 eV for
the silicon gap. The small differences (∼ 0.05 eV) from
the values obtained before are due to the finite resolution
of the twist grid, and can be controlled by using denser
grids.
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FIG. 2. Change in the static structure factor as an electron (upper curves) or a hole (lower curves) is added to the insulating
system with N atoms. The lines are fits to the data points. The horizontal lines show the expected k → 0 limit based on the
experimental dielectric constants. We have used c = 0.40 for C and c = 0.57 for Si.
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FIG. 3. Upper bound to the inverse dielectric constant eq. (7), where Γk ≡ 2mωpSNe (k)

h̄k2 . Lines are fits to the low-k data. The
horizontal lines mark experimental inverse dielectric constants.

As can be seen in the same figure, the effective band
edge densities of states from GCTABC-DMC have a sim-
ilar functional form, but with a larger gap than the DFT
ones. The QMC computed gaps for the different sizes
of the supercell are summarized in table I. The results
from different supercells clearly show the important bias
on gap introduced by the finite size of the supercell. In
Figure 4, we show the bare gap, ∆N , the Madelung-
corrected one, ∆N + |vM |/ε, and our best correction,
∆∞ = ∆N + |vM |/ε + δ∆s, for both systems against
the linear size of the supercell, where N is the num-
ber of atoms in the supercell and ε is the experimental
value of the dielectric constant. We see that the next-to-
leading-order corrections are comparable to the leading-

order one, in particular for the 8-atom supercell of Si,
whereas they rapidly decay for the larger sizes.

The finite size corrected values, ∆∞, of all different
sizes C and Si supercells agree with each other within
the statistical uncertainty, yielding the DMC-SJ values
∆∞ = 6.8(1) and ∆∞ = 1.8(1) for the C and Si gap, re-
spectively. We further note, that these values also agree
with a numerical N−1/3 extrapolation of the gap values
corrected by δ∆s. For any numerical N−1/3 extrapola-
tion, it is very important to reduce any bias due to higher
order corrections as much as possible, since the outcome
of a fit is sensitive to the smallest system sizes since they
have the smallest statistical uncertainty. For Si, a N−1/3

extrapolation of the bare ∆N values yields an overesti-
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FIG. 4. Fundamental gap before and after finite-size correc-
tions. ∆N is the DMC gap from a simulation with N atoms
in the supercell without any finite-size correction, vM/ε is
the leading-order Madelung correction using the experimental
value of ε−1, δ∆N

s is the next-to-leading-order density correc-
tion, which is related to the static part of the structure factor.
The line is a fit to ∆N + δ∆N

s .

mation of 0.3 eV compared to ∆∞.
Since our finite-size corrected gaps show size-

convergence for the smallest system size, it is now feasible
to address the systematic error due to the fixed node ap-
proximation. In order to reduce this bias we have added
backflow (BF) correlations in the Slater orbitals. Our
backflow correlations lower the SJ gap by 0.1 eV for both,
C and Si. Previous BF calculations [25] on Si have re-
ported a 0.2 eV lowering compared to SJ. The difference
might be due to a different functional form or optimiza-
tion procedure. A systematic study on the bias of the
fixed-node approximation such as done with more gen-
eral backflow correlations [50, 51] or multi-determinant
trial wave functions [52], possible for small supercells,
could be done in the future.

TABLE I. Energy gaps obtained from GCTAB QMC in eV.
The bare gap, ∆N , was calculated from Eq. (1) for a finite su-
percell containing N atoms. The leading-order finite-size cor-
rections are given by the screened Madelung constants |vM |/ε,
the next-to-leading order by the twist correction of two parti-
cle density correlations, δ∆s. We used the experimental value
of ε for C and Si (5.7 and 11.7, respectively) and the value
18.8 for H2 extracted from S(k). Finite size corrections were
applied also to the band edges, µ±. The estimate of the gap in
the thermodynamic limit is ∆∞ = ∆Ne + |vM |/ε+δ∆s. From
our LDA analysis, we estimate a systematic bias of ∼ 0.1 eV
from the finite twist grid. This bias is larger than the sta-
tistical error. SJ indicates Slater-Jastrow trial wave function,
while BF indicates backflow. The lattice constants of carbon
and silicon are 3.567 Å and 5.43 Å, respectively.

rs N ∆N |vM |/ε δ∆s µ−∞ µ+
∞ ∆∞

H2 (BF) 1.38 96 3.3(1) 0.40 0.020 6.9(1) 10.7(1) 3.8(1)
1.34 96 2.4(1) 0.20 0.018 8.6(1) 11.2(1) 2.6(1)

C (BF) 1.318 8 3.9(1) 2.01 0.69 11.5(1) 18.1(1) 6.6(1)
C (SJ) 1.318 8 4.0(1) 2.01 0.69 11.5(1) 18.2(1) 6.7(1)

64 5.8(1) 1.00 0.02 11.9(1) 18.7(1) 6.8(1)
Si (BF) 2.005 8 0.6(1) 0.64 0.55 5.2(1) 6.9(1) 1.7(1)
Si (SJ) 2.005 8 0.6(1) 0.64 0.58 5.2(1) 7.0(1) 1.9(1)

64 1.4(1) 0.32 0.08 5.5(1) 7.3(1) 1.8(1)
216 1.6(1) 0.21 0.01 5.6(1) 7.4(1) 1.8(1)

So far, in our analysis of C and Si, we have imposed
the experimentally known dielectric constant in the lead-
ing order Madelung correction. As described in Sec. III,
there is no need for any external knowledge to perform
the size extrapolation as the value of the Madelung cor-
rection can be obtained from the behavior of the static
structure factor, calculable within the same QMC run,
see Figs 2 and 3. However, since the extrapolation
involved introduces an additional uncertainty, we have
preferred to use the experimental values to benchmark
our theory and better distinguish leading from next-to-
leading order size effects.

Using the dielectric bound eq. (7) on the ground-state
structure factor to determine ε, we get ε0 = 6.2±0.4 for C
and ε0 = 10.3±1.3 for Si, which are compatible with the
experimental values of 5.7 and 11.7. The corresponding
leading-order finite-size corrections on the gap of the 64-
atom system are then 0.92±0.06 eV for C and 0.36±0.14
eV for Si using the ab initio ε−1, as opposed to 1.00 eV
for C and 0.32 eV for Si based on the experimental values
of ε−1.

As shown in Fig. 2, the asymptotic values of the finite
sized structure factors, S±k , are affected by a much larger
uncertainty, introducing larger systematic bias when used
for ab-initio size corrections. Still, already the extrapo-
lation to a non-zero value fixes the leading order size
corrections to decay as 1/L. This information alone can
be crucial as calculations for only two different supercell
sizes will be sufficient to determine size effects, whereas
more supercell sizes would be needed if the asymptotic
form was not known.

We have also computed the band gap of solid hydro-



9

11 12 13 14 15 16 17 18 19
µ (eV)

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

dn
e
/d
µ

(1
/e

V
/b

oh
r3 )

DFT
QMC

(a) carbon

5.5 6.0 6.5 7.0 7.5
µ (eV)

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

dn
e
/d
µ

(1
/e

V
/b

oh
r3 )

DFT
QMC

(a) silicon

FIG. 5. Density of states for carbon and silicon near the band edge. Each plot shows the derivative of the mean electron
density with respect to the chemical potential. This is the electronic density of states (DOS) in DFT, so the gap appears as
a depleted region. The calculated DOS is only valid near the band edge because only the two bands closest to the gap are
considered within DFT and QMC. The DFT bands (done in a primitive cell) have been folded into the Brillouin zone (BZ) of
the 64-atom supercell to allow comparison with QMC.

gen using GCTABC in BF-RQMC calculations for one
of the possible molecular structures predicted for phase
III: C2/c-24 at rs = 1.38 and rs = 1.34 (roughly corre-
sponding to pressures of 234 and 285 GPa respectively).
The results, in table I, show that the gap and size effects
decrease with increasing pressure. For these calculations,
we use calculations for one supercell and use its structure
factor to estimate the dielectric constant. From Fig. 1,
we see that HSE DFT slightly underestimates the gap,
however the deviations from the plateau on both sides
are quite similar.

VI. COMPARISON WITH EXPERIMENT

Our best values for the fundamental electronic gap
(BF-DMC) significantly overestimate the experimentally
measured values for C and Si by 1.1 and 0.5 eV, respec-
tively as shown in Table II. There are two main sources
of systematic errors which need to be taken into account:
the use of pseudo-potentials and the neglect of electron-
phonon coupling.

The QMC values for C and Si presented above are
based on pseudo-potentials to replace the core electrons
of the atoms. Pseudo-potentials are usually designed for
accurate prediction of static structural quantities. Exci-
tation spectra, in particular the single particle excitation
gap, may be less well described. This has been found in
many-body perturbation theory calculations within the
GW framework where all-electron calculations have been
shown to lower the gap of C and Si by ∼ −0.3 eV [53, 54]
with respect to pseudo-potentials calculations. Although
the actual pseudo-potentials of our QMC simulations dif-
fer from those used in the GW calculations, we expect

that our QMC values will be shifted by a similar amount;
we can roughly transfer the all-electron correction of GW
to our QMC results.

For lighter atoms, electron-phonon coupling leads to a
further reduction of the gap values, even at zero temper-
ature, due to the presence of zero point motion of the
ions in the crystal. For C, GW predicts a significant low-
ering of the gap by −0.6 eV [55], whereas a smaller shift
between −60 meV [56] and −0.1 eV [57] is expected from
DFT for Si. The effect of thermal expansion is to lower
the gap by about 0.01 eV at room temperature for both
carbon [58, 59] and silicon [60, 61], beyond the resolution
of present calculations.

Considering both, the bias due to the pseudo-potential
approximation and the neglect of electron-phonon cou-
pling, our BF-DMC calculations for C and Si overesti-
mate the gap by ∼ 0.1−0.2 eV (see table II), larger than
our statistical uncertainty. This remaining offset to ex-
periment may either be due to residual bias of the fixed-
node approximation, or due to effects in pseudo-potential
and e-ph coupling beyond our simple estimations based
on GW and DFT. They could be addressed by more ac-
curate calculations in the future.

For hydrogen, we do not compare to experiment since
electron-phonon coupling is expected to be very large,
and the experimental results are not precise. If we do
not make size corrections, our results are comparable to
the Slater-Jastrow DMC calculations of Ref. [27] where
the DFT band structure was corrected by a “scissor oper-
ator” based on QMC runs at the Γ point of the supercell.
However, no size effects was observed within the statis-
tical error in Ref. [27], so that their extrapolated results
differ from ours by 0.3−0.8 eV (3.0 and 2.3 eV for 250 and
300 GPa). Comparison to GW values are also not conclu-
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TABLE II. Extrapolated band-gap of Si and C from backflow
DMC calculations, ∆BF compared to the experimental values
(exp). We tabulated two main corrections: the difference be-
tween the gap of an all-electron (AE) and the pseudo-potential
(PP) calculation within GW calculations, and the neglect of
electron-phonon coupling (e-ph).

∆BF AE - PP e-ph exp
C 6.6(2) −0.26 (G0W0) [53] −0.6 (GW ) [55] 5.48 [66]

Si 1.7(1) −0.25 (G0W0)[53] −0.06 (DFT ) [56] 1.17 [66]

sive: whereas Ref. [62] provides smaller values of the gaps
(1.8 and 1.0 eV for 250 and 300 GPa), the results of Ref.
[63] (3.7 and 2.8 eV for 250 and 313 GPa) are close to our
predictions. However, we note that the GW calculations
were done with slightly different crystal structures. In
Ref. [62], the PBE functional was used to optimize the
lattice structure in contrast to the vdW-DF1 functional
of Ref. [63], shown to be the most accurate functional at
this density [64]. The smaller gap can then be seen as a
consequence of a larger bond length as it was shown that
structures optimized with PBE functional have a larger
bond length than the ones with vdW-DF1 [63]. We have
recently completed a more detailed analysis of the band
gap of molecular hydrogen [65] using the method intro-
duced here. This discusses extension to disorder coming
from nuclear quantum and thermal effects.

VII. CONCLUSIONS

We have introduced a method to calculate the fun-
damental gap of insulators and semi-conductors using
QMC. Using grand-canonical twist averaging, the value
of the gap can be determined at any point in the Bril-
louin zone whether the system has a direct or indirect
gap. Although it is possible to map out the whole band
structure, we have focused on the minimal, fundamen-
tal gap in this paper. We have shown that for charged
systems, finite size supercell calculations are necessar-
ily biased by a finite size error decaying as 1/L, where
the prefactor is determined by the absolute value of the
Madelung constant and the inverse dielectric constant.
We have pointed out that the 1/L functional form is en-
coded in the long wavelength behavior of the finite size
structure factor extrapolating to a non-vanishing value at
the origin. Next-to-leading order effects can be corrected
by proper use of twist-averaging in the two-particle part
of the static Coulomb potential.

We have applied this procedure to determine the fun-

damental gap of molecular hydrogen at high pressure and
carbon and silicon in the diamond structure at zero pres-
sure. Our finite-size corrected gap values for carbon and
silicon are larger than the experimental ones. We have
argued that the bias may be due to the pseudo-potential
approximation and the neglect of electron-phonon cou-
pling.

We note that this procedure is not restricted to QMC
calculations, but can be applied within any method which
calculates the many-body wave functions and ground
state energies, e.g. for coupled cluster methods [8]. Our
results for C and Si demonstrate that the bias due to the
finite size supercell can be corrected for, so that precise
values in thermodynamic limit can be obtained for small
supercells without need for numerical extrapolation.

The procedure here has been developed for perfect
crystals but can be generalized to systems with disorder,
either due to thermal or quantum effects. Furthermore,
the procedure provides a starting point to address optical
–i. e. charge neutral – excitations. Although neutral ex-
citations are expected to be less sensitive to finite size ef-
fects, recent calculations [24, 25] have observed the same
slow 1/L decay for the optical gap. Since it is often not
practical to perform calculations for more than two sig-
nificantly different supercell sizes, our method suggests
that the asymptotic behavior of the structure factor pro-
vides the needed insight to whether 1/L or 1/L3 should
be used as functional form for the size extrapolation.
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