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Electronic structure calculations based on density functional theory (DFT) give quantitatively
accurate predictions of properties of most materials containing light elements. For heavy materials,
and in particular for f -electron systems, DFT-based methods can fail both qualitatively and quan-
titatively for two distinct reasons: their failure to describe confinement effects arising from localized
f -electron behavior and their incomplete or approximate treatment of relativity. In addition, differ-
ent methods for incorporating relativistic effects, which give identical results in most light materials,
can give different predictions in heavy elements. In order to develop a quantitative capability for
calculating the properties of these materials, it is essential to separate the predictions of the under-
lying equations from the uncertainty introduced in approximations used in computation. Working
toward that goal, we have developed a code, called dirac-fp, which is based directly on solving
the Dirac-Kohn-Sham equations and uses the full potential linear muffin tin orbital (FP-LMTO)
approach to electronic structure. In order to assess the performance of dirac-fp, we perform cal-
culations on three different FCC materials using different approximate treatments of relativity: the
scalar relativistic (SR) approach commonly used in most solid-state DFT codes, the scalar rela-
tivistic plus spin-orbit coupling corrections (SR+SO) approach which includes spin-orbit coupling
self-consistently using the SR states inside the muffin tins, and the Dirac-Kohn-Sham (Dirac) ap-
proach implemented in dirac-fp. Performing calculations on thorium, in which relativistic effects
should be strong, aluminum, in which relativistic effects should be negligible, and gold, in which
relativistic effects play an intermediate role, we find that the Dirac approach is able to provide the-
oretically consistent results in the electronic structure and ground state properties across all three
materials.

I. INTRODUCTION

Density functional theory1 (DFT) provides a theoret-
ical foundation for the accurate calculation of ground-
state properties of materials. In particular, the Kohn-
Sham methodology,2 combined with the development of
increasingly sophisticated exchange-correlation function-
als,3,4 has enabled quantitative prediction of ground-
state properties for many materials. These developments
have made DFT an essential and useful tool for a wide va-
riety of applications, including the development of quan-
titative equations of state for many materials that allow
for the study of material response under external stimuli.

While DFT methods based on the Schrödinger equa-
tion often work well for materials containing light ele-
ments, the same is not always true for materials con-
taining heavy elements. Two separate issues exist. One
issue is that for many heavy elements, such as those con-
taining f -electrons, confinement physics can play an es-
sential role. These confinement effects are not captured
by standard exchange-correlation functionals. This is not
exclusive to f -electron systems, as confinement effects are
also present, for example, in the late 3d transition metals.
The second issue is that relativistic effects, which become
increasingly relevant in heavy elements, are not fully cap-
tured by methods based on the Schrödinger equation.

The failure of standard methods in describing confine-
ment effects has far-reaching consequences for f -electron
systems. Commonly used exchange-correlation func-

tionals are unable to give quantitative predictions for
most lanthanides and/or actinides, and often fail even
qualitatively. For example, local density approxima-
tions (LDAs) and generalized gradient approximations
(GGAs) are unable to predict the transition from itiner-
ant to localized electron behavior seen in the α-γ tran-
sition in cerium.5–9 Additionally, GGAs used to study
the α, β, γ, δ, δ′, and ε phases of plutonium gener-
ally require some form of orbital correction to the en-
ergy to properly describe the relative phase energies and
volumes.10–12 Furthermore, while these functionals give
reasonable predictions for the light actinides thorium
to neptunium and the ground-states of plutonium and
cerium,13 they do not describe localized electron behav-
ior in the lanthanides past cerium, nor in the actinides
past plutonium.14 Fundamentally, new functionals that
take into account confinement physics are needed. Re-
cently, approachces based on the sub-system functional
scheme have been proposed as a means to incorporate
confinement physics into functionals,15,16 but as of yet
no functional has been fully created and tested.

While better functionals are needed to describe con-
finement physics, this will not address the more fun-
damental issue of properly incorporating relativistic ef-
fects, which can be relevant for any material contain-
ing heavy elements, regardless of whether confinement
physics plays a role. Fundamentally, this issue must
be addressed with a formulation of DFT based on the
Dirac equation. The relativistic formulation of den-
sity functional theory (RDFT) based on the Dirac equa-
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tion has been formulated theoretically,17–24 and various
levels of approximation to the fully relativistic equa-
tions have been introduced in different codes. Ex-
amples include a Dirac-Kohn-Sham implementation in
the full-potential local-orbital minimum-basis (FPLO)
scheme,25,26 a Dirac-Kohn-Sham implementation using
Gaussian-type orbitals for solids,27 and a four-component
relativistic density functional implementation in the Bei-
jing Density Functional (BDF) code.28,29 Additionally,
relativistic effects at the level of the Dirac equation
have been studied in the context of quantum chemical
methods,30–32 including the DIRAC code,33 among oth-
ers.34–41

The difficulty of a complete Dirac-based implemen-
tation is due in part to the fact that the exchange-
correlation functional has a dependence on both the
charge and current density, rather than just the spin-
resolved charge density, and therefore new computational
schemes and current-density functionals are needed. In
conventional DFT codes, relativity is instead incorpo-
rated at the scalar relativistic (SR) level, potentially
with an added spin-orbit coupling correction (SR+SO),
both of which can use exchange-correlation functionals
of the spin density. In principle, a proper RDFT ap-
proach would involve exchange-correlation functionals of
the four-component current density, and it is possible
that such current-density functionals would also need to
address the issue of confinement effects to provide an
accurate methodology for computing ground-state prop-
erties of materials containing f -electrons.

Most of the development of electronic structure meth-
ods for the lanthanides and actinides has focused on
combining DFT with phenomenological models, such
as the Hubbard model,42 to describe electron localiza-
tion. Within this category are the LDA+U method43,44

and DFT combined with dynamical mean field theory
(DFT+DMFT).45–47 Such calculations combine two very
different methodologies without a clear separation be-
tween them and also require parameterization, requir-
ing users to both determine a criteria for choosing the
parameter and then testing the results using different
values of the parameter. Other approaches include
partial summation of electron self-energy diagrams, as
in the GW approximation,48 and the development of
Hartree-Fock+RPA methods for exchange and correla-
tion.49 While these approaches can offer advantages over
standard exchange-correlation functionals, their imple-
mentation and use are typically done using the SR or
SR+SO methods, and not the full Dirac approach. Es-
tablishing the Dirac methodology is therefore a first step
towards the combined use of the Dirac equation with
methods that go beyond the typical LDA and GGA levels
of approximation.

In order to rigorously investigate the importance of rel-
ativistic effects in materials containing heavy elements,
we have developed a code based on the full poten-
tial linear muffin tin orbital (FP-LMTO) approach.50–53

Our code, referred to as dirac-fp (short for Dirac-FP-

LMTO), is based on the RSPt code,51,52 but solves the
Dirac-Kohn-Sham equations throughout the entire com-
putational cell.

The RSPt and dirac-fp codes are frequently used for
the study of solids containing heavy elements under com-
pression. In such applications, the Dirac equation be-
comes increasingly important for several reasons. First,
in high compression the core states of materials may start
to interact. When this occurs, it is critical to use wave-
functions that exhibit the correct energy level splittings
and the correct radial and angular behavior both near
the nuclear centers and away from the nuclear centers so
that hybridization of Dirac states can be properly incor-
porated. In the commonly used SR method, SR semicore
states do not always exhibit the correct energy level split-
tings due to the neglect of spin-orbit coupling, as shown
for thorium and gold in Sec. III. This may not present se-
rious issues near equilibrium where those states are well-
localized and do not interact with each other, but should
be expected to lead to errors when studying materials
under high compression.

Second, in order to study high compression of heavy
materials, it is critical to properly incorporate spin-orbit
coupling to account for energy level splittings that influ-
ence hybridization behavior. In solid-state physics codes,
spin-orbit coupling is most often incorporated using the
SR states, referred to as SR+SO. Although this offers ad-
vantages, the SR+SO treatment does not by itself lead to
the correct r → 0 behavior of certain states, such as the
6p1/2 states that are very important for studying actinide
materials. This point has been studied previously in the
context of the WIEN97 code, where 6p1/2 states solved
using the Dirac equation are added to the SR 6p mani-
fold.54 While this offers advantages over methods that do
not correct the r → 0 behavior of the 6p1/2 states, the
other states are still treated using the SR radial equation
and therefore exhibit other differences with Dirac states.
In addition to this, the angular components of all states,
including the corrected 6p1/2 states, are treated using the
SR angular functions, which are different from the Dirac
angular functions (see Eqs. 18–19 and refs. 50 and 55
for details). The benefit of the Dirac approach is that all
states exhibit the correct Dirac radial behavior, as well
as the correct Dirac angular functions, making it possible
to correctly incorporate spin-orbit coupling everywhere
without the need for additional corrective schemes.

Additional issues arise when treating the spin-orbit in-
teraction differently in different parts of the unit cell.
Among all-electron solid-state codes utilizing muffin tin
based approaches, including RSPt and dirac-fp, it is
most common to treat spin-orbit coupling only inside
muffin tin spheres using a spherical potential, while not
incorporating spin-orbit coupling outside of the muffin
tins.56–59 This treatment is of course an approximation,
often justified by the physical argument that spin-orbit
coupling is strongest near the nuclear centers contained
within the muffin tins, where a spherical potential is suffi-
cient for describing the interactions. In principle, it could
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be possible to incorporate spin-orbit corrections outside
the muffin tins, for example as done in the Amsterdam
Density Functional (ADF)60 and FHI-AIMS codes.61,62

Nevertheless, it is not obvious how to do this in muf-
fin tin-based codes and the contribution of the spin-orbit
term outside the muffin tins is typically neglected.

The neglect of the spin-orbit term in the interstitial is
problematic for the FP-LMTO method when determin-
ing how to choose the muffin tin radii. One option is
to use the fixed-volume-fraction (FF) method, described
in detail in Sec. II B. In the FF method, the muffin tin
radii are changed as the unit-cell volume changes, lead-
ing to a different volume used to treat the spin-orbit term
at different unit-cell volumes. This can be compared to
fixed radius (FR) methods commonly used in FP-LAPW
codes, where the radii are kept fixed as the unit-cell vol-
ume is changed. In the FR case, the spin-orbit integra-
tion volume therefore does not change as the unit-cell
volume is changed. In this study, we present results for
both the FF and FR treatments of the SR+SO method
(the SR and Dirac cases are not effected by the choice
of FF or FR, so long as a full basis is used, as shown in
Sec. III A).

Although we present results for both FF and FR for
SR+SO, it is critical to point out that we need to be able
to use the FF method to study the compression of solids
within the FP-LMTO method. There are two reasons
for this. First, the most accurate basis in FP-LMTO lies
inside the muffin tins, where solutions are atomic-like or-
bitals, so that it is preferred to use these orbitals through-
out as much of the unit cell volume as possible. Although
the basis in the interstitial can be quite accurate, some-
times more work is required to ensure its accuracy and it
is not always straight-forward how to choose “tail ener-
gies” used to form the basis in the interstitial.52,53 Sec-
ond, when studying compression, spin-orbit interactions
become increasingly important at smaller unit cell vol-
umes. In these cases, using the FR method forces us to
throw away large amounts of the spin-orbit interaction
because the FR radius must fit within the smallest unit-
cell volume studied, thereby placing an upper-bound on
the amount of spin-orbit coupling that can be included
in calculations. In contrast, the FF method incorporates
as much spin-orbit interaction as possible at each unit
cell volume, but this also has consequences for the total
energy, which contains a changing amount of SO cou-
pling at each volume. Although both of these issues are
important, it is not possible to address both issues simu-
laneously using muffin tin approaches that neglect spin-
orbit effects in the interstitial region. Nevertheless, both
of these issues are addressed in the Dirac method, where
spin-orbit coupling is included in both the muffin tins
and the interstitial, and where the full potential, not just
a spherically symmetric potential, is used to incorporate
spin-orbit contributions using the Dirac radial and an-
gular functions in the construction of matrix elements of
the Hamiltonian.

Details on the formulation of the Dirac approach we

take and the approximations made therein, as well as
how this compares to the SR and SR+SO formulations,
are described in Sec. II. Importantly, the SR and SR+SO
methods also solve the Dirac equation for the core states,
but use the SR or SR+SO approximations for the so-
called valence states, as detailed in the following sec-
tions. In Sec. III we explore the application of the SR,
SR+SO, and Dirac methods to three FCC systems: tho-
rium, where relativistic effects should be strong; alu-
minum, where relativistic effects should be small or neg-
ligible; and gold, where relativistic effects should play an
intermediate role. Although relativity is accounted for in
dirac-fp directly through the use of the Dirac equation,
we do not address the issue of the role of confinement
physics in the exchange-correlation functional, since as
of yet no such functional exists. We therefore explore
the use of the Perdew-Wang LDA63 (PW), the GGA of
Perdew, Burke, and Ernzerhof64 (PBE), and the sub-
system functional of Armiento and Mattsson65(AM05).
Although none of these functionals address the issue of
confinement physics, they provide a common ground for
evaluating the results of the Dirac approach against the
SR and SR+SO approaches.

II. THEORETICAL BACKGROUND

A. Relativistic Density Functional Theory

1. Dirac-Kohn-Sham Equations

A proper treatment of relativity in DFT calcula-
tions must start from the Dirac equation. The formal
foundations of such a treatment have been laid out in
RDFT.17–19 There are many summaries of RDFT20–24

and we take as a starting point the primary result: a
set of single-particle Dirac-like equations known as the
Dirac-Kohn-Sham equations,

(
cααα ·

(
p− eAeff

c

)
+1veff(r)+βmc2

)
ψn(r) = εnψn(r).

(1)
Here,

veff(r) = −e
(
A0

ext(r) +

∫
d3r′

J0(r′)

|r− r′|
+
δExc[Jµ]

δJ0(r)

)
(2)

and

eAeff(r) = −e
(
Aext(r) +

∫
d3r′

JJJ(r′)

|r− r′|
+
δExc[Jµ]

δJJJ(r)

)
(3)

for all negative and positive energy orbitals. The ma-
trices in Eq. 1 are defined as

αk =

(
0 σk
σk 0

)
, β =

(
I 0
0 −I

)
, I =

(
1 0
0 1

)
, 1 =

(
I 0
0 I

)
,

(4)
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where σk are the Pauli matrices.55 The Dirac 4-
component spinors ψn can be represented as

ψn =

ψ1,n

ψ2,n

ψ3,n

ψ4,n

 =

(
ψA,n
ψB,n

)
. (5)

Throughout, we define e to be a negative value, follow-
ing the notation in refs. 20 and 55,

e = −|e|. (6)

The conserved current Jµ = (J0,JJJ) is analogous to the
density in non-relativistic DFT and is thus the conserved
current of the real system that can be calculated from the
spinor solutions to the relativistic Kohn-Sham equations,

Jµ = (J0,JJJ) = −e
∑
n

(ψ†nψn, ψ
†
nαααψn). (7)

The energy computed includes the rest mass energy, so
that the energy available for bonding and kinetic energy
is εn −mc2.

The vacuum expectation value of the current operator
is non-zero. Pairs of electron-positrons can be sponta-
neously created in vacuum, often referred to as the vac-
uum polarization. If the vacuum polarization is neglected
the current becomes

Jµ = −e
∑

−mc2<εn<εF

(ψ†nψn, ψ
†
nαααψn), (8)

where εF is the Fermi energy.

2. Transition from current functionals to density
functionals

In the non-relativistic formulation of DFT, the cur-
rents JJJ that couple to the effective vector potential Aeff

are not used. In order to use the density functionals
developed for non-relativistic DFT, we can use the spin
density,

S = −
∑

mc2<εn<εF

ψ†nβΣΣΣψn, (9)

where

Σk =

(
σk 0
0 σk

)
. (10)

For time-independent problems, it is possible to use
the Gordon decomposition66 to write the current density
as

JJJ = I + µB∇× S, (11)

where

I =
e

2mc

∑
mc2<εn<εF

(
ψ†nβ

[(
p− eAeff

c

)
ψn

]
+ c.c.

)
.

(12)
One approximation is to neglect the orbital current I

and use only the spin-density current. In this case, the
eααα · Aeff term of Eq. 1 can be simplified, so that the
Dirac-Kohn-Sham equations become

(
cααα · p + µBβΣΣΣ ·Beff + 1veff(r) + βmc2

)
ψn(r) = εnψn(r)

(13)
where B = ∇×A and µB is the Bohr magneton. The

term involving Beff is

µBBeff(r) =

(
µBBext(r) +

∫
d3r′

M(r′)

|r− r′|
+
δExc[J0,M]

δM(r)

)
,

(14)
where M = µBS.
The SR, SR+SO, and Dirac treatments can readily be

described in the radial equations of the Hamiltonian. To
see this, we first note that within the FP-LMTO method,
we expand the effective potential inside the muffin tins
as

veff(r) =
∑
l

vl(r)Cl(θ, ϕ), (15)

where the function Cl(θ, φ) is a spherical harmonic with
a conveniently chosen multiplicative factor (see refs. 50–
53 for details). The expression for the full potential in
the interstitial region is also described in refs. 50–53. For
non-magnetic materials, such as those studied in Sec. III,
it is sufficient to set Beff = 0. Doing this, Eq. 13 can be
separated into equations for the upper and lower compo-
nents,

cσσσ · pψB,n(r) = (εn − veff(r)−mc2)ψA,n(r) (16)

cσσσ · pψA,n(r) = (εn − veff(r) +mc2)ψB,n(r). (17)

In order to describe atomic states used in the FP-
LMTO method, it is useful to transition to a spherical
coordinate system, in which the wavefunctions can be
written,

ψ =

(
ψA
ψB

)
=

(
g(r)Y m

jlA
(θ, ϕ)

if(r)Y m
jlB

(θ, ϕ)

)
, (18)

where the angular functions Y m
jl (θ, ϕ) are defined as

(see refs. 55 and 50)
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Y m
jl (θ, ϕ) =


+

√
l+m+ 1

2

2l+1 Y
m−1/2
l (θ, ϕ)

(
1

0

)
+

√
l−m+ 1

2

2l+1 Y
m+1/2
l (θ, ϕ)

(
0

1

)
, j = l + 1

2

−
√

l−m+ 1
2

2l+1 Y
m−1/2
l (θ, ϕ)

(
1

0

)
+

√
l+m+ 1

2

2l+1 Y
m+1/2
l (θ, ϕ)

(
0

1

)
, j = l − 1

2 .

(19)

Note that because these angular functions each have two
components and are a sum of different spherical harmon-
ics Y ml , every component of the four-component Dirac
spinors has a different angular dependence, even though
the radial functions for the upper and lower components
separately are the same. This can be contrasted to the
SR and SR+SO approaches, in which only one spheri-
cal harmonic is used (see Sec. 2.5 of ref. 50 for details).
This is an important distinction between the Dirac and
SR or SR+SO approaches that could be important for
describing the local bonding environment of materials,
particularly for materials under compression.

Using Eqs. 18 and 19 in Eqs. 16–17 and rewriting the
operator σσσ · p in spherical coordinates, we arrive at (see
Sec. 2.4 of ref. 50 for details)

−cdfκ
dr
− (1− κ)c

r
fκ = (εn − veff(r)−mc2)gκ (20)

c
dgκ
dr

+
(1 + κ)c

r
gκ = (εn − veff(r) +mc2)fκ. (21)

It is now useful to neglect the non-spherical contribu-
tions to veff in Eq. 15. This allows us to describe the for-
mation of the basis in the FP-LMTO method, in which
only the spherical part v0(r) of veff is used, and also dis-
tinguish between the SR, SR+SO, and Dirac methods,
as outlined below. The non-spherical contributions to
veff(r) are incorporated when computing matrix elements
of the Hamiltonian, as described in ref. 50. Restricting
veff to v0 leads to

−cdfκ
dr
− (1− κ)c

r
fκ = (εn − v0(r)−mc2)gκ (22)

c
dgκ
dr

+
(1 + κ)c

r
gκ = (εn − v0(r) +mc2)fκ. (23)

By setting E = εn−mc2, M = m+(E−v0(r))/2c2, and
eliminating fκ, we arrive at the upper component radial
equation

− 1

2M

(
g′′κ +

2

r
g′κ −

l(l + 1)

r2
gκ

)
−
(
g′κ +

(1 + κ)

r
gκ

)
d

dr

1

2M
+ v0(r)gκ = Egκ,

(24)

where κ(κ + 1) = l(l + 1) is used for both signs of κ.
Note that FP-LMTO methods consist of two steps within

each self-consistent iteration. In the first step, the linear
MTO basis is formed, in which Eq. 24 is solved using v0.
In the second step, matrix elements are formed using the
full potential in Eq. 15. That procedure is more involved
and we therefore leave its description in the Dirac and
also SR and SR+SO cases to Ch. 4 and 5 of ref. 50.

In the fully relativistic Dirac radial equation, Eq. 24,
the spin and orbital momenta are not independent con-
stants of the motion but coupled. The coupling is rep-
resented by κ, which is the eigenvalue of the operator
K̂ = (σσσ ·LLL+ 1)β, where LLL is the orbital angular momen-
tum operator that squared gives eigenvalue l(l + 1).

If the κ-dependent term is dropped, as suggested by
Koelling and Harmon,67 the spin and orbital momenta
are decoupled and only l is needed for the description of
the resulting solution,

− 1

2M

(
g′′l +

2

r
g′l −

l(l + 1)

r2
gl

)
−g′l

d

dr

1

2M
+v0(r)gl = Egl.

(25)
The solution given by Eq. 25 is what is referred to

as the SR treatment throughout the remainder of the
text. The SR treatment naturally leaves out spin-orbit
coupling as compared to the full Dirac implementation.
Note, however, that the SR and SR+SO approximations
still use the Dirac equation (Eq. 24) to compute the core
states, as described in the next section. Only the valence
states in SR and SR+SO are treated with the SR ba-
sis. This is also the common treatment among linearized
augmented plane-wave (LAPW) approaches.68,69

The SR+SO method solves the SR radial equations
(Eq. 25) to form the linear MTO basis in each self-
consistent iteration. After this, the full potential (Eq. 15)
is incorporated and matrix elements of the spin-orbit op-
erator

vso =
1

r

∂

∂r

(
1

2M

)
σσσ · L (26)

are taken using the SR basis states. It is important
to point out that in this step, only the spherical part of
the potential v0 is used in the matrix elements involving
Eq. 26 (v0 enters through the definition of M , defined
above). Furthermore, the spin-orbit matrix elements are
only taken within the muffin tin spheres because states
in the interstitial region have no clear association with
the orbital angular momentum and therefore it is not
obvious how to apply the spin-orbit term in that spatial
region. This means that the treatment of the spin-orbit
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term in the SR+SO method is approximate. Although
some codes do apply the SO term throughout the full vol-
ume,60,62 most muffin tin based approaches do not treat
the spin-orbit term in the interstitial and use a spheri-
cally symmetric potential inside the muffin tins.56–58

Note that when the SR+SO Hamiltonian is formed
using the SR basis functions, two κ terms must be eval-
uated for each l: κ = l and κ = −l − 1. This amounts
to a splitting for each l state when l > 0. By including
the SO term in the formation of the Hamiltonian within
each self-consistent iteration, the SO effects are included
fully self-consistently.

Two points about the SR+SO method are worth men-
tioning. First, although all of the terms in the Dirac
equation are present in the SR+SO method, the gκ val-
ues that are plugged in come from the solution of the SR
equation, thereby incorporating a different radial behav-
ior in the Hamiltonian than when using the Dirac basis
states. Second, the angular functions defined in Eq. 19
are not used in the SR and SR+SO methods. Instead,
the same Y ml angular functions that describe solutions
to the Schrödinger equation are used. As mentioned pre-
viously, this could be an important distinction in some
cases, though we do not explore this further here.

The SR basis is limited in its ability to describe the
SO term,54,70 so that the SR+SO treatment should not
always be expected to give the same results as the full
Dirac treatment. This is part of the motivation for the
comparisons drawn in this work.

We also point out that in the non-relativistic limit,
M → m. In this case, both Eqs. 24 and 25 reduce to

− 1

2m

(
g′′l +

2

r
g′l −

l(l + 1)

r2
gl

)
+ v0(r)gl = εngl, (27)

which is the radial Schrödinger equation (SE).
Note that the above mathematical formulation does

not provide all of the implementation details of the FP-
LMTO method. In the next section, we provide an
overview of the FP-LMTO method and additional math-
ematical details on how the full potential is incorporated
in the SR, SR+SO, and Dirac approaches. For a more
complete description, see ref. 50.

B. Overview of the FP-LMTO Method

Kohn-Sham DFT electronic structure codes used for
solids can be generally divided into two distinct cate-
gories: all-electron codes and pseudopotential codes. All-
electron codes treat every electron in the material in-
cluding core states, while pseudopotential codes find an
approximate potential (called a pseudopotential) that re-
places the core states with an averaged or effective poten-
tial that the valence electrons experience. Several types
of all-electron methods exist, including those with numer-
ical basis sets,61 linearly augmented plane wave (LAPW

methods),68,69 and the full potential linear muffin tin or-
bital (FP-LMTO) approach. These different approaches
have been compared in terms of their agreement with
each other recently71 and have shown the all-electron
approaches to produce very similar results on a variety
of materials, while being generally more accurate than
codes using plane-waves and pseudopotentials.

The FP-LMTO methodology used in dirac-fp and
in RSPt involves splitting the computational cell into a
number of spheres (called muffin tins) that each surround
a given atom. Inside the muffin tins, the solutions are ex-
panded in terms of atomic-like functions, while outside
the muffin tin spheres (also called the interstitial region),
the solutions take the form of Hankel or Neumann func-
tions.51,52 At the boundary between the muffin tins and
the interstitial region, the wavefunctions are ensured to
be continuous and have continuous first derivatives.

In both dirac-fp and RSPt, a distinction is made be-
tween core states, which do not extend spatially outside
the muffin tin spheres, and the ‘valence states,’ which ex-
ist both within muffin tin spheres and in the interstitial
region. The valence states do not necessarily correspond
to the valence electrons, as it is often useful to move
some states from the core (sometimes called the semi-
core) to the valence in order to capture hybridization
effects. Sometimes the valence states are called ‘vari-
ational states,’ since they are used to form the Hamil-
tonian which is diagonalized at each self-consistent iter-
ation. However, we refrain from using the term ‘vari-
ational states’ here to avoid the implication that the
core states do not vary or are not updated at each self-
consistent iteration. As described more below, the core
states are being updated at each iteration.

The core states in all methods (SR, SR+SO, and
Dirac) are treated using the Dirac equation (Eq. 24).
Only the valence states are treated differently in the SR,
SR+SO, and Dirac methods. This is shown schemati-
cally in Fig. 1. In all calculations, we ensure that the
core states do not extend spatially outside of the muf-
fin tins, so that no interactions between core states in
separate muffin tins is possible.

The valence states in the SR and SR+SO methods are
evaluated using Eq. 25 to form the valence basis, while
the Dirac method uses Eq. 24 to form the valence basis.
A further spatial subdivision of the valence states is also
necessary, since these states exist both inside the muffin
tins and in the interstitial region. To account for this,
the basis is formed assuming a spherically symmetric po-
tential inside the muffin tins and a constant potential in
the interstitial. In the SR and SR+SO methods, the SR
basis is used in both the valence and interstitial (shown
in Fig. 1; details on how the basis in the interstitial is
formed are available in ref. 52). However, in the SR+SO
method, the SR basis is used to then incorporate the SO
term via Eq. 26 when forming matrix elements of the
Hamiltonian. Importantly, the SO term is applied only
within the muffin tins, where it is possible to associate the
angular momentum quantum number l with the state. In
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FIG. 1. Schematic of the SR, SR+SO, and Dirac methods within the FP-LMTO methodology. Energy (E) vs. radial distance
from the center of a muffin tin sphere (r) is shown, with a representation of full effective potential veff(r) in the solid black line.
All core states are treated using the Dirac equation. The core states and muffin tin radii are chosen so that the core states do
not extend spatially outside of the muffin tins and therefore do not interact with other core states. The valence states, which
can correspond to states other than the valence electrons, are split spatially between a region inside the muffin tins and outside
the muffin tins (interstitial region). The SR and SR+SO methods use the SR basis for both spatial regions, while the SO term
is only applied within the muffin tins where it is possible to associate the orbital angular momentum with the state. The Dirac
method solves the Dirac equation throughout all regions of the cell.

the Dirac method, the Dirac basis states are used in both
the muffin tins and interstitial.

It is important to point out that both the valence and
core states are updated at each self-consistent iteration
in all methods. The core states are modified based on
the changes in the eigenvalues E (via εn) and the po-
tential v0(r). However, the core states are not used di-
rectly to form the Hamiltonian that is diagonalized in
each self-consistent iteration, although the density of the
core states contributes to the full potential that effects
all states.

The unique property of dirac-fp is that all of the
wavefunctions (both the core and the valence states) are
treated with the Dirac equation. This provides a more
consistent treatment of relativistic effects throughout the
cell. Aside from this important distinction, dirac-fp
and RSPt are based on the same methodology and pro-
duce the same results when relativistic effects are negli-
gible, as seen in the case of aluminum in Sec. III B.

To fully understand the differences between the SR,
SR+SO, and Dirac methods, it is useful to mention a
few details regarding the self-consistency cycle in the FP-
LMTO method not discussed in Sec. II.

The radial differential equations in Eq. 24,and 25 take
the form

Hr[v0]g(r) = Eg(r), (28)

where Hr is the radial Hamiltonian. In general, this is

a non-linear eigenvalue problem using the potential v0(r),
which is one component of the expansion of the effective
potential in Eq. 15. The FP-LMTO method solves this
non-linear eigenvalue problem using a self-consistency cy-
cle in which each self-consistent iteration is composed of
two steps.

In the first, the ‘linear MTO’ basis is formed using
v0.50–53,72 Linear MTO bases are created by fixing the
energy E in Eq. 28 and supplementing the basis with the
energy derivative of Eq. 28,

Hr[v0]ġκ(r) = gκ(r) + Eġκ(r). (29)

Here, ġκ(r) is the energy derivative of gκ. The solutions
gκ and ġκ within this spherically symmetric potential at
a fixed energy E provide a linear approximation to the
basis around energy E. Note that the radial Hamiltoni-
ans are only used within the muffin tin spheres to form
the basis. For the core states, this is all that is needed
since the states do not extend spatially beyond the muffin
tins. The valence states in the interstitial are matched to
the radial states in the muffin tins and are used to con-
struct Bloch wavefunctions that obey the translational
symmetry of the crystal.

In the second step, the density and full potential
(Eq. 15) are formed using the linear MTO basis. The
core states contribute to the density, while the valence
states in both the muffin tins and interstitial region are
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used to form the Hamiltonian. The Hamiltonian is then
diagonalized and a new density and potential are formed.
The next self-consistent iteration can then proceed, using
the updated density, potential, and energy eigenvalues.
The new potential and eigenvalues are used to generate
both a new set of core states and a new set of valence
states. Additional details on these steps can be found in
ref. 50.

The dirac-fp and RSPt codes allow for a variety of
ways to treat the basis of the valence states. We fo-
cus here on two important choices of the basis with two
different treatment of the radii: double and full bases
combined with FF and FR approaches. The distinction
between double basis and full basis calculations has to
do with the number of “tails” used to treat the s and
p states in the interstitial region.52,53 The tails are the
solutions outside of the muffin tins (as opposed to the
“heads” which are solutions inside the muffin tins). Gen-
erally the tails can be expanded in a basis consisting of
different numbers of elements. Here, we focus on two
choices: a double basis that uses two tails for each s and
p state, and a full basis that uses 3 tails for each. Note
that d and higher states always use 2 tails. We refer to
the case of three tails for the s and p states as a full ba-
sis, rather than triple basis, because adding more tails
often leads to an overdetermined system and therefore
does not increase the accuracy of the calculation. Below,
we present a comparison of double and full basis calcu-
lations on thorium and find that the full basis provides
more consistent results (see Sec. III A).

The distinction between FR and FF has to do with how
the muffin tin radii are set. FR methods use the same
radius for the muffin tin radii across a series of different
computational cell volumes, for example in computing
energy-volume (E-V ) curves, as done in Sec. III. Impor-
tantly, this means that the radius must be small enough
to ensure that no two muffin tin spheres overlap in the
smallest volume case, thus setting an upper-bound on the
muffin tin radius. The FF case instead fixes the fraction
of the volume of the computational cell that is allotted
to each atom in the cell by specification of the FF radius
S ≤ 1, defined as the ratio of the muffin tin radius to the
radius corresponding to the volume of the unit cell. More
precisely, for a unit cell with volume Vcell that holds a sin-
gle atom, we define a radius R such that Vcell = 4

3πR
3.

The FF ratio is then defined as S = Rmt/R, where Rmt

is the muffin tin radius for that atom. The case of mul-
tiple atom types in the cell requires generalization, but
is unimportant for the results of this paper which deal
exclusively with single-element FCC materials.

C. Exchange-Correlation Functionals

All DFT methods must use an expression for the
exchange-correlation functional of the density. In for-
mulating the Dirac approach in Sec. II A as we have,
we are able to make use of exchange-correlation func-

tionals of the density by neglecting the current density
(exploring the effect of the current density will be the
focus of a future paper). This allows us to make use
of exchange-correlation potentials designed over the past
20-30 years in our approach. Using these functionals al-
lows us to compare the SR, SR+SO, and Dirac methods
on an equal footing. In Sec. III we focus on the use of
three different exchange-correlation functionals: the lo-
cal density approximation (LDA) of Perdew and Wang63

(PW), the generalized gradient approximation of Perdew,
Burke, and Ernzerhof64 (PBE), and the subsystem func-
tional of Armiento and Mattsson65 (AM05). These three
functionals differ in their philosophy and construction,
but none of them have been designed specifically to ac-
count for systems in which confinement plays a strong
role. As an LDA, the PW functional takes into account
only the density local to each point, while PBE takes into
account the density and the spatial gradient of the den-
sity at each point. The AM05 functional is a sub-system
functional using the local density and local gradients of
the density, and is designed to account for surface ef-
fects, which are not taken into account explicitly in PW
or PBE.

Fundamentally, new functionals are needed to ade-
quately describe systems in which confinement plays a
strong role. Therefore, none of these functionals should
be regarded as correctly describing the physics involved
in each system. We focus primarily on the results of PBE
in Sec. III because it is the most widely used and allows
us to compare in a straight-forward way the differences
between the three different relativistic treatments: SR,
SR+SO, and Dirac. However, we include for each ma-
terial (Th, Al, and Au) a table summarizing the results
of the PW, PBE, and AM05 functionals to show the ex-
tent to which the equilibrium volumes and bulk moduli
differ among these three different functionals. Notably,
these functionals give quite different results in the case
of thorium and to a lesser extent in gold, which provides
evidence for the fundamental need for functionals that
describe localization.

III. RESULTS

A. Thorium

To investigate the SR, SR+SO, and Dirac treatments,
we begin with thorium (Z = 90) in its FCC phase. The
electron configuration for thorium is [Rn]6d27s2. For all
methods (SR, SR+SO, and Dirac), we treat the valence
in the same way, using the states 6s6p7s7p6d5f , with the
rest of the lower energy states treated in the core. Among
states below the 6s manifold, the 5d are closest in energy,
lying 41 eV below the 6s states. This indicates that all
states below the 6s can be safely treated in the core; the
rest must be treated in the valence to allow for the possi-
bility of hybridization. In principle, it is possible that 5g
states may need to be included in the valence, however
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FIG. 2. Energy-volume curves for thorium using the SR (first row), SR+SO (second row), and Dirac (third row) methods and
the PBE exchange-correlation functional. The first column shows results using a double basis and the second column shows
results using a full basis. In each subplot, the fixed volume fraction (FF) curve is shown as a solid line and the fixed radius (FR)
curve is shown as a dashed line. The zero of energy E0 is different for each subplot, and is taken to be the minimum energy
among both curves in the subplot, so that the curves can be compared in a more straight-forward manner. The experimental
value of V0 = 220.0 Bohr3 (ref. 73) is used to normalize the x-axis. The bulk modulus for thorium is 54 GPa (ref. 74).

we find that the results do not change appreciably when
these states are left out (see Supplemental Material75 Sec.
5 for details).

We first explore the effect of using double and full bases
for thorium, as well as the use of the FF and FR methods,
to compute energy-volume (E-V ) curves. In Fig. 2, we
plot the E-V curves for double basis (first column) and
full basis (second column) for each of the three methods:
SR (first row), SR+SO (second row), and Dirac (third
row). In each subplot of Fig. 2, the FF curves are shown
in solid lines, while the FR curves are shown in dashed
lines. For each subplot the zero of energy is chosen to
be the lowest energy value computed for both curves in
that subplot (i.e., E0 is different for each subplot). The
value V0 on the x-axis is the experimental equilibrium
volume for thorium,73 V0 = 220.0 Bohr3 (note that this
value includes a zero-point anharmonic expansion correc-
tion). Comparisons to other DFT-calculated values are
provided in Supplemental Material75 Sec. 6.

The FF curves shown in Fig. 2 are each computed us-
ing FF ratio S = 0.85, which is found to give minimal er-
ror in equilibrium volume (Supplemental Material75 Sec.
1 for details). In addition, we use for all calculations a
16×16×16 k-point mesh, which corresponds to 85 points
in the irreducible part of the Brillouin zone. This mesh
size gives equilibrium volumes accurate to approximately
0.1% of a reference solution computed with a 32×32×32
k-point mesh (489 total points) and can therefore be re-
garded as converged (see Supplemental Material75 Sec. 2
for details). The Brillouin zone integration is carried out
using tetrahedral integration with the Fermi surface cor-
rection of Blöchl.76 After computing a series of E-V val-
ues, we use a Murnaghan77 fit (described in Supplemen-
tal Material75 Sec. 3) to interpolate between values and
compute V0. We also use the PBE64 exchange-correlation
functional for all figures below.

In each of the double basis calculations, the FF and FR
curves do not coincide except at the point corresponding
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V0 (Bohr3) B (GPa)
AM05 PBE PW AM05 PBE PW

SR 204.2 217.0 199.4 58.7 54.9 65.1
SR+SO (FF) 188.9 200.6 185.9 75.5 69.1 83.2
SR+SO (FR) 201.4 214.9 197.9 62.1 57.2 67.7
Dirac 205.5 217.6 201.0 62.2 58.2 67.8

TABLE I. Calculated equilibrium volumes and equilibrium bulk moduli of thorium for SR, SR+SO, and Dirac using three
different exchange-correlation functionals: PW, PBE, and AM05. The experimental values of V0 and B for thorium are 220.0
Bohr3 (ref. 73) and 54 GPa (ref. 74), respectively.

to the lowest volume, which are chosen to have the same
muffin tin radius. On the other hand, the full basis calcu-
lations for SR and Dirac lie closely on top of each other,
indicating that the choice of FF or FR does not lead to
any significant difference in results. This finding can be
attributed to the full basis providing a more complete
representation of the wavefunctions in the interstitial re-
gion.

Unlike for the SR and Dirac methods, however, the
SR+SO full basis calculations show a large deviation in
E-V curves when using FF and FR. This shows that the
part of the total energy arising from the spin-orbit term
has a strong dependence on the muffin tin volume. In
this case, the SR+SO results give very different equilib-
rium volumes (roughly 10%) depending on whether FF
or FR is used. In the FR SR+SO case, the predicted V0

values are much closer to the SR and Dirac values (see
Table I). This is because in the FR case, the SO term
is calculated using the same muffin tin volume for each
unit cell. In this case, the part of the total energy arising
from the SO term does not change much across different
unit cell volumes, whereas a large difference is seen in the
FF case. Note that this will not always be the case, as
seen for the FR SR+SO results in gold in Sec. III C. In
addition, although we see agreement in the E-V curves
in thorium for FR SR+SO and the SR and Dirac meth-
ods, in the FR SR+SO method a large amount of the SO
energy is missing from the calculation, due to the fact
that the muffin tin radius must be small enough to fit
within the smallest unit-cell volume studied and the SO
term is neglected in the interstitial region. Although this
does not result in severe differences in the E-V curves
in thorium near equilibrium, this could present very im-
portant differences under high compression, where SO
effects become even more pronounced and it is not phys-
ically accurate to throw out large amounts of the SO
term. As mentioned previously, some codes implement
the SO term throughout the entire unit cell volume,60,62

which offers obvious advantages. Nevertheless, in muf-
fin tin-based all-electron solid-state codes, the SO term
is neglected in the interstitial region, so that this issue
should be seen in methods other than FP-LMTO.

We draw two important conclusions from Fig. 2: (1)
it is necessary to use a full basis to describe the states
treated in the valence when using SR or Dirac and (2) a
full basis treatment of the valence states in the SR+SO

method does not resolve the large differences in the E-
V curves computed using the FF and FR methods, due
to the strong energy dependence of the SO term on the
muffin tin volume and the neglect of the SO term in the
interstitial region. Based on conclusion (1), we use only
full basis calculations in the remainder of this paper. In
addition, we use only the FF method for SR and Dirac
throughout the remainder of this paper, since the FF and
FR curves are nearly identical for those methods. For the
SR+SO method, we include both the FR and FF results.

FIG. 3. Electronic density of states of thorium for SR,
SR+SO, and Dirac methods. The energy level splitting of
the 6p states appear only for the SR+SO and Dirac meth-
ods. All results are computed using PBE at the equilibrium
volume and FF ratio S = 0.85.

To further investigate the adequacy of SR, SR+SO,
and Dirac methods for thorium, we compute the elec-
tronic density of states for each structure at the experi-
mental equilibrium volume (V0 = 220.0 Bohr3),73 shown
in Fig. 3. Here we notice that the densities of states near
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FIG. 4. Electronic density of states for thorium using SR+SO
and Dirac, but with different FF radii. The S = 0.50 results
are shown as dashed lines, while the solid lines use S = 0.85.
The lower energy SR+SO 6p1/2 states exhibit a large shift in
energy upon changing S, while the Dirac method shows no
such shift. All curves use PBE.

the Fermi level Ef are roughly the same for all three
methods. However, we notice a large discrepancy for
states lying below the Fermi level. Both the SR+SO and
Dirac methods predict an energy level splitting of the 6p
states, while the SR method does not predict a splitting.
This splitting corresponds to the 6p1/2 and 6p3/2 states
found from the solution of the Dirac equation.

Although the SR+SO and Dirac methods both pro-
duce the 6p energy level splitting, the energy levels are
different. The reason for this difference is well-known and
is primarily a result of the different r → 0 behavior of the
SR 6p and Dirac 6p1/2 states. The SR 6p states approach
0 at the origin, as do solutions to the radial Schrödinger
equation, whereas the Dirac 6p1/2 states do not approach
0 and therefore act qualitatively more like s states. These
differences are described further in the Supplemental Ma-
terial75 Sec. 4. This issue is well known70,78 and also led
developers of the WIEN97 code (now WIEN2k) to provide
an “orbital extension” solution to this problem, which
adds the Dirac 6p1/2 states to the SR basis.54 This fix
largely resolves the discrepancy in the energy level split-
ting between the SR+SO and Dirac methods, as can be
seen in ref. 54. Although this addresses the radial behav-
ior of the 6p1/2 states, the other states remain SR states
and therefore the 6p1/2 correction does not address other
differences that result from the use of SR vs. Dirac ra-
dial basis functions. In addition, the angular functions

used remain SR angular functions, which are different
from Dirac angular functions, as seen in Eqs. 18–19, also
described in detail in Ch. 2 of ref. 50. These two differ-
ences may not result in serious issues near equilibrium,
but in compression, it is possible that these differences
could become important.

To further explore the electronic structure of thorium,
we plot in Fig. 4 the electronic densities of states for
SR+SO and Dirac at different radii. We zoom in to
states between -25 and -10 eV, as no significant differ-
ences are present above -10 eV. In Fig. 4 the green lines
correspond to the Dirac treatment and the orange lines
correspond to the SR+SO treatment, while solid lines
correspond to S = 0.85 and dashed lines correspond to
S = 0.50. In this case, we see a clear shift in the energy
of the 6p1/2 band near -22 eV for the SR+SO method,
whereas we see no shift using the Dirac method. This
highlights the strong dependence of the SO term on the
muffin tin radius in thorium for the 6p states. This also
raises questions about how to choose the muffin tin radius
in the SR+SO method when the implementation neglects
the SO term in the interstitial region. In the FR method,
multiple choices for the muffin tin radius can be made,
and it is not obvious what radius to choose, given the re-
sults in Fig. 4. Although it may be possible to partially
address this issue with an implementation of the SO term
throughout the entire unit cell, this is not typically done
in muffin tin methods and doing so would not address
other issues, such as the differences in radial and angu-
lar basis functions in the SR and Dirac methods. The
way we have chosen to address this is to instead switch
to the Dirac method, which shows no such dependence
on the muffin tin radius, owing to the use of the same
Hamiltonian in all parts of the cell.

Before moving on to other materials, we also inves-
tigate the role of the exchange-correlation functional on
the E-V curves computed. All results in Figs. 2-4 use the
PBE64 exchange-correlation functional, however we also
compute the equilibrium volume V0 and equilibrium bulk
modulus B with other functionals, as seen in Table I. We
see that the V0 predicted by PW and AM05 using the
SR, SR+SO, and Dirac methods are significantly lower
than the V0 computed for PBE. Although this is the case,
none of the functionals are accounting for electron con-
finement in thorium, so the close prediction of PBE to
the experimental value (220.0 Bohr3)73 is most likely for-
tuitous, i.e., due to error cancellation. Importantly, we
see a trend within the use of each functional, which is
that the FF SR+SO method predicts significantly lower
equilibrium volumes than the SR or Dirac methods. This
is again attributable to the strong dependence of the SO
energy on the muffin tin volume.

The bulk moduli results do not show as obvious a
trend. We see that bulk moduli calculated using dif-
ferent exchange-correlation functionals within the SR,
FR SR+SO, and Dirac methods deviate up to ∼ 10
GPa (18%). The bulk moduli calculated using different
exchange-correlation functionals within the FF SR+SO
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FIG. 5. Energy-volume curves for aluminum for the SR,
SR+SO, and Dirac methods. The zero of energy is the same
for all curves, so the curves overlap in shape and also in value.
For aluminum, V0 = 109.5 Bohr3.73

method deviate up to 14 GPa (20%). However, we also
see that the bulk moduli predicted by FF SR+SO are up
to 30% higher than those predicted by SR, FR SR+SO,
and Dirac within each exchange-correlation functional.
This is due to the larger curvature predicted using FF
SR+SO that results from including a different SO in-
tegration volume for each unit-cell volume. The FR
SR+SO values are in much closer agreement with SR and
Dirac than FF SR+SO for the same reasons as described
above regarding the equilibrium volume predictions.

B. Aluminum

After having looked at the significance of the SR,
SR+SO, and Dirac treatments for the heavy element tho-
rium, we now turn our attention to aluminum (Z = 13),
a material in which relativity should not play a strong
role. Aluminum is an FCC material that has an electron
configuration [Ne]3s23p1, and we therefore treat the 3s3p
states in the valence in our calculations.

In Fig. 5, we plot E-V curves for aluminum using
SR, SR+SO, and Dirac methods. We use PBE as the
exchange-correlation functional, a 16 × 16 × 16 k-point
mesh with tetrahedral integration and Blöchl’s correc-
tion, and FF ratio S = 0.85. In all three curves of Fig. 5,
the zero of energy is exactly the same.

From Fig. 5, we see that regardless of the method, we
get almost exactly the same values along the E-V curve,
indicating that relativity does not play an important role
and that in this limit, all methods give the same result.
This provides validation of the newly-developed Dirac
method in cases where relativistic effects are small.

We also show in Table II the values of V0 and B com-
puted using the AM05, PBE, and PW functionals. In
each case, the SR, SR+SO, and Dirac methods give the
exact same result, so we list the value only once. The
experimental values for aluminum are V0 = 109.5 Bohr3

V0 (Bohr3) B (GPa)
AM05 108.7 84.1
PBE 111.6 75.7
PW 106.8 81.3

TABLE II. Calculated equilibrium volumes and equilibrium
bulk moduli of aluminum for SR, SR+SO, and Dirac using the
semi-core+valence treatment and three different exchange-
correlation functionals: PW (LDA), PBE (GGA), and AM05.
All values for SR, SR+SO, and Dirac are the same to the near-
est tenths digit, and this is also the case when comparing the
FF vs. FR treatment for SR+SO. The experimental values of
V0 and B for aluminum are 109.5 Bohr3 (ref. 73) and 73 GPa
(ref. 79), respectively.

(ref. 73, computed using a zero-point anharmonic expan-
sion correction) and B = 73 GPa (ref. 79). Comparisons
to other DFT-calculated values are provided in Supple-
mental Material75 Sec. 6.

C. Gold

The results for thorium and aluminum provide insights
into the SR, SR+SO, and Dirac methods for two limit-
ing cases, one where relativistic effects are important and
one where they are negligible. To study an intermediate
case, we look at gold (Z = 79). Gold is an FCC ma-
terial with electron configuration [Xe]4f145d106s1. Gold
exhibits a separation in energy between the 6s15d10 va-
lence electrons and 5s24f145p6 semi-core electrons and
therefore provides two options for choosing the valence
states: (1) treating the semi-core electrons and valence
electrons as the valence states, or (2) treating only the
valence electrons in the valence. We consider both cases
below. Option 1 is of course needed if we wish to extend
the results presented here to high levels of compression.
Note also that the 4f states for gold have energies be-
tween the 5s and 5p states. This makes it important to
treat the 4f in the valence, even though the 4f states are
highly localized and do not extend outside the muffin tin
spheres.

In Fig. 6, we plot the E-V curves for the SR, SR+SO,
and Dirac methods for gold. We use the PBE exchange-
correlation functional, a 16× 16× 16 k-point mesh with
tetrahedral integration and Blöchl’s correction, and FF
ratio S = 0.85.

In each subplot of Fig. 6, we provide curves for both
the case where the semi-core and valence electrons are
treated in the valence (solid lines) and the case where
only the valence electrons are treated in the valence
(dashed lines). In each subplot, a unique value of E0

is used to determine the relative energy difference in the
curves. Notably, the SR and SR+SO methods exhibit a
large difference in energy between the semi-core+valence
and valence-only curves, so that two axes are needed to
represent the energy (values on the left correspond to
the valence-only case; values on the right correspond to
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FIG. 6. Energy-volume curves for gold using the SR, SR+SO, and Dirac methods with different choices for which states are
chosen as valence states. In each subplot, the solid line shows the case where the 5s24f145p6 semi-core and valence electrons
are treated in the valence, while the darker dashed line shows the case where the 5s24f145p6 semi-core electrons are treated in
the core and only the valence electrons are treated as valence states. Each subplot has a unique value of E0. For the SR and
SR+SO methods, the semi-core+valence treatment is significantly higher in energy than the valence-only results, requiring the
values to be plotted on two separate y-axes (valence-only values on the left, semi-core+valence values on the right). Arrows
point from each curve to the appropriate axis. In the Dirac case, the same y-axis is used for both curves, since the energy
values are nearly identical. The range of all y-axes are the same (104 mRy). Notably, the predicted V0 for valence-only vs.
semi-core+valence are the same for the SR and Dirac methods, while the SR+SO method predicts very different values of V0,
depending on which states are treated in the valence. All curves are computed using PBE and FF ratio S = 0.85. For gold,
V0 = 113.0 Bohr3 (ref. 73, computed with a zero-point anharmonic expansion correction).

the semi-core+valence case). Unlike the SR and SR+SO
methods, the Dirac method gives nearly identical results
for the valence-only and semi-core+valence treatments,
so that only one y-axis is needed to represent both curves.

We also see from Fig. 6 that the semi-core+valence and
valence-only cases individually give very similar values of
V0 in the SR and Dirac methods. The semi-core+valence
values of V0 and B predicted by SR and Dirac differ by
less than 1% and less than 4%, respectively. On the other
hand, the SR+SO methods gives quite different values
for the semi-core+valence and valence-only cases and for
both the FF and FR methods. To explain this, we start
by looking at the valence-only case (dashed curves only)
for SR+SO. In this case the predicted V0 for FF and
FR differ by less than 1%. This indicates that the SO
contribution to the valence-only states outside the muffin
tins is quite small, therefore leading to small differences
in the E-V curves.

The situation is different for the FF and FR SR+SO
semi-core+valence curves (solid lines in Fig. 6). Here,
the predicted E-V curves are quite different, indicating
that the SO energy of the semi-core states has a strong
dependence on the muffin tin volume, similar to what
was seen in thorium. In the semi-core+valence case, the
FF method results in a V0 that is 4–5% smaller than
the V0 predicted by the SR and Dirac methods and a B
that is 15–20% larger than B predicted by the SR and

Dirac methods (see Table III). On the other hand, the FR
method in SR+SO over-predicts V0 by 2–3% and under-
predicts B by 8–12%, relative to SR and/or Dirac. This
indicates that neither the FR nor FF results for SR+SO
match very closely with the predictions of SR or Dirac.
Furthermore, these differences can be expected to be-
come even more severe in higher compression, where the
SO contribution of those states becomes more important.

In Table III we provide V0 and B values for the SR,
SR+SO, and Dirac methods using different exchange-
correlation functionals. It is important to point out that
PBE tends to overpredict V0, whereas PW slightly under-
predicts V0 and AM05 is in good agreement with the ex-
perimental value V0 = 113 Bohr3 (computed using a zero-
point anharmonic expansion correction, as in ref. 73).
Bulk moduli values in Table III can be compared to the
experimental value of B = 167 GPa (ref. 79). Impor-
tantly, within each functional the same trends are seen
within the SR, SR+SO (FF and FR), and Dirac meth-
ods. Similar to thorium, the SR and Dirac methods pre-
dict similar V0 and B, while the results of the SR+SO
method depends critically upon the choice of FF or FR.

Another point regarding the calculations in Fig. 6 is
that only the Dirac method is providing very close to the
same total energy for the semi-core+valence and valence-
only treatments. The reason for this is that in SR and
SR+SO, different Hamiltonians are used to treat the va-
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V0 (Bohr3) B (GPa)
AM05 PBE PW AM05 PBE PW

SR 115.0 122.0 112.6 169.6 143.3 188.3
SR+SO (FF) 109.8 116.2 107.9 202.2 170.7 222.1
SR+SO (FR) 116.9 124.5 114.3 159.3 131.6 178.4
Dirac 114.0 120.8 111.7 176.1 149.2 188.3

TABLE III. Calculated equilibrium volumes and equilibrium bulk moduli of gold for SR, SR+SO, and Dirac for the semi-
core+valence treatment and using three different exchange-correlation functionals: PW, PBE, and AM05. The experimental
values of V0 and B for gold are 113.0 Bohr3 (ref. 73) and 167 GPa (ref. 79), respectively.

lence and core states, as shown in Fig. 1. The Dirac
method does not suffer from this issue because all states
are treated with the Dirac Hamiltonian.

Having analyzed the E-V curves in Fig. 6, we now turn
to the electronic density of states of gold. In Fig. 7, we
plot the density of states of the 5p levels at different vol-
umes using the semi-core+valence treatment. In the fig-
ure, V0 is the experimental value, 113 Bohr3 (see ref. 73).
Here, the 5p SR states are shown in blue, while the 5p1/2

and 5p3/2 Dirac states are shown in green. The SR+SO
5p states, which are split by the SO term are shown in
orange solid and brown dashed lines, corresponding to
the FF and FR treatments, respectively. Similar to the
6p1/2 Dirac states in thorium, the 5p1/2 Dirac states in
gold have a different r → 0 behavior than the 5p SR
states. This leads to a different prediction of the energy
level of the 5p1/2 states for SR+SO and Dirac. In ad-
dition to this, we see that as V/V0 changes, the SR+SO
FF and FR methods predict slightly different 5p1/2 en-
ergy levels, due to the use of a different muffin tin volume
used to take matrix elements of the SO potential.

In addition to the difference in predicted energy levels
of the 5p1/2 states, we also see differences in the 4f en-
ergy levels predicted by the SR+SO and Dirac methods,
as shown in Supplemental Material75 Sec. 7. In the 4f
case, the 4f5/2 and 4f7/2 energy levels predicted by the
Dirac method are higher in energy than those predicted
by the SR+SO method, which is the opposite trend seen
for the 5p1/2 states. These differences will of course be-
come more pronounced under higher levels of compres-
sion, where the 4f states can broaden and potentially
hybridize with other states.

The study of gold allows us to draw several conclu-
sions. First, we see that the valence-only treatment of
the states leads to very similar E-V curves in Fig. 6, re-
gardless of choice of method. In this case, states below
the 6s manifold are all treated with the Dirac equation,
so the only differences among treatments occurs in the
way that the SO term is applied to the valence states.
On the other hand, larger differences in the predicted E-
V curves are seen for the semi-core+valence treatment.
Similar to the case of thorium, we see that the semi-
core+valence SR and Dirac methods predict similar E-V
curves near equilibrium, while the SR+SO FF and FR
methods predict significantly different V0 and/or B, as
seen in Table III and as described above. The differ-

ences in the semi-core+valence SR+SO FF and FR E-V
curves are, similar to the case of thorium, due largely
to the neglect of the SO term in the interstitial region.
However, while the FR SR+SO E-V curves in thorium
agreed quite closely with the SR and Dirac E-V curves,
we do not see the same level of agreement in the FR
SR+SO and SR or Dirac E-V curves in gold. This in-
dicates that the use of the FR SR+SO method will not
always be adequate for predicting equilibrium properties
when a semi-core+valence treatment is required.

In addition, we see significant differences in the elec-
tronic structure of gold predicted by SR, SR+SO, and
Dirac. Similar to the thorium 6p1/2 states, the gold
5p1/2 SR and Dirac states have different r → 0 behavior
and therefore lead to a difference in the predicted en-
ergy levels of these states. We also see differences in the
predicted energy levels of the 4f5/2 and 4f7/2 states be-
tween SR+SO and Dirac, as shown in Supplemental Ma-
terial75 Sec. 7. Although the 4f and 5p states are well-
localized near equilibrium, under higher levels of com-
pression, they can start to broaden and hybridize. When
this occurs, the differences in the electronic structures
seen in Fig. 7 and in Supp. Material Sec. 7 will become
increasingly important and are likely to lead to different
predictions in the E-V curves at small volumes.

IV. CONCLUSION

We have developed a new methodology for comput-
ing the properties of materials based on the Dirac-Kohn-
Sham equations. The code we have developed, dirac-fp,
is based on the FP-LMTO code RSPt, but solves the
Dirac equation throughout all parts of the computational
cell. We use the Dirac method and the SR and SR+SO
methods in RSPt to assess the performance of different
relativistic treatments on an equal footing.

For thorium, we find that the use of a double basis
leads to inconsistent results when treating the muffin tin
radii with the FR and FF choices in both the SR and
Dirac methods. This issue is resolved in the case of the
SR and Dirac methods when using a full basis, which
provides a more complete representation of the wavefunc-
tions in the interstitial region. For the SR+SO method,
however, the resulting E-V curves using FR and FF are
very different and the discrepancies do not go away when
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FIG. 7. Electronic densities of 5p states for gold at different unit-cell volumes using the semi-core+valence treatment and the
PBE exchange-correlation functional. SR and Dirac FF curves are shown in blue and green, respectively, while the SR+SO
method shows curves for the FF (orange lines) and FR (brown dashed lines) treatments. The muffin tin radii at V/V0 = 0.8 are
the same for the FR and FF methods, leading identical densities of states. The SR 5p states are split into a 5p1/2 (below -65
eV) and 5p3/2 (above -55 eV) when adding the SO term, though the SR+SO 5p1/2 states do not match the Dirac 5p1/2 states
in energy, owing primarily to the different r → 0 behavior of the SR and Dirac 5p1/2 radial functions. For gold, V0 = 113.0

Bohr3 (ref. 73, computed with a zero-point anharmonic expansion correction).

switching from a double to full basis. The difference in
SR+SO FF and FR E-V curves in thorium is a result of
the strong dependence of the SO energy on the muffin tin
volume and the neglect of the SO term in the interstitial.
In the FR case, the contribution of the SO term to the
total energy is roughly the same across the different unit
cell volumes, so that the predicted V0 and B do not differ
significantly from V0 and B predicted by SR and Dirac.
On the other hand, in the FF method, the SO contri-
bution to the total energy changes as the unit-cell and
muffin tin volumes change, leading to E-V curves that
differ significantly from the SR and Dirac E-V curves.
Although these issues could potentially be addressed by
incorporating the SO term in the interstitial region, it is
not obvious how to do so within muffin tin-based meth-
ods, and therefore this issue will be relevant for other
codes using similar treatments of the SO term. These
issues are all addressed in the Dirac method.

We also see in thorium that the electronic structures
computed using SR, SR+SO, and Dirac are very differ-
ent. In particular, we see the well-known splitting of the
6p SR states into 6p1/2 and 6p3/2 levels in the SR+SO
and Dirac methods. Although the 6p splitting is present
in SR+SO, the 6p1/2 levels are not the same as the 6p1/2

Dirac states primarily because of the different r → 0 be-
havior of the 6p SR and 6p1/2 Dirac states. We also find
that the SR+SO 6p1/2 energy levels depend strongly on
the muffin tin radius, due to the neglect of the SO term in
the interstitial. In the Dirac implementation, the correct
radial behavior of the 6p1/2 states is implicit. Further-
more, other differences between the SR and Dirac radial
and angular states are included in the Dirac implemen-
tation, which could become increasingly important when
studying high compression.

We find in the case of the light element aluminum that
the SR, SR+SO, and Dirac treatments all produce nearly
identical results. This serves as a validation of dirac-fp
in the non-relativistic limit. Furthermore, we find that
all three methods give nearly identical results for V0 and
B across different exchange-correlation functionals.

For gold, we find that the Dirac treatment produces
nearly identical results when treating the 5s24f145p6

semi-core electrons in the core or as part of the valence.
The SR method predicts roughly the same V0 and B for
both treatments of the semi-core states, so that the two
treatments do not lead to significantly different predic-
tions of equilibrium properties.

In the SR+SO method, we see that the valence-only
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FF and FR treatments lead to similar E-V curves that
do not differ significantly from the SR and Dirac results,
whereas the semi-core+valence FF and FR treatments
lead to E-V curves that differ substantially from the SR
or Dirac semi-core+valence curves. In particular, the FF
and FR SR+SO methods predict a B that is too high
and too low, respectively. Similarly to thorium, these
issues arise primarily from the neglect of the SO term
in the interstitial region. This highlights the need to
use caution when interpreting results from the SR+SO
method as more states are added to the valence.

In addition to this, we see differences in the electronic
structure of the 5p and 4f states in gold. The issue of
the incorrect 5p1/2 levels predicted by SR+SO is qualita-
tively similar to the 6p1/2 issue seen in thorium. However,
we also see that the 4f5/2 and 4f7/2 levels differ between
SR+SO and Dirac. These issues again highlight the need
to use caution when using similar treatments of the SO
term, particularly when including semi-core states in the
valence.

The findings of the present strudy present strong evi-
dence for the usefulness of the Dirac method when study-
ing solids containing heavy elements. The Dirac method
allows for the correct radial and angular functions to be
included in the calculation from the start and also pro-
vides a foundation for building in additional terms in the
Dirac-Kohn-Sham equations. In particular, the effective
vector potential terms that depend on the current density
can be added in order to provide a more complete descrip-
tion of relativistic effects in materials. We have shown
that the SR and SR+SO methods cannot simultaneously

predict the equilibrium properties and electronic struc-
ture found when using the Dirac method. These differ-
ences are likely to become increasingly important under
higher compression, where we expect the Dirac method
to be most useful.
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Physical Review B 90, 115427 (2014).

57 P. Novak, Calculation of spin-orbit coupling.
Notes incporporated with the Wien2k code,
http://susi.theochem.tuwien.ac.at/reg_user/

textbooks/novak_lecture_on_spinorbit.pdf.
58 A. MacDonald, W. Picket, and D. Koelling, Journal of

Physics C: Solid State Physics 13, 2675 (1980).
59 A. Gulans, S. Kontur, C. Meisenbichler, D. Nabok,

P. Pavone, S. Rigamonti, S. Sagmeister, U. Werner, and
C. Draxl, Journal of Physics: Condensed Matter 26,
363202 (2014).

60 E. v. Van Lenthe, J. Snijders, and E. Baerends, The Jour-
nal of chemical physics 105, 6505 (1996).

61 V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren,
K. Reuter, and M. Scheffler, Computer Physics Commu-
nications 180, 2175 (2009).

62 W. P. Huhn and V. Blum, Physical Review Materials 1,
033803 (2017).

63 J. P. Perdew and Y. Wang, Physical Review B 45, 13244
(1992).

64 J. P. Perdew, K. Burke, and M. Ernzerhof, Physical Re-
view Letters 77, 3865 (1996).

65 R. Armiento and A. E. Mattsson, Physical Review B 72,
085108 (2005).

66 W. Gordon, Zeitschrift für Physik 50, 630 (1928).
67 D. Koelling and B. Harmon, Journal of Physics C: Solid

State Physics 10, 3107 (1977).
68 J. K. e. a. Dewhurst, “The elk code,” http://elk.

sourceforge.net.
69 P. Blaha, K. Schwarz, G. K. Madsen, D. Kvasnicka, and

J. Luitz, An augmented plane wave+ local orbitals pro-
gram for calculating crystal properties (2001).

70 L. Nordström, J. Wills, P. H. Andersson, P. Söderlind, and
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