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Previous works on deformed graphene predict the existence of valley-polarized states, however,
optimal conditions for their detection remain challenging. We show that in the quantum Hall regime,
edge-like states in strained regions can be isolated in energy within Landau gaps. We identify precise
conditions for new conducting edges-like states to be valley polarized. By appropriate design of strain
profiles these states can be positioned at chosen locations in the sample. A map of local density of
states as a function of energy and position reveals a unique braid pattern that serves as a fingerprint
to identify valley polarization.

PACS numbers: 72.80.Vp, 73.63.Nm, 73.43.–f, 81.40.Jj

Strained graphene has emerged as an important tool to
implement valleytronic based devices [1–14] and in par-
ticular, in protocols for quantum computation [15]. Re-
cent experimental developments show that substrate en-
gineering can be used to design deformation geometries
with specific strain profiles [16–34]. Clear signatures of
valley splitting in confined geometries represent an im-
portant step in this direction, as exemplified by scanning
tunneling microscope (STM) studies on graphene quan-
tum dots [35, 36]. In extended configurations, similar
observations have been reported on multiple fold struc-
tures [28, 29] with preliminary evidence of valley polar-
ized states. These studies are supported by previous work
that predicted strained regions to act as waveguides for
electron currents [6–10]. However, several drawbacks still
exist because optimal conditions for creation and detec-
tion of valley split currents are not well-defined.

To take advantage of the existence of valley polarized
channels, it is crucial to separate their contribution from
graphene’s conducting background. This can be achieved
by introducing an external magnetic field large enough to
take the system into the Quantum Hall (QH) regime [37–
48]. As we show below, strained regions in the QH
regime, allow: 1) generation of valley polarized edge-like
states with energies inside Landau gaps, and 2) freedom
to position them anywhere in the sample by proper de-
sign of strain fields. This feature adds the flexibility to
accommodate contact probes to collect individual valley
currents.

STM measurements of local density of states (LDOS)
in strained graphene areas, exhibit characteristic split
peaks that reflect the breaking of Landau level (LL)
degeneracies, although not necessarily valley polariza-
tion. We address this issue by calculating the LDOS
of graphene with a fold-like deformation, that describes
the evolution of peak splittings and the emergence of the
regime with valley polarization. Furthermore, as the de-
formed region is traversed across, maximum LDOS inten-
sities for each valley evolve in energy, leading to a braid

structure that serves as a unique fingerprint of valley po-
larized states. Under bias, these states generate extra
conducting channels that can be visualized as new edge
states along the strained region.

In order to bring attention to the interplay between
deformation parameters and magnetic length, we perform
combined analytical and numerical studies based on the
continuum and tight-binding descriptions of electrons in
graphene. As we are interested in the QH regime, the
deformation is included as a perturbation for LL levels.
Our results show the existence of two distinct regimes
characterized by γ = lB/b, i.e. the ratio between the
magnetic length lB and the deformation width b. For γ >
1 the broad LL states average over the deformed region.
In contrast, for γ < 1 the magnetic confinement allows
the electrons to follow the inhomogeneous strain profile.
In this last regime, the spatial separation between the
polarized states becomes larger, an attractive feature for
quantum device design [15], as it improves the detection
of polarized currents.

I. MODEL

The electronic properties of strained graphene in the
presence of a magnetic field are described by the nearest
neighbor tight-binding Hamiltonian [50]

H =
∑
<i,j>

tijc
†
i cj + h.c. , (1)

where c†i (ci) is the creation (annihilation) field operator
in the i-th site. The modified nearest-neighbor hopping
energy, tij , is given by [39, 50–52]

tij = t0e
i∆φi,je

−β
(

lij
acc
−1

)
, (2)

where β = |∂ log t0/∂ log acc| ≈ 3, t0 is the hopping pa-
rameter of pristine graphene and acc is its lattice param-
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eter. The magnetic field is included via the Peierls sub-
stitution, ∆φi,j = 2π(e/h)

∫ ri
rj

A·dr, with ri and rj being

the nearest neighbors positions. The strain field, given
in terms of the elasticity tensor ε, modifies interatomic
distances lij = 1

acc

(
a2
cc + εxxx

2
ij + εyyy

2
ij + 2εxyxijyij

)
,

where xij and yij correspond to the projected distance
between sites i and j before the deformation. In these
expressions the x-axis is chosen along the zigzag direc-
tion. At low energies the effective continuum Hamil-
tonian is given by two copies of a 2D Dirac equation
HD
K(K′) = vFσ · p written in the valley symmetric repre-

sentation. Here vF ≈ 106m/s is the Fermi velocity [54],
σ = (σx, σy) are Pauli matrices acting on the pseudospin
degree of freedom associated with the sublattice (A,B)
structure of the honeycomb lattice, and p the electronic
momentum around the K (K’) point. The magnetic field
is implemented using the minimal coupling p = p + eA
in the Landau gauge, as A = B(−y, 0). The unstrained

system has relativistic LLs given by EN = ±~vF
lB

√
2N

with the ± representing conduction and valence bands,

respectively. The magnetic length is given by lB =
√

~
eB ,

and N is the integer label for the N-th LL.
To study the effects of strain in this regime we chose

to represent a non-uniform strain field with a model for
a fold-like deformation with a height profile

h (y) = h0e
− (y−y0)2

b2 , (3)

where h0 and b describe amplitude and width of the fold,
respectively, and y0 indicates the position of its center.
In the continuum limit, the corresponding strain tensor
εij = 1

2∂ih∂jh gives rise to the pseudo gauge field [55](
Apsx
Apsy

)
=

(
εxx − εyy
−2εxy

)
=

(
−2y

2

b4 h(y)2

0

)
, (4)

and a pseudo magnetic field Bps
K(K′) = ± Φ0

(2π)

(
−β
2acc

)
∇×

Aps, with +(−) for valley K (K’), where Φ0 is the unit of
quantum flux. The model, chosen to emphasize the spa-
tial dependence of Bps (contour plots at the bottom of
Fig. 1 (b) and (e)) reveals physical features that are deter-
mined by the extension of the deformed region b. These
features should be observable in samples with more gen-
eral non-uniform strain profiles, thus making our predic-
tions relevant for a broad range of experimental setups.
In addition to Aps, strain introduces an effective scalar
field [55–59] that is less important for the valley polarized
regime as discussed in the Supp. Mat. [60].

The electron dynamics is governed by [41, 43, 50, 51]:

HK(K′) = ~vFσ ·
(
−i∇− e

~
A± β

2acc
Aps

)
. (5)

Since we are interested in the QH regime, Aps due to
the deformation is treated as a perturbation. Because
of the x−direction translation invariance, Eq. (5) allows

solutions of the form Ψ(x, y) = ψ(y)eikx. The effective
one-dimensional Hamiltonian reduces to(

0 Ô ∓ t′(ξγ)2εỹỹ
Ô+ ∓ t′(ξγ)2εỹỹ 0

)
ψ(ỹ) = Eψ(ỹ) ,

(6)

with Ô = ~ωc√
2

(∂ỹ + ỹ), Ô+ = ~ωc√
2

(−∂ỹ + ỹ) and

ωc =
√

2vF
lB

. Dimensionless coordinates are defined as

x̃ = x/lB , ỹ = (y/lB − k̃), k̃ = klB and t′ = β~vF /acc ≈
13.9eV is the effective hopping. The deformation param-
eter ξ = (h0/b) characterizes the strain intensity εM =

ξ2/e (e = Euler number), and εỹỹ = (ỹ + k̃)2e−2(ỹ+k̃)2γ2

is the dimensionless strain tensor.

The analysis of the continuum model is done with per-
turbation theory techniques for energy and eigenstates
with unperturbed spinor eigenstates given by:

Ψ0(x̃, ỹ) =
1√
2

√
lB
Lx

(
ψN−1(ỹ)
±ψN (ỹ)

)
eik̃x̃ , (7)

where ψN (ỹ) = 2−N/2(N !)−1/2e−ỹ
2/2HN (ỹ) , HN (ỹ) is

the Hermite polynomial of N-th order, Lx (→ ±∞) rises
from the normalization of the plane wave and ± corre-
sponds to positive and negative energies, respectively.

The change in the energy of the N -th LL is

∆EN (k̃) = −t′(ξγ)2

∫ ∞
−∞

εỹỹ(ỹ, k̃)ψN−1(ỹ)ψN (ỹ)dỹ .

(8)
The analytic solution of the integral provides an exact
expression for the energy corrections and allows to de-
rive expressions for the reduced gaps at large and small
values of γ (see Fig. 1 and Supp. Mat. [60]). The clos-
ing of gaps between consecutive LLs is the criteria used
to establish convergence of the perturbation expansion.
As discussed in Supp. Mat. [60], this condition implies

εM < ~ωc
(√

N + 1−
√
N
)
/(0.112t′e) .

For a fixed strain value (ξ = const.), the first LL cor-
rections are:{

∆E1 = ±c1t′ξ2γ−1 +O[γ−3], for γ � 1 ,
∆E1 = ±c2(3)t

′ξ2γ +O[γ3], for γ � 1 .
(9)

with constant values c1 ≈ 0.1, c2 ≈ 0.2 and c3 ≈ 0.3.
These expressions are confirmed by higher order results
(see Supp. Mat. [60]), as well as by numerical solu-
tions for Eq. (1) implemented in a ribbon geometry with
zigzag termination along the fold axis direction (ribbon’s
widths were appropriately chosen to avoid edge effects).
We show that, in contrast to previous works [2, 29, 39–
41], valley polarized currents can be generated even in
perfect symmetric configurations and generic inhomoge-
neous strain fields in the appropriate regimes.
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FIG. 1. (Color online) (a) and (d) Comparison between continuum (blue (K) and red (K’)) and tight-binding (cyan) band
structure results for deformed graphene in the QH regime. (b) and (e) Probability density distributions for k states identified
in (a), and (d). Bottom: contour plot of pseudomagnetic field with maximum values of Bps

M = 82T (b), and Bps
M = 2.3T (e).

Parameters: (a) and (b) γ = 2.7, b = 20acc, ξ = 0.2, maximum strain εM = 1.5% and (d) and (e) γ = 0.07, b = 800acc,
ξ = 0.22, εM = 1.7%. B = 11T for both cases. Panels (c) and (f): Scaling of the first LL energy correction ∆E1 in units of
(ξ2t′), as a function of γ and 1/γ2 ∝ B, respectively. Continuum (blue) lines represent exact evaluation of energy corrections
while dashed (orange) lines correspond to analytic expressions in the asymptotic regimes given by Eq. (9).

II. RESULTS

Fig. 1 shows a comparison between continuum and
tight-binding results for fixed B = 11T . Panels (a) and
(d) show band structure results for γ > 1 and γ < 1
respectively, with parameters appropriate for currently
available experimental realizations [25–34]. The general
profile for both band structures shows modifications in
gaps between LLs. As expected, the pseudo field pre-
serves electron-hole symmetry [61] and the zeroth-LL is
not affected. For a given level, the two regimes exhibit
different number of local energy minima and maxima,
indicated by (k1,±; k2,±) in the first LL for the K valley
(results for K ′ are obtained by spatial inversion). The
finer structure that develops at higher LLs is produced
by the inhomogeneous nature of the strain field revealing
a larger number of states affected at higher energies. No-
tice the excellent agreement between analytic (blue solid
line) and numerical (cyan dots) results in both regimes.
In panels (b) and (e), probability densities are presented
for the states color-coded by the dots in (a) and (d),
on top of corresponding pseudo magnetic field contours.
For γ > 1, as the confinement due to the external field is
larger than the extent of the deformation, the electronic
density is spread beyond the region of the pseudo field,
while for γ < 1 states are localized at four distinct re-
gions following the pseudo field profile. These features
are a manifestation of valley polarization in space.

Panels (c) and (f) depict the different scaling of max-
ima and minima energy corrections for the first LL,

∆E1 = ∆E1/(ξ
2t′), obtained with Eq. (8) as function of

γ and 1/γ2, respectively (blue online). Data is presented
for valley K (identical results for K ′). The four energy
corrections for states (k1,±, k2,±) identified in panel (d)
are plotted. The dependence with γ in panel (c) shows
the vanishing of the correction at γ = 1 for states labeled
by k1,±, signaling the change in regimes from γ < 1 to
γ > 1. For γ � 1 the correction vanishes as expected be-
cause Bps is concentrated in a narrower region compared
to the LL confinement, even when |Bps| � |B|. The de-
pendence for γ < 1 is better appreciated in panel (f),
where ∆E1 is plotted as a function of 1/γ2. Notice that
the asymptotic behavior indicates vanishing of the cor-
rections as the pseudo field decreases in magnitude while
occupying a larger region of the sample. The spreading
of Bps in a larger area allows for a definite resolution of
its sign alternation, leading to the spatial separation of
the four states. The exact solution for all values of γ is
compared with the analytic expression (Eq. (9)), shown
with dashed lines (orange online), exhibiting excellent
agreement in the two regimes. For γ � 1, the expression
for LL energy, EN + ∆EN ∝

√
(B ±BpsM ), reproduces

the expected scaling for an effective magnetic field [60].
Colored areas in Fig. 1 (c) and (f) depict the transition
between γ � 1 and γ � 1 regimes.

Calculation of LDOS to second order provides signa-
tures of the transition that could be observed in STM
measurements as shown in Fig. 2. Results for LDOS at
valleys K and K’ (blue and red online) are presented for
values of γ at both boundaries of each colored shaded area
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FIG. 2. (Color online) LDOS for valleys K and K’ (blue
and red) for deformations (h0, b): (a) (9acc, 60acc), (b)
(25acc, 200acc), and (c) (95acc, 600acc), with different values
of strain smaller than 1%, and external fields, B = 13T (top
panels) and 3T (bottom). Pseudomagnetic-field contour plots
are shown on top of the corresponding LDOS. Results ob-
tained for positions where the pseudo field is maximum, as
depicted with the red circles.

in Fig. 1 (c) and (f), corresponding to B = 13T, 3T . The
LDOS is plotted at positions marked by the red dot on
the Bps contour plots (presented for a fixed length to em-
phasize the different widths b used). Although some pan-
els show peak splittings in the LDOS, not all splittings
represent valley polarized regimes. As panel (a) shows,
there is a broadened LL peak for B = 13T (γ = 0.83)
and a split peak for B = 3T (γ = 1.73), not valley polar-
ized. In contrast, panel (b) shows broadened peaks for
both fields (γ = 0.52 and γ = 0.25). As predicted, valley
polarization is only clearly resolved for values γ � 1, as
shown in panel (c) (γ = 0.17 and γ = 0.08). Valley po-
larized peaks resemble van-Hove singularities represent-
ing new edge states emerging at the deformed region. In
all cases, peak energies can be obtained from Eq. (8),
and splittings could be engineered by appropriate choice
of the strain intensity for fixed γ.

To further investigate valley splittings, Fig. 3(a) shows
LDOS vs Energy curves for K and K’ valleys (blue and
red) at different positions across the deformation for
γ = 0.08. As one moves from one side of the deforma-
tion to the other (y axis), the maxima LDOS intensities
braid in a precise pattern that distinguish each valley
contribution. The origin of this peculiar pattern can be
traced back to Fig. 1, where the energy difference be-
tween states from valleys K and K’ is a consequence of
different signs of Bps

K(K′). For example, at the position

indicated by the blue dot (y ' 25nm), the LDOS peak
at low energy corresponds to valley K, while at the red
dot position (y ' 75nm), it corresponds to valley K’. As
Bps changes across the deformation, the magnitude of
the splittings also change resulting in the braiding sig-
nature. Panel (b) shows LDOS with contributions from
both valleys (black curves) and highlights the evolution of
valley polarization for particular positions across the rib-
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FIG. 3. (Color online) (a) LDOS vs Energy at different po-
sition across the deformation (y-direction) for valleys K and
K’ (blue and red). The pseudo field profile for valley K is
displayed by the colored bar. (b) LDOS x Energy for specific
positions marked by colored dots in the pseudo field profile.
Curves were enlarged from (a) for clarity. Black curves repre-
sent the LDOS with contribution from both valleys. Param-
eters: B=13T, b = 600acc, εM = 1.7%, and γ = 0.08. (c)-(e)
Results obtained for a zigzag ribbon with B=13T. (c) Two
terminal conductance along the deformation. LDOS x En-
ergy at different position across the deformation (d) γ = 0.08
and (e) γ = 2.8.

bon. Peak splittings are still observed at positions with
Bps = 0 (black and gray dots), due to the finite exten-
sion of wave functions and the inhomogeneous Bps. Al-
though all panels show a double peak structure, only two
of them correspond to valley polarized states, emphasiz-
ing the relevance of the braiding structure to detect valley
polarization. These new states will appear in transport
measurements as four new conducting channels at the de-
formed region. Fig. 3(c) compares conductance results,
obtained with Green’s function methods [62], for ribbons
with different strains intensities. As expected, new con-
ductance plateaus appear at energies corresponding to
van Hove singularities. Appropriate space separation be-
tween these channels can be adjusted by choosing b, thus
enhancing the collection of separate valley currents. Fur-
thermore, these channels are robust against edge disorder
as the deformation resides inside the sample.

Finally, differences between regimes γ > 1 and γ < 1
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are clearly identified in Fig. 3 (d) and (e), where tight-
binding results for LDOS peaks are presented. Panel (d)
(γ = 0.08) shows braiding features visible in several Lan-
dau levels. At higher levels gaps close and valley polariza-
tion vanishes. In panel (e) (γ = 2.8), it is still possible to
distinguish peak splittings, however the braiding pattern
is absent. Valley polarization disappears for γ > 1.

III. CONCLUSIONS

In conclusion, deformed graphene in the QH regime
provides a perfect playground to create valley polarized
conducting channels. These appear whenever the sample
is set up in the regime lB/b � 1, at energies within LL
gaps and at chosen locations in the sample. The separa-
tion of valley polarized states give rise to a unique braid

pattern that should be observable in STM measurements
of LDOS as the deformation is crossed. Hence, extended
deformed graphene configurations offer novel and versa-
tile setups to design electronic devices.
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Vanević, Solid State Comm. 166, 70 (2013).
59 D. Midtvedt, C. H. Lewenkopf, and A. Croy, 2D Materials

3, 011005 (2016).
60 See Supplemental Material at [URL will be inserted by

publisher] for derivation of asymptotic behavior for Landau
level energy corrections and discussions about scalar field
effect.

61 B. Amorim, A. Cortijo, F. de Juan, A. G. Grushine, F.
Guinea, A. Gutiérrez-Rubio, H. Ochoa, V. Parente, R.
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