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Here we propose an exact formalism, off-shell effective energy theory (OET), which provides a
thermodynamic description of a generic quantum Hamiltonian. The OET is based on a partitioning
of the Hamiltonian and a corresponding density matrix ansatz constructed from an off-shell extension
of the equilibrium density matrix; and there are dual realizations based on a given partitioning. To
approximate OET, we introduce the central point expansion (CPE), which is an expansion of the
density matrix ansatz, and we renormalize the CPE using a standard expansion of the ground
state energy. We showcase the OET for the one band Hubbard model in d=1, 2, and ∞, using a
partitioning between kinetic and potential energy, yielding two realizations denoted as K and X .
OET shows favorable agreement with exact or state-of-the-art results over all parameter space, and
has a negligible computational cost. Physically, K describes the Fermi liquid, while X gives an
analogous description of both the Luttinger liquid and the Mott insulator. Our approach should
find broad applicability in lattice model Hamiltonians, in addition to real materials systems.

Computing the ground state properties of quantum
Hamiltonians requires the search of an exponentially
large space of wave functions. To formally resolve the
issue of large dimensionality, one can use effective energy
approaches, which partition the Hamiltonian of a given
class into some external and internal components; where
each component consists of operators and corresponding
coupling constants. The constrained search[1] can then
be used to define the energy of the internal contribu-
tion in terms of the internal coupling constants and the
expectation values of the external operators. For exam-
ple, in density functional theory (DFT)[2–4], the internal
component is the kinetic and interaction energy, and the
external component is the coupling between the density
and the external potential; and the resulting energy func-
tional depends on the density and the coupling constants
of the kinetic and interaction energy. The ground state
wave function is then fully determined from the corre-
sponding external expectation values and internal cou-
plings, but such a construction is only useful if robust
approximations can be formulated.

Here we introduce off-shell effective energy theory
(OET), which employs a wave function ansatz deter-
mined from the internal coupling constants and both the
internal and external expectation values. Unlike the
usual effective energy theories, such as DFT, an arbitrary
set of expectation values will not generally correspond to
any ground state within the class of Hamiltonians; but
OET will yield the exact ground state when minimizing
the total energy over all expectation values. OET opens
a new avenue for developing novel approximations. We
introduce the central point expansion (CPE), which is an
expansion of the OET ansatz in terms of the internal cou-
plings and the internal expectation values, while treating
the external expectation values non-perturbatively. The
CPE can then be renormalized (RCPE) using the stan-
dard expansion of the energy in terms of the external

expectation values. Finally, we exploit the possibility of
inverting the role of internal and external components,
yielding a dual formulation of our theory; which will be
critical for an accurate description of the Hamiltonian
over all parameter space.

We apply OET to the single band Hubbard model,
which is a canonical model of interacting Fermions[5, 6]
with many practical applications, and this will pro-
vide a stringent benchmark of the OET within RCPE.
For d=1, the Bethe Ansatz (BA) efficiently provides
the exact solution[7, 8]; while for d=∞, dynamical
mean-field theory (DMFT)[9–11] provides the solution
using numerically exact, but computationally intensive
methods[12, 13]. For an arbitrary dimension, there are
powerful but expensive methods which might provide re-
liable solutions, though each typically has severe limita-
tions (e.g. quantum Monte-Carlo[14, 15] has the minus
sign problem[16, 17], etc.). Our approach yields favor-
able agreement with the aforementioned approaches over
all parameter space for the single band Hubbard model
in d=1, 2, and ∞, which is remarkable for a single for-
malism.

We begin by considering an arbitrary Hamiltonian
which has been partitioned into two parts, Ĥ = kK̂ +
xX̂ , where each contribution can be exactly solved.
Though this is not the most general scenario that we
consider, it illustrates all key features of the theory. We
begin by choosing kK̂ as the internal component and xX̂
as the external component; and this choice is referred to
as the K formulation. The effective energy theory then
yields the density matrix at a given temperature as

ρ(k,X ) = argmin
ρ̂
{〈kK̂ + β−1 ln ρ̂〉ρ̂|〈X̂ 〉ρ̂ = X}, (1)

where X ∈ MX̂ , with MX̂ = {〈X̂ 〉ρ̂ : ρ̂ ∈ L} and
L is the Liouville space of all possible density matrices;
and we use the notation 〈Â〉ρ̂ = Tr(Âρ̂). The function
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ρ(k,X ) provides the formal solution to Ĥ for arbitrary
values of k and x. Our main strategy is to introduce a
trial density matrix using the OET ansatz

ρ̃(k,X,K ) = CP(k,X )ρK̂ (K )P(k,X ), (2)

where C is the normalization, K ∈ MK with MK =
{〈K̂ 〉ρ̂ : ρ̂ ∈ L}, ρK̂ (K ) = C′ exp(κK̂ ) satisfying
〈K̂ 〉ρK̂ (K ) = K , where C′ is the normalization and κ ∈ R
parameterizes ρK̂ (K ). The exact projector P(k,X ) is
defined by requiring Eq. 2 to satisfy the on-shell con-
dition: for any k ∈ R and X ∈ MX̂ there exists a
K? ∈ MK such that ρ̃(k,X,K?) = ρ(k,X ). We can
solve for P(k,X ) using the on-shell condition

P(k,X ) =
1
√
ρg

(√
ρgρ(k,X )

√
ρg
)1/2 1

√
ρg
, (3)

where ρg = ρK̂ (K?). Finally, the ground state energy
can be constructed as

E(k, x) = lim
β→∞

min
K∈MK ,X∈MX

〈Ĥ〉ρ̃(k,X,K ). (4)

It is useful to introduce the map Υ(k,X,K ) =
(〈K̂ 〉ρ̃(k,X,K ), 〈X̂ 〉ρ̃(k,X,K )), which is the essential quan-
tity needed to execute the theory. Our formalism has
recast the exact solution of the Hamiltonian to a form
which will prove to be amenable to approximations.

We now introduce the key approximation scheme: the
central point expansion (CPE). The CPE amounts to
choosing an appropriate K? and Taylor series expanding
ρ̃(k,X,K ) in k and K about some central point. Here
we choose the central point ρ̂c ≡ C1̂, where C is the nor-
malization, which yields (Kc, Xc) = (〈K̂ 〉ρ̂c , 〈X̂ 〉ρ̂c), and
we choose K? such that P(k,Xc) = 1 within the CPE.
Expanding P(k,X ) to zeroth order in k about 0 and
ρK̂ (K ) to first order in K about Kc, we find K? = Kc

and we have

P(k,X ) ≈ P(0, X ) =
√
ρX̂ (X )ρ−1

X̂
(Xc), (5)

ρK̂ (K ) ≈ ρK̂ (Kc)(1 + 〈〈∆K̂; ∆K̂〉〉−1
ρX̂(Xc)∆K̂∆K ), (6)

where ∆K̂ = K̂ −Kc1̂, ∆K = K −Kc, and 〈〈Â; B̂〉〉ρ̂ =

Tr(Â
√
ρ̂B̂
√
ρ̂), where the latter is known as the symmet-

ric correlator [18]. To evaluate the ground state proper-
ties we only need to evaluate ∆K̂ and ∆X̂ = X̂ − Xc1̂
under the CPE approximated ρ̃(k,X,K ), denoted ρ̄ for
brevity

〈∆K̂ 〉ρ̄ = λ
(
〈∆K̂〉ρX̂(X) + Z(∆X )∆K

)
, (7)

〈∆X̂ 〉ρ̄ = λ
(

∆X +
〈〈∆X̂; ∆K̂〉〉ρX̂(X)

〈〈∆K̂; ∆K̂〉〉ρX̂(Xc)

∆K
)
, (8)

λ =
(

1 + 〈∆K̂〉ρX̂(X)〈〈∆K̂; ∆K̂〉〉−1
ρX̂(Xc)∆K

)−1

, (9)

Z(∆X ) = 〈〈∆K̂; ∆K̂〉〉ρX̂(X)〈〈∆K̂; ∆K̂〉〉−1
ρX̂(Xc), (10)

where ∆X = X −Xc. The preceding expectation values
approximate the map Υ(k,X,K ), and given that k = 0
within the CPE, we use a distinct symbol Ῡ(X,K ) =
(〈K̂ 〉ρ̄, 〈X̂ 〉ρ̄).

For a number of important Hamiltonians, including the
Hubbard model and its generalizations, we notice that
〈∆K̂〉ρX̂(X) = 0, which implies that 〈〈∆X̂; ∆K̂〉〉ρX̂(X) =
0, and we refer to this scenario as the orthogonal re-
sponse condition (ORC)[18]. For Hamiltonians with a
given partition that satisfy the ORC, the CPE satisfies
the exact condition Ῡ (∆K, 0) = (∆K, 0), and has the
form Ῡ (∆K,∆X ) = (Z(∆X )∆K,∆X ); all subsequent
discussions of the CPE will presume the ORC. The CPE
will provide a reliable solution for ∆X � ∆K and may
provide reasonable solutions for ∆X ≈ ∆K .

Though the CPE has a non-perturbative structure
in X , in addition to the favorable characteristics out-
lined above, it does not have the correct second order
expansion coefficient in ∆X . Therefore, we introduce
the renormalized central point expansion (RCPE)[18],
which maintains the form of Ῡ but replaces Z → R(Z).
Here we introduce perhaps the simplest scheme where
R(Z) = γ0Z

γ1 + (1− γ0)Zγ2 and γ1, γ2 are chosen from
an asymptotic analysis while γ0 is chosen to reproduce
perturbation theory to second order. It should be em-
phasized that R has no free parameters.

The K formalism takes kK̂ as internal and xX̂ as ex-
ternal, as previously defined. Alternatively, we can invert
internal and external to create a dual formulation, which
we refer to as the X formulation; and this can be obtained
by the substitutions

K ↔ X , k ↔ x, K ↔ X, K̂ ↔ X̂ . (11)

All equations within the K formalism will have a corre-
spondence in X [18], and therefore a subscript of K or
X will be introduced when necessary. The X formula-
tion provides an opposite viewpoint of the physics, and
exploring both K and X will provide a more robust de-
scription of the solution as each formulation will repro-
duce the exact second order expansion of the energy in
the corresponding limit (e.g. using K for small x/k).
There could be many schemes to choose between K and
X , and the total energy is a natural candidate. However,
the RCPE may give energies that are lower than the ex-
act solution in its dual regime (e.g. using K for large
x/k), and thus using energy as a switching criteria will
have to wait for approximations beyond the RCPE. Here
we explore both K and X approaches over all parame-
ter space[18], and simply use the crossover of an energy
derivative (e.g. double occupancy, density, etc.) when
switching is employed.

Several simplifications were made in the above exposi-
tion of the OET formalism and its approximations. Now
we consider a more general case applicable to many im-
portant Hamiltonians including Hubbard models. We
begin by considering a Hamiltonian partitioned into two
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Figure 1. Double occupancy for the Hubbard model in various
dimensions. (a) The d=∞ Bethe lattice for various dopings,
solved within DMFT, GA, and OET. (b) The d=1 lattice,
solved within the BA, GA, and OET. (c) The d=2 square
lattice solved with GA, OET, and selected points using VMC
and AFQMC [19].

parts, where each portion is now resolved onto a set of
commuting operators

Ĥ = ĤK + ĤX =
∑
m

kmK̂m +
∑
n

xnX̂n, (12)

where [K̂m, K̂m′ ] = [X̂n, X̂n′ ] = 0. A set of quantities
{Ai} (e.g. operators, expectation values, etc.) can be en-
coded as a vector, which is denoted as A = (A1, A2, . . . ).
For example, we have Ĥ = k·K̂+x·X̂. We define the den-
sity matrix determined from A as ρÂ(A) = C exp(α · Â)

satisfying 〈Â〉ρÂ(A) = A, where α is a vector of real
numbers, and the domain of ρÂ(A) is denoted MÂ =

{〈Â〉ρ̂ : ρ̂ ∈ L}. The ground state energy can then be
written as

E(k,x) = lim
β→∞

min
K∈MK̂,X∈MX̂

〈Ĥ〉ρ̃(k,X,K). (13)

We also define the map Υ(k,X,K) =

(〈K̂〉ρ̃(k,X,K), 〈X̂〉ρ̃(k,X,K)), which provides the com-
plete solution to the Hamiltonian. In order to implement

the CPE in general, we need to find the independent
constraints between K̂ and X̂ (e.g. density), denoted as
Ĉ, where Ĉi = Ai · K̂ = Bi · X̂. The central point will
be chosen as ρ̂c = ρĈ(C) where [C]i = Ai ·K = Bi ·X.

Here we test our formalism on the single band Hubbard
model

Ĥ =
∑
pσ

εpn̂pσ +N(Ud̂−
∑
σ

µσn̂σ), (14)

where p labels a point in the first Brillouin Zone, N is the
total number of sites in the lattice, n̂σ = (1/N)

∑
j n̂jσ

where j labels a real space lattice point and n̂jσ = â†jσâjσ,
µσ = µ + h(δ↑σ − δ↓σ), and d̂ = (1/N)

∑
j n̂j↑n̂j↓. To

connect with Eq. 12, we identify K̂ = (. . . , n̂pσ, . . . ),
X̂ = (d̂, n̂↑, n̂↓), and Ĉ = (n̂↑, n̂↓). For a given constraint
(n↑, n↓), we parameterize K ∈ MK and X ∈ MX using
∆d = d − n↑n↓ and ∆npσ = npσ − nσ, where ∆d ∈
[− min (p0, p2) ,min (p↑, p↓)] with p0 = (1− n↑)(1− n↓),
pσ = (1− nσ̄)nσ, and p2 = n↑n↓; and ∆npσ ∈ [−nσ, 1−
nσ] with the constraint

∑
p ∆npσ = 0; and for brevity,

we denote ∆n = (. . . ,∆npσ, . . . ).
We begin by presenting the CPE for both the K and

X formalisms[18], where the K formalism yields

ῩK(∆n,∆d) = (ZK(∆d)∆n,∆d), (15)

[ZK(∆d)]pσ = Z
(σ)
K (∆d) = AσK(∆d)/AσK(0), (16)

AσK(∆d) = 〈〈â†jσ; âjσ〉〉2ρX̂(∆d), (17)

where ρX̂(∆d) =
⊗
j

ρj(∆d) and

ρj(∆d) = diag(p0 +∆d, p↓−∆d, p↑−∆d, p2 +∆d). (18)

The X formulation yields

ῩX (∆n,∆d) = (∆n, ZX (∆n)∆d), (19)
ZX (∆n) = AX (∆n)/AX (0), (20)

AX (∆n) = (1/N4)
∏
σ|
∑
p〈〈â†pσ; âpσ〉〉ρK̂(∆n)|2, (21)

where ρK̂(∆n) =
⊗
pσ
ρpσ(∆npσ) and

ρpσ(∆npσ) = diag(1− nσ −∆npσ, nσ + ∆npσ). (22)

The RCPE for the K formalism can be con-
structed as ΥK(k,X,K) = (RK(k,ZK)∆n,∆d) with
[RK(k,ZK)]pσ = γ0(Z

(σ)
K )γ1 +(1−γ0)(Z

(σ)
K )γ2 and γ1 = 1

and γ2 = 1/2 [18]. Similarly, for the X formalism
we have ΥX (x,K,X) = (∆n,RX (x, ZX )∆d), where
RX (x, ZX ) = γ0(Z

(σ)
X )γ1 + (1 − γ0)(Z

(σ)
X )γ2 and γ1 = 1

when there is no short range magnetic order (i.e. para-
magnetic state in d=∞) while γ1 = 1/2 otherwise; and
γ2 = 1/4 in all cases[18]. In both K and X , γ0 is uniquely
determined from perturbation theory, thus there are no
free parameters within the RCPE.
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Figure 2. Magnetization M vs. magnetic field h for the Hub-
bard model in d=∞ and d=1. (a) The d=∞ Bethe lattice
solved within DMFT (insulating results from Ref. [9], de-
noted with points), GA, and OET. (b) The d=1 lattice solved
within the BA, GA, and OET for U/t = 1, .., 10 (right to left).

It should be noted that within the CPE (i.e. without
renormalization), the classic Gutzwiller approximation
(GA)[20–24] to the Hubbard model is rigorously recov-
ered, providing a qualitative description of the Fermi liq-
uid phase; similar to slave Bosons[25–27] and DMET[28–
30]. Therefore, the RCPE in the K formulation is a clear
improvement of Gutzwiller and related approximations.
Alternatively, the X formulation within the RCPE will
be shown to provide a robust description of the Luttinger
liquid and the Mott insulator, and we are not aware of
a corresponding result; though a related approach has
been explored in the Baeriswyl wave function and its
extensions[31–36]. Furthermore, we note that the maps
ΥK,ΥX directly provide a description of the physical
space of all (〈∆n̂〉ρ̂, 〈∆d̂〉ρ̂), yielding a concrete approxi-
mation that resolves the N-representability problem[37–
42] in this class of Hamiltonians. Therefore, OET pro-
vides an alternative viewpoint to this problem, which is
of strong interest in the field of quantum chemistry and
solid state physics[43–52].

We now apply OET for the Hubbard model in d=1,
2, and ∞ over a broad range of t, U , and density; and
we compare to exact or state-of-the-art methods. In
infinite dimensions, DMFT is formally exact, and nu-

merical renormalization group[53] is used to solve the
DMFT impurity problem[9, 54–56] as implemented in
the “NRG Ljubljana” code[57]. In one dimension, we
employ the exact Bethe Ansatz (BA) solution[7, 8],
while in two dimensions we compare to variational quan-
tum Monte-Carlo (VMC) and Auxiliary Field Quantum
Monte-Carlo (AFQMC) [19]. Additionally, we compare
to the Gutzwiller approximation in all dimensions given
that it is an efficient approach. We choose to present
the double occupancy, density, and magnetization which
are energy derivatives, providing a more sensitive com-
parison than solely evaluating the total energy. Addition-
ally, total energies are presented for n=1 in Supplemental
Material[18].

We begin by examining the double occupancy as a
function of U/t for d=∞ at half-filling (see Figure 1a).
The DMFT results are denoted by blue lines, while the
Gutzwiller results are in green. Gutzwiller yields a qual-
itative description of the metallic phase, whereas the in-
sulator is improperly described as a collection of atoms.
The OET results are given in red, with a dashed line
for K and solid for X , showing favorable agreement with
DMFT in both the metallic and insulating regimes. The
inset illustrates OET for doped cases, showing excellent
agreement with DMFT. We now turn to d=1 and the d=2
square lattice with nearest neighbor hopping (see Figure
1b, c). In one dimension (Figure 1b), the OET X formu-
lation shows remarkable agreement with the BA, both at
half filling and for doped cases, and the K formulation is
found not to be necessary[18]. In two dimensions, OET
is also in good agreement with the VMC and AFQMC
results, both at half filling and for the doped cases; and
here continuity is used to switch between the K and X
formulations (Figure 1c).

We now turn to the magnetization under applied mag-
netic field and the density as a function of the chemical
potential. For d=∞, OET precisely captures the mag-
netization in the metallic regime, and is in reasonable
agreement with the insulating DMFT results, though the
latter have not been recomputed with precise modern
methods (see Figure 2a). For d=1, OET has excellent
agreement over all parameters (see Figure 2b). In both
d=∞ and d=1, Gutzwiller discontinuously polarizes for
sufficiently large U . Now we consider the density as a
function of the chemical potential for U/t = 1, . . . , 10 in
d=∞ and d=1 (Figure 3). For d=∞, the system opens
a gap at a finite U , and the K and X ansatz can reason-
ably capture this behavior (Figure 3a). For d=1, it is well
known that any finite U opens a gap, and this property
is captured using the X formulation, yielding favorable
agreement over all parameters (Figure 3b). Results for
d=2 can be found in Ref. [18].

In summary, we have developed an exact formalism
(i.e. OET) and a generic approximation scheme (i.e.
RCPE) for solving the ground state of quantum Hamil-
tonians. Our approach is proven to be efficient and glob-
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Figure 3. The density (∆n = n− 1) as a function of chemical
potential (∆µ = µ − U/2) for the Hubbard model in d=∞
and d=1. (a) The d=∞ Bethe lattice solved within DMFT,
GA, and OET for U/t = 1, .., 10. (b) The d=1 lattice solved
with the BA, GA, and OET for U/t = 1, .., 16.

ally robust for the one band Hubbard model in d=1, 2,
∞. The success of our approach is based on four key
ideas: the exact OET construction, a non-perturbative
form given by the CPE, a perturbative correction given
by the RCPE, and the combination of the dual forms
K and X . Our approach can be straightforwardly ap-
plied to a multitude of important quantum Hamiltoni-
ans. Furthermore, our entire formalism can be general-
ized to finite temperature, and this will be presented in a
forthcoming paper. Finally, OET can straightforwardly
be combined with DFT, similar to DFT+DMFT[12] and
DFT+Gutzwiller[58], resulting in a highly efficient first-
principles approach to the thermodynamics of strongly
correlated materials in addition to molecules.
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