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Abstract

An extended Drude model, termed as the Gurzhi model, which takes into account the electron-

phonon and electron-electron interactions, is applied to calculate the Casimir force between two

metallic plates. It is shown that although the dielectric permittivity of the Gurzhi model has a first

order pole in the upper half-plane of complex frequencies and, thus, violates the causality principle,

it can be used in a restricted frequency interval in combination with the experimental permittivity

determined by the optical data for the complex index of refraction. The imaginary part of the

Gurzhi dielectric permittivity of Au at low frequencies demonstrates better agreement with the

permittivity given by the optical data than the simple Drude model. The Casimir pressure between

two Au plates is computed using the Gurzhi, Drude and plasma model approaches, taking into

account the optical data, as well as with the simple Drude and plasma models. The contribution of

the electron-electron scattering to the Casimir pressure is estimated. Although a comparison with

the measurement data of two precise experiments show that the Gurzhi model does not resolve the

Casimir puzzle, the obtained results suggest further clarification of this fundamental problem.
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I. INTRODUCTION

It is common knowledge that the zero-point and thermal fluctuations of the electromag-

netic field are responsible for several interesting physical phenomena which attract much

experimental and theoretical attention in the last few years. The best known example is the

fluctuation-induced force acting between two closely spaced uncharged bodies in vacuum.

At separations below a few nanometers one can neglect the presence of retardation and this

force is known as the van der Waals force. At larger separations, where the effects of retar-

dation come into play, it is conventional to speak about the Casimir force (see the recent

reviews [1–3]). Theoretical description of the van der Waals and Casimir forces is given by

the Lifshitz theory [4] which is derivable from the fluctuation-dissipation theorem of quan-

tum statistical physics, or from the scattering approach, or by summing up the oscillator

free energies in the framework of quantum field theory [5–8].

The Lifshitz theory allows computation of the van der Waals and Casimir energies, free

energies and forces given the frequency-dependent dielectric permittivities of the interacting

bodies are available. These permittivities are obtained from the complex index of refraction

which has been measured for a number of materials over some frequency regions [9]. The

characteristic feature of the van der Waals and Casimir forces is that their calculation re-

quires a knowledge of the dielectric permittivities over very wide frequency regions including

at zero frequency. The latter contributes significantly to the final result. Because of this,

it is necessary to extrapolate the available optical data down to zero frequency on theoret-

ical grounds. As an example, for metals extrapolations of this kind are usually made by

means of the Drude model which takes into account the electron-phonon interaction at low

frequencies. The physical significance and properties of the Drude model are discussed in

detail in Ref. [10].

Surprisingly, in a number of experiments performed by two different groups [11–21] it

was found that the measurement results exclude theoretical predictions of the Lifshitz theory

obtained using an extrapolation of the optical data by means of the Drude model. The same

results turned out to be in agreement with theory if the optical data reflecting the role of

core (bound) electrons are extrapolated down to zero frequency by the free-electron plasma

model [11–21]. An important role in these comparisons is played by the contribution of the

zero-frequency term of the Lifshitz formula which depends heavily on the extrapolation used.
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It seems quite unusual that the Lifshitz theory is excluded by the measurement data if the

actual relaxation properties of conduction electrons at low frequencies are taken into account

but it agrees with the data if these properties are disregarded. Taking into consideration that

the difference between two alternative theoretical predictions at the experimental separations

of Refs. [11–21] was below a few percent, attempts of solving the problem at the expense

of some background effects or computational inaccuracies have been undertaken (see, e.g.,

Refs. [22–25]).

The experimental situation was finally cleared up employing the differential force mea-

surements proposed in Ref. [26] where the theoretical predictions of the Lifshitz theory

obtained with the help of the Drude- and plasma-model extrapolations of the optical data

differ by up to a factor of 1000. The experiment of this kind [27] conclusively excluded

an extrapolation by means of the Drude model and turned out to be in agreement with

theoretical results using the plasma model.

A disagreement between theoretical predictions of the Lifshitz theory obtained using the

physically justified Drude model and measurement results from many experiments is con-

sidered as puzzling [28]. The roots of the Casimir puzzle are directly related to the fact

that according to the Drude model there is no contribution to the Casimir force from the

transverse electric mode at zero frequency [29]. As a result, at large separations between

the interacting plates the predicted Casimir force is only one half of the one predicted using

the plasma model. The single experiment performed at large separations up to 7.3 mi-

crometers [30] was interpreted as being in agreement with the Drude model prediction. In

this experiment, however, not the Casimir force alone, but up to an order of magnitude

larger force presumably originating from the so-called patch potentials was measured. The

Casimir force itself was obtained indirectly using large subtraction of some analytic expres-

sion containing two fitting parameters. According to Refs. [31, 32], this makes the results

of Ref. [30] uncertain. Various aspects of the Casimir puzzle are discussed at length in

Refs. [1, 3, 8, 10, 21, 27, 28, 33–35].

Taking into account that a fundamental understanding of the Casimir puzzle is still

missing, it seems warranted to reconsider the response of metals to the low-frequency elec-

tromagnetic field used in the Lifshitz theory. In the low frequency range, the electromagnetic

response is determined by the intraband part which is essentially governed by the behavior of

conduction electrons. Experimental studies using a variety of spectroscopic techniques show
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that much insight can be gained in the band structure properties of the materials as well as

the scattering processes carriers exhibit in their dynamics [36]. The relaxation parameter γep

of the standard Drude model is determined by the electron-phonon scattering. However, at

low frequencies electron-electron, electron-impurity, electron-surface and other interactions

contribute to the total relaxation parameter as well (see Ref. [37] and review [38]), where

in clean metallic systems electron-electron scattering is the major addition to the electron-

phonon one. It has been known that for noble metals the contribution of electron-electron

scattering γee to the relaxation parameter can be described by the Gurzhi formula [38–41]

which contains both the frequency- and temperature-dependent terms. Replacing γep in the

dielectric permittivity of the Drude model with γep+ γee, one obtains the so-called extended

Drude, or Gurzhi model for the dielectric permittivity of metals.

In this paper, we investigate possible applications of the Gurzhi model in the Lifshitz

theory for calculations of the Casimir force. We explore the analytic properties of the

Gurzhi dielectric permittivity and demonstrate that it violates the causality condition which

precludes its use over the entire frequency axis. Next, we consider the dielectric permittivities

of the Gurzhi, Drude and plasma models in combination with the measured optical data.

It is confirmed that over some frequency region below 2 eV the Gurzhi model provides a

better analytic approximation to the measured imaginary part of the dielectric permittivity

of Au than the Drude model. The Casimir pressure between two parallel plates made of Au

is computed using the optical data extrapolated down to zero frequency by means of the

Gurzhi, Drude and plasma models, and the obtained results are compared. This allowed

estimation of the possible role of electron-electron interactions in the Casimir force. The

Casimir pressures computed with different models of the dielectric permittivity are correlated

with precise experiments on measuring the Casimir interaction. It is shown that although

the Gurzhi model provides a better analytic approximation to the optical data in some

frequency range than the Drude one, it does not resolve the Casimir puzzle.

The paper is organized as follows. In Sec. II we describe the main features of the Gurzhi

model and consider its analytic properties in connection with the causality principle. Sec-

tion III is devoted to comparison between different analytic models of the dielectric permit-

tivity of Au combined with the measured optical data. In Sec. IV the Casimir interaction

computed using different permittivities is compared with the measurement results of two

precise experiments. In Sec. V the reader will find our conclusions and discussion.
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II. THE GURZHI DIELECTRIC PERMITTIVITY AND ITS ANALYTIC PROP-

ERTIES

It is well known that at sufficiently low frequencies the response of metals to electromag-

netic field is essentially described by the dielectric permittivity of the Drude model

εD(ω, T ) = 1−
ω2
p

ω[ω + iγep(T )]
, (1)

where ωp is the plasma frequency and γep(T ) is the temperature-dependent relaxation pa-

rameter determined by the process of electron-phonon scattering.

An extended version of the Drude dielectric permittivity, which is called sometimes the

Gurzhi model, takes a similar form

εG(ω, T ) = 1−
ω2
p

ω[ω + iγ(ω, T )]
. (2)

Here, however, the relaxation parameter consists of two terms

γ(ω, T ) = γep(T ) + γee(ω, T ) (3)

taking into account the processes of electron-phonon and electron-electron scattering.

The theoretical expression for γee was derived in Ref. [39] (see also Refs. [38, 40, 41])

based on the Boltzmann quantum equation for the electronic Fermi liquid and the Kubo

formula which relates the conductivity to the current-current correlation function

γee(ω, T ) = D

[

(kBT )
2 +

(

~ω

2π

)2
]

. (4)

Here, the coefficient D = π3Γ∆/(12~EF ) where EF is the Fermi level of the metal under

consideration, kB is the Boltzmann constant, ∆ = 0.75 is the fractional umklapp scattering,

and Γ = 0.55 is the averaged scattering probability over the Fermi surface. Note that

Eq. (4) has been verified in several experiments for noble metals [42–45] in the near infrared

frequency range up to the interband absorption frequencies. In so doing, the temperature-

dependent contribution in Eq. (4) is small as compared to the frequency-dependent one. For

Au, which is the metal of our interest below, one has D = 0.94 fs−1eV−2 [41].

Substituting Eq. (4) in Eq. (3), the relaxation parameter taking into account both the

electron-phonon and electron-electron scattering can be written in the form

γ(ω, T ) = C(T ) +Bω2, (5)

5



where

C(T ) = γep(T ) +D(kBT )
2, B = D

(

~

2π

)2

. (6)

The dielectric permittivity of the Gurzhi model (2), (5), besides the singular point at

ω = 0, has poles in the plane of complex frequencies determined by the roots of the quantity

iBω2 + ω + iC(T ) = 0. (7)

By solving this equation, one obtains

ω(1,2) = iξ(1,2) =
i

2B

[

1±
√

1 + 4BC(T )
]

, (8)

where ω(1) and ω(2) belong to the upper and lower half-planes, respectively.

Along the imaginary frequency axis ω = iξ the Gurzhi dielectric permittivity (2), (4)

takes the real values

εG(iξ) = 1 +
ω2
p

ξ [ξ + C(T )−Bξ2]
. (9)

As an example, in Fig. 1 εG is shown as a function of ξ for Au at room temperature using

the parameters of the Gurzhi model indicated above and the experimental parameters of the

Drude model ~ωp = 8.68 eV and ~γep(T = 295K) = 30.3 meV [41]. From Eq. (9) and Fig. 1

it is seen that the dielectric permittivity εG reaches the minimum value εG(iξ
(m)) = 1.1267

at the point

~ξ(m) =
~

3B

[

1 +
√

1 + 3BC(T )
]

= 42.2094 eV (10)

and has a break of continuity at the point ~ξ(1) = 63.3217 eV defined in Eq. (8). It is

important to note that in the region from ~ξ(1) to ~ξ(0) ≈ 64.47 eV the Gurzhi permittivity

takes the negative values and vanishes at ξ = ξ(0): εG(iξ
(0)) = 0. For ξ > ξ(0) εG increases

monotonously and goes to unity when ξ goes to infinity.

These properties are not normal for commonly employed dielectric permittivities which

must meet some necessary physical conditions. It has been known that the electric displace-

ment D(t) is determined by the values of electric field E(t) at all previous moments of time

[46]

D(t) = E(t) +

∫ ∞

0

f(τ)E(t− τ)dτ, (11)

where the function of time f(τ) is finite at all τ , depends on the properties of a medium

and defines the frequency-dependent dielectric permittivity

ε(ω) = 1 +

∫ ∞

0

f(τ)eiωτdτ. (12)
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Equations (11) and (12) constitute the mathematical formulation of the principle of causality

stating that future has no effect on the past. From Eq. (12) it is seen that in the upper

half-plane (Imω > 0) the integral converges and, thus, ε(ω) has no singular points [46].

This statement is a consequence of the principle of causality. It is easily seen also that in

the upper half-plane (including the real frequency axis) the dielectric permittivity cannot

turn into zero [46]. All the above results in the Kramers-Kronig relations which link to one

another the real and imaginary parts of the dielectric permittivity.

From Fig. 1 and related discussion it is seen that the dielectric permittivity of the Gurzhi

model does not satisfy the principle of causality and the Kramers-Kronig relations. Several

attempts to recover the Kramers-Kronig relations have been undertaken (see, for instance,

Refs. [36, 42, 47]) by introducing the so-calledmemory function, but its explicit form remains

unavailable. In fact to cancel the first order pole at the point iξ(1) in the upper half-plane

of complex frequencies it would be necessary to replace the plasma frequency squared in

Eq. (9) with the frequency- and temperature-dependent quantity

ω̃2
p(ω, T ) =

[

2iBω + 1 +
√

1 + 4BC(T )
]

g(ω)ω2
p, (13)

where g(ω) is any analytic function in the upper half-plane. In this case, however, the

physically meaningful term of the order of ω2 in Eq. (4) would be lost.

Thus, one can conclude that the Gurzhi model can be used only in some restricted

region of low frequencies as more or less good phenomenological description for the dielectric

permittivity of noble metals. In this respect it would be interesting to compare it with

other analytic models used in computations of the Casimir force and with the experimental

permittivity obtained from the measured optical data.

III. DIFFERENT MODELS OF THE DIELECTRIC PERMITTIVITY AND THE

OPTICAL DATA

It is well known that the Lifshits formulas for the Casimir free energy and pressure

are most conveniently expressed via the dielectric permittivity of plate materials along the

imaginary frequency axis. The latter quantity, in its turn, can be found by means of the

Kramers-Kronig relations

ε(iξ) = 1 +
2

π

∫ ∞

0

ω Imε(ω)

ω2 + ξ2
dω (14)
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or

ε(iξ) = 1 +
2

π

∫ ∞

0

ω Imε(ω)

ω2 + ξ2
dω +

ω2
p

ξ2
(15)

expressing ε(iξ) through the imaginary part of ε defined along the real frequency axis.

Equation (14) is valid for the permittivities that are regular at zero frequency or have a first

order pole [8, 46], whereas Eq. (15) is obeyed by the permittivities having a second order

pole and the residue ω2
p at zero frequency [8, 48].

Here we compare the imaginary parts of the dielectric permittivities of Au found from

the measured optical data [9] and given by the Drude and Gurzhi models in the frequency

region below 2 eV, i.e., well below the first absorption frequency.

In Figs. 2(a) and 2(b) the imaginary part of the dielectric permittivity of Au is shown

by dots using the values for real and imaginary parts of the complex index of refraction of

Au measured at frequencies above 0.125 eV [9]. The solid and dashed lines demonstrate

the imaginary part of the dielectric permittivity of Au given by the Gurzhi (2) and Drude

(1) models, respectively. In Fig. 2(a) the experimental values of parameters ~ωp = 8.68 eV

and ~γep(T = 295K) = 30.3 meV [41] have been used. These parameters, however, are

sample-dependent [22]. Because of this, in Fig. 2(b) Imε given by the Gurzhi and Drude

models are plotted using the values ~ωp = 9.0 eV and ~γep(T = 295K) = 35.0 meV which

were found most appropriate for Au films employed in precise measurements of the Casimir

force [11–21, 27].

As is seen in both Figs. 2(a) and 2(b), the Gurzhi model better reproduces the optical

data than the Drude model over the frequency region from 0.3 to 2 eV. From the comparison

of Fig. 2(a) and Fig. 2(b) it is seen also that the values of ωp and γ used in experiments

on measuring the Casimir force result in a better agreement between Imε obtained from

the optical data and from the Gurzhi and Drude models than the values of Ref. [41]. This

result is readily illustrated by comparing insets in Figs. 2(a) and 2(b) where the frequency

regions from 0.06 to 0.2 eV are shown on an enlarged scale. From the inset in Fig. 2(a) one

can see that there is a break of continuity between the values of Imε found from the optical

data at the minimum frequency, where they are available, and from the analytic models. By

contrast, in the inset to Fig. 2(b) there is a smooth extrapolation of the optical data by the

Gurzhi and Drude models in the frequency region from 0 to 0.125 eV.

As mentioned in Sec. I, one of the approaches to the calculation of the Casimir force

consists in using the optical data for Imε over the entire frequency range where they are
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available (from 0.125 to 9919 eV), extrapolated to below 0.125 eV (i.e., in the region from

0 to 0.125 eV) by means of the imaginary part of the Drude model [i.e., by the dashed

line in Fig. 2(b)]. In doing so the values of ε(iξ) are obtained from Eq. (14) (there is no

need in extrapolation of the optical data to the region above 9919 eV). This is the so-called

Drude model approach to calculating the Casimir force which takes into account all real

processes involving conduction and core electrons at frequencies above 0.125 eV and the

electron-phonon interaction occurring at lower frequencies.

Another approach to calculate the Casimir force uses Imε determined by the optical data

of Au only over the frequency range from 2 to 9919 eV related to interband transitions. It

is assumed that Imε = 0 within the frequency region from 0 to 2 eV, i.e., all the processes

involving conduction electrons are disregarded. It is assumed also that the dielectric per-

mittivity has a pole of second order and a residue equal to ω2
p at zero frequency. Then,

the dielectric permittivity along the imaginary frequency axis is found from Eq. (15). This

is called the plasma model approach to the calculation of the Casimir force. As described

in Sec. I, the Casimir puzzle lies in the fact that all precise experiments on measuring the

Casimir force at separations below 1 µm exclude the Drude model approach considered, and

are in good agreement with the plasma model one (see also Sec. IV).

In the frequency region, where the Gurzhi dielectric permittivity is in reasonably good

agreement with the optical data (i.e., below 2 eV), it could also be applied for calculating

the Casimir force. For this purpose, at ~ω > 2 eV Imε is obtained from the optical data

and at ~ω < 2 eV it is given by the imaginary part of the Gurzhi model. Then the dielectric

permittivity along the entire imaginary frequency axis is found from Eq. (14). This could be

called the Gurzhi model approach to the Casimir force. In the frequency region from 0.125

to 2 eV it takes into account analytically both the electron-phonon and electron-electron

interactions (taken into account via the optical data in the Drude model approach). Both

these processes are accounted for also at ~ω < 0.125 eV [see the solid line in Fig. 2(b)],

whereas the Drude model approach disregards the electron-electron scattering within this

frequency region.

In the end of this section, we particularly emphasize that the type of singularity of ε

at zero frequency makes a profound effect on its values at pure imaginary frequencies. As

shown in Ref. [49], the behavior of ε(iξ) over the entire axis 0 < ξ < ∞ can be found

theoretically using the available optical data for the complex index of refraction with no any
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extrapolation. This is achieved through the application of the so-called weighted Kramers-

Kronig transform, which suppresses a contribution of the frequency regions where the optical

data are not available, and assumes the presence of either the first or the second order pole

of ε at zero frequency.

IV. CALCULATION OF THE CASIMIR PRESSURE IN DIFFERENT AP-

PROACHES AND COMPARISON WITH EXPERIMENTS

The Casimir pressure between two parallel metallic plates of more than 100 nm thickness

at temperature T separated by the vacuum gap of width a is the same as between two

semispaces. It is given by the Lifshitz formula [1–5, 8]

P (a, T ) = −
kBT

π

∞
∑

l=0

′
∫ ∞

0

qlk⊥dk⊥

×
∑

α

[

r−2
α (iξl, k⊥)e

2aql − 1
]−1

, (16)

where the prime on the first summation sign corresponds to dividing the term with l =

0 by 2, k⊥ is the magnitude of projection of the wave vector on the plane of plates, α

implies a summation over the transverse magnetic (α = TM) and transverse electric (α =

TE) polarizations of the electromagnetic field, ξl = 2πkBT l/~ with l = 0, 1, 2, . . . are the

Matsubara frequencies, and ql = (k2
⊥ + ξ2l /c

2)1/2.

The reflection coefficients in Eq. (16) are defined as

rTM(iξl, k⊥) =
εlql − kl
εlql + kl

, rTE(iξl, k⊥) =
ql − kl
ql + kl

, (17)

where

εl ≡ ε(iξl), kl =

(

k2
⊥ + εl

ξ2l
c2

)1/2

. (18)

From Eq. (4) it is seen that at the first Matsubara frequency it holds γee(iξ1, T ) = 0. This

is the so-called first-Matsubara-frequency rule [38].

We have calculated the ratio of the Casimir pressure (16) at T = 295 K to that between

two ideal metal plates at zero temperature, P0(a) = −π2
~c/(240a4), as a function of separa-

tion between the plates, using three theoretical approaches described in the end of Sec. III,

i.e., the plasma, Drude, and Gurzhi. The computational results are presented in Fig. 3 by

the three solid lines counted from top to bottom. These lines are obtained by using extrap-

olations of the optical data to below 2 eV by means of the plasma model with ~ωp = 9.0 eV,
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to below 0.125 eV by means of the Drude model with ~ωp = 9.0 eV, ~γep = 35 meV, and to

below 2 eV by means of the Gurzhi model with ~ωp = 8.68 eV, ~γep(T = 295K) = 30.3 meV,

respectively. The dashed line is found by extrapolating the optical data to below 2 eV using

the Gurzhi model with ~ωp = 9.0 eV and ~γep = 35 meV.

As is seen in Fig. 3, the Drude and Gurzhi approaches lead to rather close results for

the Casimir pressure, especially if the Gurzhi model employs the same Drude parameters

as the Drude model (see the dashed line). At the same time, the computational results

found within the plasma model approach are quite different. This is explained by distinct

behaviors of the dielectric permittivities at zero frequency (the first order pole in the cases

of Drude and Gurzhi models and the second order one for the plasma model).

To quantify the role of the optical data below 2 eV and at higher frequencies in the

region of absorption bands, in Table I we present several computational results found with

the partial or total exclusion of the use of optical data in favor of the simple plasma or Drude

models. Columns 3, 5, and 8 of Table I contain magnitudes of the Casimir pressure computed

using the plasma, Drude and Gurzhi model approaches, respectively, at separation distances

indicated in column 1. These computations are performed with the optical data, as described

in explanations to Fig. 3, with the Drude parameters ~ωp = 9.0 eV and ~γep = 35 meV.

In column 2 of Table I, we present the mean measured magnitudes of the Casimir pressure

and their total experimental errors determined at the 95% confidence level by the results of

Refs. [13, 14]. In columns 4 and 7, the magnitudes of the Casimir pressure computed by

using the simple plasma and Drude models are presented, respectively, i.e.,

εp(iξl) = 1 +
ω2
p

ξ2l
, εD(iξl) = 1 +

ω2
p

ξl[ξl + γep(T )]
. (19)

Finally, column 6 contains the computational results using the optical data of Au at ~ω >

2 eV and the simple Drude model at ~ω ≤ 2 eV.

We note that computations of the Casimir pressure by using the simple Gurzhi model

(2) applied over the entire frequency range would be inconsistent. The reason is that in

the region from ~ξ(1) = 63.3217 eV to ~ξ(0) = 64.47 eV one has εG(iξ) < 0 (see Sec. II).

The width of the frequency interval where εG(iξ) is negative is almost independent of the

values of the Drude parameters. For instance, for ~ωp = 9.0 eV and ~γep = 35 meV it holds

~ξ(1) = 63.3261 eV in place of 63.3217 eV. As a result, at room temperature (T = 295 K)

one obtains that εG(iξl) with 397 ≤ l ≤ 403 takes the negative values. This leads to the
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complex kl in Eq. (18) within some interval of k⊥ and, finally, to the complex reflection

coefficients and Casimir pressures in Eq. (16).

It may be argued that the Matsubara terms with such high l do not contribute to the

pressure at separations considered. The presence of the complex-valued terms (even though

they were negligibly small in magnitudes) is, however, quite impermissible theoretically.

Furthermore, at sufficiently short separations between the plates it is necessary to take into

account much larger number of Matsubara terms in order to calculate the Casimir pressure

with sufficient precision. Usually one should include all terms up to 15ωc = 15c/(2a) [8]. As a

result, at a = 15 nm the first 650 Matsubara terms should be included at room temperature.

This makes apparent that the simple Gurzhi model cannot be used over the entire frequency

range not only theoretically but from the practical standpoint as well.

Now we discuss a correlation between the magnitudes of the Casimir pressure in columns

3–8 of Table I. We note that these values are burdened by the errors of approximately 0.5%

determined by inaccuracies in the optical data and values of parameters in the models used

[8]. An interrelationship between the values in columns 3, 5, and 8 (obtained using the

plasma, Drude, and Gurzhi approaches, respectively) is the same as already discussed above

for respective lines in Fig. 3. By comparing column 4 with column 3, it is seen that the use

of the simple plasma model (column 4) results in slightly smaller magnitudes of the Casimir

pressure, and the impact of the optical data becomes more pronounced with decreasing

separation between the plates.

If one uses the simple Drude model at all frequencies below 2 eV (column 6), slightly

smaller magnitudes of the Casimir pressure are obtained as compared to column 5, where

the optical data are extrapolated down to zero frequency by the simple Drude model in the

region ~ω < 0.125 eV. When the simple Drude model is applied over the entire frequency

axis (column 7), even smaller values for the magnitudes of the Casimir pressure are obtained.

With increasing separation, however, differences between the Casimir pressures in columns

5, 6, and 7 become negligibly small which reflects a decreasing impact of the optical data

in the region of absorption bands on the computational results. Note also that the Gurzhi

model approach to calculation of the Casimir force (column 8) leads to almost the same (but

slightly larger) pressure magnitudes as those in column 6 obtained using the simple Drude

model below 2 eV and the optical data at all higher frequencies.

A comparison between the Casimir pressures found with the Gurzhi model approach
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(column 8) and by means of the Drude model below 2 eV (column 6) allows estimation

of the role of electron-electron scattering in the Casimir interaction. At a = 0.2 µm it

contributes only about 0.16% of the pressure and its contribution decreases with increasing

separation.

By comparing the experimental Casimir pressures in column 2 with the theoretical ones

in columns 3–8 one can conclude that in the limits of experimental and theoretical errors the

measurement data are in agreement with the theoretical predictions made using the plasma

model approach and exclude the predictions of all other approaches. This conclusion can

be made quantitative taking into account that all precise experiments on measuring the

Casimir interaction have been performed in the sphere-plate geometry (rather than in the

plate-plate one) and that the test bodies have some surface roughness, which is not taken

into account in the theoretical results of columns 3–8.

In the experiment of Refs. [13, 14], performed by means of a micromechanical oscillator,

the immediately measured quantity was the gradient of the Casimir force acting between

the sphere of R = 150 µm radius and a plate. This quantity can be recalculated in the

magnitude of the Casimir pressure between two parallel plates presented in column 2 of

Table I using the proximity force approximation [1, 8]

|P (a, T )| =
1

2πR

∂Fsp(a, T )

∂a
. (20)

The relative corrections to an approximate expression (20), which are less than a/R [24, 25],

are negligibly small in this experiment. Small corrections due to the surface roughness have

been taken into account perturbatively [1, 8, 50] in the Casimir pressure Ptheor (note that

the surface roughness plays a more important role at very short separations between the

test bodies [51]).

In Fig. 4, we plot the differences between the theoretical Casimir pressures computed

using the plasma, Drude and Gurzhi model approaches and mean experimental pressures

measured in Refs. [13, 14] (three sets of dots counted from bottom to top, respectively) as

the functions of separation. The Drude parameters in the Gurzhi model are chosen as (a)

~ωp = 8.68 eV and ~γep = 30.3 meV and (b) ~ωp = 9.0 eV and ~γep = 35 meV. The solid lines

are formed by the borders of the confidence intervals found at each separation by combining

the total experimental and theoretical errors determined at the 95% confidence probability.

As is seen in Figs. 4(a) and 4(b), both the Drude model approach and the Gurzhi model
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one used with any set of the Drude parameters are excluded by the measurement data at

the 95% confidence level, whereas the plasma model approach is experimentally consistent.

We also compare the theoretical predictions of all three approaches with the recently

measured gradient of the Casimir force acting between the Au-coated surfaces of a sphere

and a plate refined by means of the UV and Ar-ion cleaning [20]. In this work, performed

by means of an atomic force microscope, the sphere radius was reduced to R = 43 µm, and

the corrections due to the use of the proximity force approximation have been taken into

account through the results of Ref. [25]. The corrections due to the surface roughness were

also included in the theoretical gradients of the Casimir force [20].

In Fig. 5 the differences between the theoretical gradients of the Casimir force computed

within the plasma, Drude and Gurzhi model approaches and mean experimental gradients

[20] (the sets of dots counted from top to bottom, respectively) are shown as the functions of

separation. The Drude parameters in the Gurzhi model are again chosen as (a) ~ωp = 8.68 eV

and ~γep = 30.3 meV and (b) ~ωp = 9.0 eV and ~γep = 35 meV. The solid lines indicate

the borders of the confidence intervals determined in this experiment at the 67% confidence

probability by combining the total experimental and theoretical errors. From Figs. 5(a) and

5(b) it is seen that both the Drude model approach and the Gurzhi model approach are

excluded by the measurement data which are consistent with the plasma model approach

to calculation of the Casimir force.

V. CONCLUSIONS AND DISCUSSION

In the foregoing, we have discussed the extended Drude model or, as it also named, the

Gurzhi model, which describes the relaxation properties of conduction electrons originating

from electron-phonon and electron-electron scattering. Although this model is often used in

condensed matter physics and, specifically, in the theory of high-temperature superconduc-

tors, its applications in the theory of Casimir forces were not considered so far. Taking into

account that the Casimir puzzle remains unsolved for already 20 years (see Sec. I), investi-

gation of possible extensions of the Drude model in connection with the Lifshitz theory is a

subject of much current interest.

We have considered the analytic properties of the dielectric permittivity of the Gurzhi

model. It is shown that this permittivity has a first order pole in the upper half-plane of
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complex frequencies and, thus, violates the causality principle. Additionally, within some

interval along the pure imaginary frequency axis, the Gurzhi dielectric permittivity takes

the negative values. One thus concludes that for calculating the Casimir force it can be used

only in the frequency region below the absorption bands of a metal in combination with the

dielectric permittivity obtained from the measured optical data at higher frequencies.

Next, we have considered the imaginary part of the dielectric permittivity of the Gurzhi

model for Au at frequencies below 2 eV which can be used to calculate the Casimir pressure

by means of the Lifshitz formula. It was found to be in closer agreement with Imε defined

from the optical data and it leads to almost the same, as the Drude model, extrapolation

down to zero frequency, i.e., to the region where the optical data are not available. The

concept of the Gurzhi model approach to the Casimir force is introduced by analogy with the

Drude and plasma model approaches using the respective models combined with the optical

data. As discussed in Sec. I, the two latter approaches are the subject of a considerable

literature in connection with the Casimir puzzle.

The Casimir pressure between two Au plates was calculated using the Drude, plasma and

Gurzhi model approaches, as well as by using the simple Drude and plasma models, and

also by means of the Drude model applied in the region from zero frequency to 2 eV and

supplemented by the optical data at higher frequencies. The obtained results are compared

with the data of two precise experiments on measuring the Casimir interaction. The con-

tribution of electron-electron interaction to the Casimir force is estimated to be less than

0.16%. The Gurzhi model approach is shown to be excluded by the measurement data, as

it was demonstrated earlier for the Drude model approach. An agreement of the plasma

model approach with the measurement data at separations below 1 µm is confirmed.

Although the above results do not solve the Casimir puzzle, they attach special signif-

icance to novel experiments on measuring the Casimir force in the micrometer separation

range proposed in Refs. [52–54].
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TABLE I: Magnitudes of the mean measured Casimir pressure [13, 14] (column 2) at T = 295 K

at different separations (column 1) are compared with the magnitudes of theoretical pressures

computed using the plasma model approach (column 3), the simple plasma model (column 4), the

Drude model approach (column 5), the Drude model used below the first absorption band (column

6), the simple Drude model (column 7), and the Gurzhi model approach (column 8). In all cases

the Drude parameters ~ωp = 9.0 eV and ~γep = 35 meV have been used.

|P | (mPa)

a (µm) 2 3 4 5 6 7 8

0.2 510.5± 1.0 512.19 501.82 497.35 493.80 483.29 494.57

0.3 114.8± 0.5 115.02 114.04 109.69 109.14 108.13 109.25

0.4 39.2± 0.4 39.15 38.98 36.70 36.57 36.39 36.59

0.5 16.8± 0.4 16.81 16.76 15.50 15.45 15.41 15.46

0.6 8.4± 0.4 8.38 8.36 7.60 7.579 7.565 7.582

0.7 4.7± 0.4 4.632 4.628 4.132 4.124 4.119 4.125

0.8 2.767 2.765 2.427 2.423 2.421 2.424

0.9 1.754 1.753 1.512 1.5103 1.5092 1.5105

1.0 1.165 1.164 0.9874 0.9864 0.9859 0.9865

1.1 0.8041 0.8039 0.6699 0.6692 0.6690 0.6693

1.2 0.5730 0.5729 0.4690 0.4687 0.4635 0.4687
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FIG. 1: The dielectric permittivity of the Gurzhi model is shown as a function of the imaginary

frequency.
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FIG. 2: The imaginary part of the dielectric permittivity of Au is shown as a function of frequency

by the dots obtained from the optical data for the complex index of refraction and by the solid

and dashed lines obtained using the Gurzhi and Drude models, respectively, with the plasma

frequency and relaxation parameter (a) ~ωp = 8.68 eV, ~γep = 30.3 meV and (b) ~ωp = 9.0 eV,

~γep = 35.0 meV. The region of small frequencies is shown in the insets on an enlarged scale.
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FIG. 3: The ratio of the Casimir pressure between two parallel Au plates obtained at T = 295 K

using an extrapolation of the optical data in the region from 0 to 2 eV by means of the plasma

model with ~ωp = 9.0 eV (the top solid line), in the region from 0 to 0.125 eV by means of the

Drude model with ~ωp = 9.0 eV, ~γep = 35.0 meV (the middle solid line), and in the region from 0

to 2 eV by means of the Gurzhi model with ~ωp = 8.68 eV, ~γep = 30.3 meV (the bottom solid line)

to the pressure between two ideal metal plates is shown as function of separation. The dashed line

shows the same ratio where the numerator is calculated using the Gurzhi model with ~ωp = 9.0 eV

and ~γep = 35.0 meV.
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FIG. 4: The differences between theoretical and mean experimental [13, 14] Casimir pressures at

T = 295 K computed using an extrapolation of the optical data of Au in the region from 0 to 2

eV by means of the plasma model with ~ωp = 9.0 eV (the bottom set of dots), in the region from

0 to 0.125 eV by means of the Drude model with ~ωp = 9.0 eV, ~γep = 35.0 meV (the middle set

of dots), and in the region from 0 to 2 eV by means of the Gurzhi model (the top set of dots)

are shown as the functions of separation. The Drude parameters in the Gurzhi model are (a)

~ωp = 8.68 eV, ~γep = 30.3 meV and (b) ~ωp = 9.0 eV, ~γep = 35.0 meV. Two solid lines indicate

the borders of the confidence intervals found at the 95% confidence probability.
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FIG. 5: The differences between theoretical and mean experimental [20] gradients of the Casimir

force at T = 295 K computed using an extrapolation of the optical data of Au in the region from

0 to 2 eV by means of the plasma model with ~ωp = 9.0 eV (the top set of dots), in the region

from 0 to 0.125 eV by means of the Drude model with ~ωp = 9.0 eV, ~γep = 35.0 meV (the middle

set of dots), and in the region from 0 to 2 eV by means of the Gurzhi model (the bottom set of

dots) are shown as the functions of separation. The Drude parameters in the Gurzhi model are (a)

~ωp = 8.68 eV, ~γep = 30.3 meV and (b) ~ωp = 9.0 eV, ~γep = 35.0 meV. Two solid lines indicate

the borders of the confidence intervals found at the 67% confidence probability.
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