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The dynamics of band-gap renormalization and gain build-up in monolayer MoTe2-H is investigated by eval-
uating the non-equilibrium Dirac-Bloch equations with the incoherent carrier-carrier and carrier-phonon scatter-
ing treated via quantum-Boltzmann type scattering equations. For the case where an approximately 300 fs-long
high intensity optical pulse generates charge-carrier densities in the gain regime, the strong Coulomb coupling
leads to a relaxation of excited carriers on a few fs time scale. The pump-pulse generation of excited carriers
induces a large band-gap renormalization during the time scale of the pulse. Efficient phonon coupling leads to
a subsequent carrier thermalization within a few ps, which defines the time scale for the optical gain build-up
energetically close to the low-density exciton resonance.

I. INTRODUCTION

Monolayers (MLs) of transition-metal dichalcogenides
(TMDCs) hold great promise as active material in next gen-
eration opto-electronic devices. Unlike their bulk counter-
parts, MLs of many semiconducting TMDCs exhibit a di-
rect gap with transition energies in the visible to near-infrared
regime 1–7. As compared to conventional semiconductors,
they provide strong light-matter coupling and many-body ef-
fects due to carrier confinement and weak intrinsic screen-
ing of the Coulomb interaction. At low excitation levels, the
electron-hole attraction leads to the formation of excitons with
large binding energies that absorb as much as 10–20 % of
the incoming light for a single layer 8–11. Because of this
strong light-matter interaction, TMDC based photonic devices
promise high efficiency and have the potential for saturable
absorbers, nanoemitters or nanolasers with the smallest possi-
ble amount of optically active material. Indeed, room tempera-
ture lasing has been reported for different TMDC materials for
comparatively low pump intensities and emission frequencies
centering around the respective A exciton resonances 12–14.

One of the key properties for operation and design of nano-
photonic devices is the quasi-particle or optical band gap. Due
to Coulombic renormalizations, the quasi-particle gap is mod-
ified by the presence of excited carriers and depends on the
precise excitation conditions. In a conventional semiconduc-
tor where screening is strong, these band-gap renormaliza-
tions are typically in the meV range. In contrast, in TMDCs
excitation induced band-gap shrinkages of several hundred
meV have been reported in experimental 15,16 and theoreti-
cal 17,18 investigations. The injection of external charge car-
riers has been proposed as a possibility to dynamically con-
trol the optical gap on a femtosecond time-scale 15,16. Further-
more, carrier-carrier and carrier-phonon scattering lead to ex-
citation induced dephasing and the build-up of screening, thus
dynamically modifying the exciton binding and peak gain po-
sitions. In particular, for laser applications precise predictions
for the peak gain are desirable to design optical cavities cor-
respondingly.

In this paper, we use the example of MoTe2-H to perform
a microscopic calculation of the carrier dynamics and opti-

cal gain development after non-resonant optical excitation.
Among semiconducting TMDC materials, MoTe2-H provides
the most favourable conditions to achieve optical plasma gain.
Whereas in W-based TMDCs the fundamental gap corre-
sponds to spin-forbidden, dark transitions, in MoTe2-H, for
each spin component, the fundamental gap is undoubtly di-
rect with a relatively large spin splitting and offset between
the side and global minima in the conduction band. With-
out such an offset substantial amounts of electrons can leak
quickly from the K/K’-points to the side valley. This reduces
the carrier inversion at the global band minima and reduces or
even prevents optical gain.

A well established scheme to deduce the carrier dynamics
and its influence on the optical spectra is to probe the opti-
cal response of the system at different delay times after ex-
citation with a strong optical pump pulse. To simulate such a
scenario, we extend our recently developed Dirac-Bloch equa-
tion (DBE) scheme 18–21 beyond the linear low-excitation and
quasi-equilibrium regime. In particular, we include incoher-
ent interactions due to electron-electron and electron-phonon
scattering in order to study the carrier dynamics and to deter-
mine the dephasing of the optical polarizations and the result-
ing broadening of optical spectra self-consistently.

II. METHODS

To compute the carrier dynamics and its influence on the
optical spectra, we use a hybrid density functional theory
(DFT) and equation of motion (EOM) approach. In a first
step, we determine the relevant material parameters, i.e. the
band structure, dipole-matrix elements, as well as the dielec-
tric constants of bulk MoTe2-H, via density functional theory.
In order to compute the carrier dynamics and evolution of the
optical spectra on a dense k-grid, we use an effective four
band Hamiltonian that is based on the single-particle band
structure and dipole-matrix elements derived from our DFT
calculations to describe the regions of the Brillioun zone that
are actually populated. Subsequently, we derive the EOM for
interband polarizations that couple directly to the optical field,
and the respective occupation probabilities of the involved
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FIG. 1. DFT band structure of a MoTe2-H ML. Bands with spin up
are depicted in red, bands with spin down in blue.

bands. Since DFT-based band structure calculations usually
underestimate the quasi-particle gap, we compute the ground-
state band-gap renormalization self-consistently from the gap
equations.

A. DFT calculations

The relevant material parameters are calculated via density
functional theory (DFT) 22 using the Vienna Ab initio Simula-
tion Package (VASP) 23–26 and listed in Table I. All computa-
tions employ the generalized-gradient-approximation via the
Perdew-Burke-Ernzerhof (PBE) functional 27, including the
spin-orbit interaction 28. The unit cell describing a MoTe2-H
ML contains three atoms in total, while a vacuum region of
20 Å around the ML is sufficient to prevent unphysical inter-
actions with its periodic copies. The unit cell of bulk MoTe2-
H in the common 2H form, used in the computations of the
bulk dielectric constant, consists of two MLs and contains
6 atoms. The Van-der-Waals interaction between neighboring
layers is modeled via Grimme’s dispersion correction method
(PBE-D3) 29,30. In both cases, bulk and ML, a full relaxation of
atomic positions and the unit cell shape and size is performed
until all inter-atomic forces are smaller than 2.5×10−3 eV/Å.
The reciprocal space is sampled by a 15× 15× 3 Monkhorst-
Pack 31 k-mesh in the case of the ML and 10 × 10 × 10 in
the bulk case. The cutoff energy of the plane wave expan-
sion is set to 750 eV for the structural relaxations and the MLs
properties, while a value of 500 eV is used in the bulk case.
The self-consistency cycle of the electronic minimization is
repeated until an energy convergence criterion of 10−8 eV is

reached.
The resulting ML band structure is shown in Fig. 1 and ex-

hibits direct gaps at the K and K ′ points of the Brillioun
zone with a non-interacting gap of ∆A = 1.017 eV and
∆B = 1.266 eV for the A (K↑/K ′↓) and B (K↓/K ′↑) bands.
As in other TMDC materials, the atomic orbitals predomi-
nantly contibuting to the valence and conduction bands at the
K and K ′ point are the d-type Mo-orbitals with equal par-
ity. Furthermore, the conduction bands display a spin split-
ting of −35 meV and side valleys at the Σ/Λ points, that
are 97 meV (Σ↑/Λ↓) and 82 meV (Λ↑/Σ↓) above the respec-
tive K/K ′-valley minima. These values are on the lower end
of the range of published values that have been obtained us-
ing different functionals for the exchange correlation poten-
tial or GW corrections32–34 and sufficiently large to prevent
an excitation induced transition from a direct to indirect band
gap 35,36.

The interband dipole-matrix elements are accessed via the
linear optics routine in VASP as described in Ref. 37 and in-
clude contributions associated with a geometric phase. Fur-
thermore, we compute the macroscopic static dielectric tensor
of bulk MoTe2-H using density functional perturbation theory
as described in Refs. 37 and 38, following Ref. 39.

B. DFT based model Hamiltonian

To model the DFT band structure presented in the previous
section, we include the two spin-split valence and conduction
bands to obtain an effective four band Hamiltonian. As the dif-
ferent valleys are separated by large barriers, inter-valley scat-
tering is expected to be significantly slower than intra-valley
scattering and, on the ultrashort time scale, the valley index
can be considered to be approximately conserved. Hence, we
write the single particle part of the Hamiltonian as

H0 =
∑
αk

εαkc
†
αkcαk,

where α combines the spin, valley, and band index. Using the
p ·A gauge, the light matter interaction is given by

HLM =
e

m0c

∑
αα′k

A · pαα′kc
†
αkcα′k,

where the interband momentum matrix elements are related
to the DFT dipole matrix elements via e~

m0
pαα′k = (εα′k −

εαk)dαα′ . Whereas the side valleys at Σ/Λ are modeled
within the effective mass approximation, we treat the K and
K ′ valleys utilizing the widely used massive Dirac-Fermion
(MDF) model Hamiltonian 40 to account for the geometric
phase contained in the dipole matrix elements. The MDF
Hamiltonian has the relativistic dispersion

ε
c/v
ik = EF,i ±

1

2

√
∆2
i + (2~vF,ik)2, (1)

where i = sτ combines the spin and valley index, ∆i, vF,i
and EF,i are the spin and valley dependent gap, Fermi veloc-
ity and Fermi level, respectively. Whereas the spin and valley-
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TABLE I. Material parameters for MoTe2-H, i.e. the conduction-band (valence-band) valley minima (maxima) εcK and εcΣ (εvK ), effective
masses m∗K and m∗Σ, dipole-matrix elements d±K , as well as the dielectric constants εB‖ , ε⊥ and out-of-plane lattice constant D (c/2), based
on our DFT calculations. For the K′ and Λ valleys, the spin components are interchanged.

Spin εcK [eV] εvK [eV] εcΣ [eV] m∗K [m0] m∗Σ [m0] d±K [eÅ] εB‖ ε⊥ D (c/2) [Å]

↑ 1.017 0.0 1.114 0.607 0.407 3.51
20.30 10.90 6.99

↓ 1.052 -0.214 1.099 0.728 0.428 2.88

dependent band gaps are directly taken from our DFT calcu-
lations, the Fermi-velocities of the A- and B- bands are deter-
mined to reproduce the DFT band structure around the K/K ′

points and listed in Table II. Within the MDF model, the non-
vanishing dipole moments at the Dirac points are solely asso-
ciated with the geometric phase or pseudo-spin. They are re-
lated to the Fermi velocity via d±i = e

√
2~vF,i/∆i and agree

within less than 5% with the DFT dipole matrix elements. The
approximated band structure is shown together with the DFT
bands and the equilibrium carrier distributions at the delay
time τ = 2.5 ps in Fig. 2.

The Coulomb interaction Hamiltonian

HC =
1

2

∑
q6=0

∑
αα′ββ′kk′

V αββ
′α′

q;k′;k c†αk−qc
†
βk′+qcβ′k′cα′k

contains the quasi-2D Coulomb matrix elements

V αββ
′α′

q;k′;k =

∫
ec

d3r

∫
ec

d3r′ u∗αk−q(r)u∗βk′+q(r′)

× Vq(z − z′)uβ′k′(r′)uα′k(r)

that are computed using the DFT wave functions. The
Coulomb interaction potential Vq(z−z′) for the unexcited ML
is determined from Poisson’s equation according to Ref. 20.
Here, we use the parameters ε‖ and ε⊥ for the in- and out-
of-plane dielectric constants based on bulk DFT calculations
of MoTe2-H. From the previously stated bulk in-plane dielec-
tric constant εB‖ we obtained the non-resonant 2D contribution
ε‖ = 15.32 as described in Ref. 20. The so determined ’bare’
Coulomb interaction potential contains screening contribu-
tions from the dielectric environment and all remote bands,
as well as the ground-state screening contributions from the
valence and conduction bands.

The interaction with longitudinal optical (LO) phonons,
which has been shown to be the most effective phonon cou-
pling contribution in monolayer MoTe2-H 41, is contained in
the Fröhlich Hamiltonian

He−LO =
∑
αk,q

g0qc
†
α,k+qcα,k

(
bq + b†−q

)
.

TABLE II. Resulting MDF model parameters for MoTe2-H.

Band ∆ [eV] ~vF [eVÅ] EF [eV]
A 1.017 2.526 0.509
B 1.266 2.574 0.419

For the ’bare’ Fröhlich-interaction matrix element g0q, we use
the explicit expression based on the analytical model of So-
hier et al. 41 that, similarly to the ’bare’ Coulomb interaction,
already contains background screening contributions from the
remote bands and dielectric environment.

C. Dirac-Bloch Equations

To evaluate the material response after optical excitation,
we compute the microscopic interband polarizations Pik =

〈c†ivkcick〉 and occupation probabilities fλik = 〈c†iλkciλk〉

FIG. 2. Comparison of the relevant DFT bands (dotted) with the ap-
proximated unrenormalized relativistic band dispersion (solid). Ar-
rows indicate the spin of the correspondingly colored bands. The
dashed-dotted lines show the equilibrium carrier distributions (2.5 ps
after excitation) for the excitation conditions discussed in the text.
For the distributions the baseline is taken to be the edge of the corre-
sponding band and the maximum values are set to be the correspond-
ing chemical potentials.
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(λ = c, v) from the Dirac Bloch equations (DBE)

i~
d

dt
Pik = (Σc

ik − Σv
ik)Pik + (fvik − f cik)Ωik

+ i~
d

dt
Pik

∣∣∣∣
corr.

, (2)

i~
d

dt
f
c/v
ik = ±2i= [PikΩ∗ik] + i~

d

dt
f
c/v
ik

∣∣∣∣
corr.

. (3)

Here,

Σc
ik = εick −

∑
k′

[
V cccc
k−k′;k′;k − V cvcv

k−k′;k′;k

]
f cik′

+
∑
k′

[
V cvcc
k−k′;k′;kPik′ + c.c.

]
, (4)

Σv
ik = εivk −

∑
k′

[
V vvvv
k−k′;k′;k − V vcvc

k−k′,k′,k

]
fvik′

+
∑
k′

[
V vvvc
k−k′;k′;kPik′ + c.c.

]
, (5)

Ωik =
e

m0c
A · picvk −

∑
k′

V cvvv
k−k′;k′;k (fvik′ − f cik′)

−
∑
k′

[
V cvvc
k−k′;k′;kPik′ + V ccvv

k−k′;k′;kP
∗
ik′

]
(6)

contain the Hartree-Fock contributions to the single particle
energy renormalizations Σ

c/v
sk and the renormalization to the

Rabi energy Ωsk, while all many-body correlations that arise
from the two-particle Coulomb interaction and carrier-phonon
scattering are contained within d

dtPsk
∣∣
corr.

and d
dtf

c/v
sk

∣∣∣
corr.

,
respectively.

The DBE are formally equivalent to the semiconductor
Bloch equations (SBE), but the expression for the renormal-
ized Rabi and single particle energies differ by the Coulomb
matrix elements of the type V cvvv

k−k′;k′;k and V ccvv
k−k′;k′;k refer-

ring to Auger- and pair creation/annihilation processes, where
at least one of the particles changes its band index. Within
the MDF model Hamiltonian, these Coulomb matrix elements
contain the geometric phase and induce a coupling between a
dark static interband polarization and the carrier populations.
Consequently, the initial condition f cik = 1 − fvik = Pik = 0
does not correspond to a stationary solution of the DBE in the
absence of an external field and hence, does not specify the
system’s ground state.

To determine the ground-state band renormalization, which
is the initial state before the pump pulse arrives, we require
a stationary solution of the Dirac-Bloch equations in the ab-
sence of an external field as described in Refs. 19, 20, and 42.
This leads to the gap equations

∆̃ik = ∆i +
1

2

∑
k′

V|k−k′|
∆̃ik′

ε̃ik′
, (7)

ṽik = vF,i +
1

2

∑
k′

V|k−k′|
k′

k

ṽik′

ε̃ik′
cos(θk − θk′), (8)

from which the ground-state quasi-particle dispersion is ob-

tained via ε̃
e/h
ik = 1

2

√
∆̃2
ik + (2~ṽikk)

2. Similar to the

Coulomb matrix elements V αββ
′α′

q;k′;k , the ’bare’ quasi-2D
Coulomb interaction entering Eqs. (7) and (8) already con-
tains the previously mentioned background and ground-state
screening contributions. The solution of the gap equations
yields a rigid shift of the single-particle dispersion with an in-
teracting gap ∆̃ik that depends on the dielectric environment.
For a suspended ML, we find a ground-state band renormal-
ization of 549 meV for the A-band, that shrinks by 70 meV for
a SiO2-supported MoTe2-H ML.

In the low density limit, where correlation effects can be
neglected, we find the transition energies for the lowest 1s-
exciton resonance at 1.230 eV and 1.225 eV, for the sus-
pended and SiO2 supported MoTe2-H ML respectively, which
is slightly above the experimentally observed low-temperature
resonance energy of about 1.18 eV for the SiO2-supported
ML 43. In order to allow for a direct comparison between
the predicted excitation-induced modifications of the optical
spectra with the experiment, we correct the bare DFT com-
puted band gap and shift all spectra by −0.044 eV. The re-
sulting linear absorption spectra for a freely suspended and
quartz-supported MoTe2-H ML are shown in Fig. 3 using a
phenomenological dephasing rate of ~γ = 10 meV.

FIG. 3. Linear absorption spectra of a suspended (black) and SiO2-
supported (red) ML MoTe2-H. Here, we used a phenomenological
dephasing rate of ~γ = 10 meV. In order to match the experimentally
observed data, the spectra have been shifted by −0.044 eV.

D. Many-body correlations

Incoherent processes that lead to the dephasing of the mi-
croscopic polarizations and to the carrier relaxation dynam-
ics are contained within d

dtPik
∣∣
corr.

and d
dtf

c/v
ik

∣∣∣
corr.

, respec-

tively. Using the notation Pαα
′

k = 〈c†αkcα′k〉, fαk = Pααk for
the single-particle expectation values, the Coulomb interac-
tion leads to a contribution

i~
d

dt
Pαα

′

k

∣∣∣∣el.
corr.

=
∑
q 6=0

[
∆Iαα

′

q;k −
(

∆Iα
′α

q;k

)∗]
, (9)
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where

Iαα
′

q;k =
∑
βγγ′

∑
k′

V α
′γγ′β
−q;k′;k−qC

αγγ′β
q;k′;k

are the density-assisted transition/occupation probabilities
that contain the two-particle expectation values Cαγγ

′β
q;k′;k =

〈c†αkc
†
γk′−qcγ′k′cβk−q〉. In general, the two-particle expecta-

tion values can be divided into a Hartree-Fock (singlet) part
and a correlated part according to

Cαγγ
′β

q;k′;k = Cαγγ
′β

q;k′;k

∣∣∣
S

+ ∆Cαγγ
′β

q;k′;k

and it is easily verified that the Hartree-Fock contributions
to the renormalized single particle energies and Rabi-energy
given in Eqs. (4) - (6) correspond to the singlet part Iαα

′

q;k

∣∣∣
S

.

Physically, Iαα
′

q;k describes Coulomb mediated transitions
from all initial states βk − q to the final state αk via the in-
termediate states γk′ − q, γ′k′ with the Coulomb matrix el-
ements V α

′γγ′β
−q;k;k−q. As mentioned above, the Coulomb ma-

trix elements with β 6= α′ and/or γ 6= γ′ correspond
to Auger recombinations and pair creation/annihilation pro-
cesses. Whereas these processes give a small contribution to
the static ground-state renormalization of the valence bands
contained in the singlet parts, they are strongly non reso-
nant for the optically induced density dependent modifica-
tions contained in the correlated part. As verified numeri-
cally, the time scales for Auger recombinations and pair cre-
ation/annihilation processes are four to five orders of magni-
tude longer than those of intraband scattering processes and
will be neglected in the following. Additionally neglecting
the weak orbital and k,k′-dependence of the Coulomb ma-
trix elements, the expression for the density-assisted transi-
tion/occupation probabilities simplifies to

Iαα
′

q;k = Ṽq〈c†αkρqcα′k−q〉,

where Ṽq is a quasi-2D Coulomb matrix element that again
contains ground-state and background screening contributions
only and ρq =

∑
βk′ c

†
βk′−qcβk′ is the density operator.

To derive an approximation for the correlated part of the
density assisted transition amplitudes, we employ a second-
order cluster expansion where we derive the EOM for the
relevant two-particle correlations and factorize the occurring
three-particle expectation values into singlet and doublet con-
tributions 44. Within this approximation, the singlet factoriza-
tions act as source terms for the two-particle correlations,
whereas the doublet contributions lead to a renormalization of
the single particle energies, excitonic correlations, biexcitons
and screening of the Coulomb interaction in the Hartree-Fock
contributions. Assuming screening to be the dominant corre-
lation effect at elevated densities, we write the EOM for the
relevant two-particle correlations as

i~
d

dt
∆Cαββα

′

q;k′;k =
(

∆Σαββα
′

q;k′;k − i~γT
)

∆Cαββα
′

q;k′;k

+
(
fβk′−q − f

β
k′

)
Iαα

′

q,k + Sαββα
′

q;k′;k

+ remaining doublets, (10)

where we explicitly quoted only the doublet correlations that
lead to the build-up of screening, ∆Σαββα

′

q;k′;k = Σα′k−q +
Σβk′ −Σβk′−q−Σαk, and included a phenomenological de-
phasing of the triplets γT . Note that in Eq. (10), the density
assisted transition probabilities Iαα

′

q,k contain both the singlet
and correlated part and the remaining singlet sources are con-
tained in Sαββα

′

q;k′;k . Using the shorthand notation f̄βk = 1− fβk ,
the singlet sources are explicitly given by

Sαββα
′

q;k′;k = Ṽq

(
Pαα

′

k fβk′−qf̄
β
k′ − Pαα

′

k−qf̄
β
k′−qf

β
k′

)
+ Ṽk−k′Pαβk

∑
γ

P βγk′−q

(
P γα

′

k−q − δγα′

)
− Ṽk−k′Pαβk′

∑
γ

P γα
′

k−q

(
P βγk′−q − δγβ

)
+ Ṽk−k′

(
P βα

′

k′−q − P
βα′

k−q

)∑
γ

Pαγk P γβk′ (11)

and treated on the level of a second Born approximation.
If one assumes quasi-static single-particle distributions fβk

and neglects the remaining doublet contributions, one can an-
alytically solve Eq. (10) in frequency space 44. A subsequent
summation over β and k′ yields the closed expression

Iαα
′

q;k (ω) = Iαα
′

q;k (ω)
∣∣∣
S

+ ṼqΠαα′

q;k (ω + iγT )Iαα
′

q,k (ω)

+ ṼqT
αα′

q;k (ω)

= Wαα′

q;k (ω + iγT )
∑
βk′

Cαββα
′

q;k′;k (ω)
∣∣∣
S

+ Wαα′

q;k (ω + iγT )Tαα
′

q;k (ω), (12)

where the screened Coulomb matrix element Wαα′

q;k is given
by Dyson’s equation

Wαα′

q;k (ω) = Ṽq + ṼqΠαα′

q;k (ω)Wαα′

q;k (ω)

and

Παα′

q;k (ω) = Πq(ω + (Σαk − Σα′k−q)/~),

Πq(ω) =
∑
βk′

fβk′−q − f
β
k′

~ω + Σβk′−q − Σβk′

is the standard Lindhard polarization function. Furthermore,
we define

Tαα
′

q;k (ω) =
∑
βk′

Sαββα
′

q;k′;k (ω)

~ω −∆Σαββα
′

q;k′;k + i~γT
.

Hence, the doublet contributions explicitly written in Eq. (10)
lead to screening of the Coulomb potential both in the Hartree-
Fock and scattering contributions, as shown schematically in
Fig. 4. Note that at this level of approximation, the energy de-
nominators in the scattering integrals and Lindhard polariza-
tion function still contain the unscreened Hartree-Fock renor-
malizations. However, it can be shown that screening in these
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contributions is introduced by the inclusion of the next level
cluster expansion 44 and we will replace all unscreened energy
renormalizations Σαk by their screened counterparts Σ̃αk in the
following.

If one would neglect the remaining scattering integrals con-
tained in

∑
qW

αα′

q;k T
αα′

q;k , one would thus arrive at the level
of the screened Hartree-Fock approximation where all the
Coulomb matrix elements in Eqs. (4) - (6) are replaced by their
screened counterparts. The remaining scattering contributions
predominantly lead to carrier relaxation and excitation in-
duced dephasing of the coherent interband polarization. They
contain only small additional renormalizations of the single-
particle dispersion. Hence, the screened Hartree-Fock renor-
malizations of the single-particle energies provide a useful
measure for the band-gap renormalization in the presence of
excited carriers. In particular, in a fully incoherent quasi-static
equilibrium situation, a steady state solution of the screened
DBE equations yields the density dependent gap equations

∆̃ik = ∆i +
1

2

∑
k′

W|k−k′|
∆̃ik′

ε̃ik′
(fvik′ − f cik′) , (13)

ṽik = vF,i +
1

2

∑
k′

W|k−k′|
k′

k

ṽik′

ε̃ik′
cos(θk − θk′)

× (fvik′ − f cik′) . (14)

where Wq is the statically screened Coulomb interaction.
Eq. (12) together with Eq. (11) provides an efficient scheme

to compute the Coulomb correlations numerically. As a conse-
quence of the strong Coulomb interaction in TMDCs and the
large associated exciton binding, it is important to properly in-
clude the full frequency dependence of the screened interband
matrix elementsW vc

q;k which enter the scattering contributions
of the microscopic polarizations and lead to memory effects

beyond the Markov approximation.
In addition to the Coulomb correlations, the inclusion of

the Fröhlich Hamiltonian introduces the scattering of excited
charge carriers within their bands by the absorption or emis-

FIG. 4. Diagrammatic representation of the density assisted transi-
tion/occupation probabilities. The full density assisted transition am-
plitudes are represented by twofold contoured circles whereas the
singlet and correlated parts are represented by simple and threefold
contoured circles, respectively. Similarly, simple and doubly con-
toured wiggles represent the ’bare’ and screened Coulomb interac-
tion, respectively. The upper line corresponds to the division into the
singlet (Hartree-Fock) and correlated part and the second and third
lines represent the first and second line of Eq. (12).

sion of LO phonons. These are evaluated on the level of
quantum-kinetic theory in second Born approximation. Our
analysis shows that, similarly as for the Coulombic scatter-
ing rates, it is sufficient to treat the phonon scattering rates
of the quasi-static carrier distribution functions within the
Markov approximation, whereas it is crucial to maintain the
full frequency dependency for the polarization-phonon scat-
tering rates. The resulting phononic contributions to the elec-
tron and polarization scattering rates are given by

d

dt
f csk

∣∣∣∣ph.
corr.

=
2π

~
∑
q

g0qg
cc
q;k+qDη

(
Σ̃c
sk+q − Σ̃c

sk − ~ωq

) [
(nq + 1)f csk+qf̄

c
sk − nqf cskf̄ csk+q

]
+

2π

~
∑
q

g0qg
cc
q;kDη

(
Σ̃c
sk−q − Σ̃c

sk + ~ωq

) [
nqf

c
sk−qf̄

c
sk − (1 + nq)f cskf̄

c
sk−q

]
(15)

i~
d

dt
Psk

∣∣∣∣ph.
corr.

= i~
d

dt
Psk

∣∣∣∣c,ph.
corr.

+ i~
d

dt
Psk

∣∣∣∣v,ph.
corr.

, (16)

i~
d

dt
Psk

∣∣∣∣c,ph.
corr.

= F

[∑
q

g0qg
vc
q;k

{
f̄ csk−qnq + f csk−q(1 + nq)

~(ω + ωq) + Σ̃v
sk − Σ̃c

sk−q + iη
+

f̄ csk−q(1 + nq) + f csk−qnq

~(ω − ωq) + Σ̃v
sk − Σ̃c

sk−q + iη

}
Psk

−
∑
q

g0qg
vc
q;k+q

{
f̄ csknq + f csk(1 + nq)

~(ω + ωq) + Σ̃v
sk+q − Σ̃c

sk + iη
+

f̄ csk(1 + nq) + f csknq

~(ω − ωq) + Σ̃v
sk+q − Σ̃c

sk + iη

}
Psk+q

]
, (17)

i~
d

dt
Psk

∣∣∣∣v,ph.
corr.

= F

[∑
q

g0qg
vc
q;k+q

{
fvsk+qnq + f̄vsk+q(1 + nq)

~(ω + ωq) + Σ̃v
sk+q − Σ̃c

sk + iη
+

fvsk+q(1 + nq) + f̄vsk+qnq

~(ω − ωq) + Σ̃v
sk+q − Σ̃c

sk + iη

}
Psk

−
∑
q

g0qg
vc
q;k

{
fvsknq + f̄vsk(1 + nq)

~(ω + ωq) + Σ̃v
sk − Σ̃c

sk−q + iη
+

fvsk(1 + nq) + f̄vsknq

~(ω − ωq) + Σ̃v
sk − Σ̃c

sk−q + iη

}
Psk−q

]
, (18)
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and a similar equation holds for the valence-band distribu-
tion functions. Here, πDη(x) = η

x2+η2 denotes the numer-
ical energy-conserving function, nq is the phonon occupa-
tion number, ~ωq = 27.72 meV 41 is the corresponding LO-
phonon energy, and F [f ] denotes the Fourier transform of
function f . The inclusion of the screened Fröhlich interaction
gαα

′

q,k (ω) = g0q + g0qΠαα′

q,k (ω)gαα
′

q,k (ω) accounts for screening
contributions arising from the excited charge carriers in ad-
dition to the background screening contributions of the re-
mote bands and dielectric environment already included in
g0q. Thus, Coulomb and phonon-coupling matrix elements are
treated on the same level of approximation.

III. NUMERICAL RESULTS

In this section, we present the results of our numerical anal-
ysis of the excitation dynamics and gain build-up in mono-
layer MoTe2-H. As physical conditions, we assume a pump-
probe scenario, where we consider a room-temperature ML
of MoTe2-H, which has been placed on a quartz substrate and
is excited by a high-intensity linear-polarized optical pump
pulse (E0 ∼ 1.25 MV/cm). The central pump frequency is
chosen to be slightly above the interacting B-band gap and
the pump pulse has a full width at half maximum (FWHM) of
333 fs corresponding to a photon density of 1.8 × 1015 cm−2

(a pump fluence of 520µJ/cm2). For these excitation condi-
tions, it is ensured that virtually all carriers are created in the
K and K ′ valleys.

For the pump simulations, we solve the Dirac-Bloch equa-
tions (2) and (3) in the time domain. The optically induced in-
terband polarizations lead to the generation of excited charge
carriers and the subsequent carrier relaxation dynamics is
computed from the carrier-carrier and carrier-phonon scatter-
ing contributions, Eqs. (9) - (12) for α = α′ and Eq. (15), re-
spectively. For the carrier dynamics, the numerically most im-
portant effect of the many-body correlations of the interband
polarizations is the replacement of the ’bare’ Coulomb poten-
tial by its screened counterpart in the Hartree-Fock contribu-
tions, whereas the detailed excitation induced dephasing of
the interband polarizations play only a minor role. As verified
numerically, it is sufficient to compute the carrier dynamics
within the Markov approximation and the excitation-induced
band-gap renormalization is determined from the density de-
pendent gap equations (13) and (14). They yield the renormal-
ized single-particle bands wherein the excited carriers relax
on the level of screened Hartree-Fock approximation. We then
define the excitation-induced band-gap renormalization as the
density-dependent change of the gaps between the spin-split
renormalized single-particle bands relative to the respective
gaps in the low-density limit.

For the probe pulse and for equilibrium configurations,
we solve Eq. (2) in frequency domain via a matrix-inversion
scheme, where the carrier distribution functions are quasi-
static and we restrict ourselves to the terms linear in Psk
in the singlet sources. However, in order to predict the cor-
rect line shapes of the optical spectra, it turns out to be cru-
cial to include the detailed and fully dynamical many-body

correlations of the interband polarizations, Eqs. (9) - (12) for
α/α′ = v/c and Eq. (16) - (18).

A. Carrier dynamics and band-gap renormalization

In Fig. 5 (a), we plot the excitation and subsequent re-
laxation dynamics of the A-band electron distribution func-
tion f eA,k(t) = f cA,k(t) in the vicinity of the K/K ′ points.
Since conduction and valence bands with the same spin
and valley indices have identical effective masses within the
MDF model, the evolution of the hole distribution function
fhA,k(t) = f̄vA,−k(t) is identical to that of the electrons. The
excitation dynamics of the B-band distribution functions are
similar and not shown here.

Due to the strong Coulomb interaction, carrier-carrier scat-
tering is extremely efficient and drives the carrier distributions
into hot quasi-equilibrium distributions within a few fem-
toseconds. Here, the carrier temperature reaches T = 2350 K
10 fs after the pump maximum has interacted with the sample.
This ultrafast carrier-carrier scattering quickly redistributes
the pump injected carriers to energies near the band gap and
away from the excitation energy, thus almost completely pre-
venting the accumulation of carriers at the excitation energy
and effectively removing the associated Pauli-blocking of the
absorption during the excitation process. The result is a highly
efficient generation of excited charge carriers which is limited
only by the absorption coefficient of the unexcited layer. After
the pump pulse has passed, we find a total carrier density of
1.040 × 1014 cm−2, or equivalently, 5.20 × 1013 cm−2 gen-
erated electron hole-pairs, corresponding to an absorption of
about 2.9 % of the incoming photons. Due to the Coulomb
enhancement of the above band-edge absorption, this value is
slightly larger than the universal low-density continuum ab-
sorption of πα = 2.3 % for non-interacting Dirac Fermions.

The initial ultrafast relaxation into hot quasi-equilibrium
distributions is followed by a phonon-induced thermalization
that takes about 2.5 ps until a quasi-equilibrium at the temper-
ature of the phonon bath (300 K) is reached. At τ = 0.1 ps and
τ = 1 ps, we find intermediate temperatures of T = 2175 K
and T = 555 K, respectively. This relaxation time is about
twice as fast as in conventional semiconductors and based on
the efficient phonon coupling in ML MoTe2-H 41.

The time evolution of the excitation-induced band-gap
renormalization (black) and the total carrier density with given
spin and valley index ni(t) = 1

A
∑
α,k f

α
ik(t) (red) is shown

in Fig. 5 (b). With solid lines, we depict the respective A-
band properties, whereas the B-band properties are plotted
using dashed lines. The gray shaded area shows the envelope
of the Gaussian shaped optical pump pulse centered around
t0. Due to the initially nearly resonant excitation with the B-
band gap, the final amount of charge carriers in the B-bands
(nB = 5.56 × 1013 cm−2) is slightly higher than in the A-
bands (nA = 4.84×1013 cm−2). Note that due to the opposite
spin, there are no relaxation processes between the B- and the
A-bands on the timescales of interest here.

As can be recognized in Fig. 5 (b), the build-up of popula-
tions during the excitation process is accompanied by an al-
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FIG. 5. (a) Dynamics of the A-band electron distribution in the vicin-
ity of theK/K′ points after excitation with a 333 fs pump pulse with
peak amplitude of 1.3 MV/cm at t = t0. (b) Time evolution of the
excitation-induced band-gap renormalization (black) and the density
of excited charge carriers (red). The solid lines correspond to the A-
band properties, whereas the dashed lines show the B-band proper-
ties. The gray shaded area indicates the envelope of the optical pump
pulse.

most instantaneous large shrinkage of the band gap, followed
by a much slower further reduction. The band-edge shrink-
age results from combined screening and phase-space-filling
effects. As in conventional two-dimensional semiconductors,
the screening wave number is proportional to the carrier oc-
cupation at k = 0. Due to the ultrafast Coulomb scattering,
the major contribution to screening develops within the time
scale of the pump pulse with a correspondent reduction of the
band gap of about 389 meV within the first 0.4 ps. Once the
amount of excited charge carriers has saturated, the band edge
can only be further reduced by phase-space filling. This leads
to an additional reduction of about 17 meV on the time scale of
the thermalization, yielding the total excitation-induced band-
gap renormalizations of 406 meV (A-gap) and 419 meV (B-
gap), respectively, for the investigated excitation conditions.
These results are in good agreement with our previous find-
ings in the equilibrium regime 18 and reported experimental
observations 15,16 on similar systems.

B. Evolution of optical spectra and build-up of optical gain

In Fig. 6, we present the time evolution of optical absorp-
tion/gain spectra computed as linear response to an ultra-short,
low-intensity probe pulse for different delay times τ = t− t0.
To cover the wide relevant energy range of several hundred
meV, we choose a temporal width of 10 fs for the probe
pulse. The use of such an ultrashort probe pulse also pro-
vides the necessary time resolution to study the evolution
of the optical response during the excitation process, which
is shown in Fig. 6 (a). Here, the pump-probe delay increases
from τ = −0.30 ps to τ = −0.05 ps in 0.05 ps steps. For com-
parison, the linear absorption spectrum of the unexcited ML
is depicted in black. We notice an initial increase of the ex-
cited carrier density leading to dephasing, excitation-induced
band-edge shrinkage, and reduction of the exciton binding en-
ergy. As a consequence of compensating effects, we observe
practically no shift of the exciton resonance position under
the given excitation conditions. Excitation-induced dephasing
increases the 1s-exciton linewidth from 2.3 meV at a delay
time τ = −0.25 ps to 42.2 meV at τ = −0.15 ps. Note,
that we include an additional dephasing constant of 10 meV
for the microscopic polarizations to assure convergence in
the zero-density limit. At τ = −0.05 ps and a density of
about 3.36 × 1013 cm−2 the exciton resonance is completely
bleached out, marking the Mott-density.

In Fig. 6 (b), we show the optical absorption in the ther-
malization regime. Here, pump-probe delays increase from
τ = 0.5 ps to τ = 1.5 ps in 0.2 ps steps. The inset dis-
plays snapshots of the corresponding A-band electron distri-
bution functions. In this time regime, no additional excited
charge carriers are generated, but thermalization relaxes the
existing carriers into quasi-equilibrium at the lattice tempera-
ture (300 K). As a consequence of the high barriers between
the K/K ′ and Σ/Λ valleys, no significant percentage of the
excited carriers can reach the side valleys on the fast car-
rier relaxation time scale. Therefore, the total carrier densi-
ties in the K/K ′ valleys is practically conserved. The absorp-
tion spectrum for quasi-equilibrium conditions is depicted in
black in Fig. 6 (b). With decreasing temperature of the quasi-
equilibrium distributions, the occupation probabilities near the
band gap increase. About 0.5 ps after the pump pulse, inver-
sion with (1 − f eik − fhik) < 0 is reached and optical gain
(negative absorption) appears in the spectrum. Inversion and
gain increase with increasing cooling of the carriers. After
about 2.5 ps thermal equilibrium is reached, where we ob-
serve broad A-band optical gain with a peak energy of 1.13 eV,
slightly below the low density A-exciton resonance. Note that
while the inclusion of the carrier-phonon scattering is crucial
for the thermalization of the carriers, linewidths and energy
renormalizations within the optical spectra are dominated by
polarization-carrier rather than polarization-phonon scattering
contributions. The maximum gain approaches a value of 0.5 %
amplification of the incoming light, which is clearly below the
theoretical upper limit of πα/2 = 1.15 % for the free carrier,
single band case. Therefore, continuum absorption of the A-
band overcompensates the gain of the B-band at higher ener-
gies yielding a net absorption in the frequency range of the
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FIG. 6. Optical absorption spectra at distinct pump-probe delays. (a)
Excitation regime. Pump-probe delays increase from τ = −0.30 ps
to τ = −0.05 ps in 0.05 ps steps. The black solid line represents the
low-density limit before the excitation. (b) Thermalization regime.
Pump-probe delays increase from τ = 0.5 ps to τ = 1.5 ps in
0.2 ps steps. The absorption spectrum in the quasi-equilibrium limit
(τ ≥ 2.5 ps) is shown in black. The corresponding A-band distribu-
tion functions are depicted in the inset.

B-exciton.

C. Influence of the side valleys

The full DFT band structure displays six side minima in the
conduction band located at the Σ/Λ points of the Brillioun
zone. For the previously considered excitation conditions, car-
rier equilibration leads to a net electron drain from the K/K ′

to the Σ/Λ valleys as well as a hole drift between the K and
K ′ valleys. To compute this side-valley drain and hole drift
and its influence on the optical gain spectra, we consider an
equilibrium situation where all electrons and holes have re-
laxed to a common chemical potentials. The side valleys are
treated within the effective mass approximation and the in-
fluence of their populations is considered self-consistently in-
cluding their contribution to screening and excitation induced
renormalizations.

The electron drain to the side valleys critically depends on
the offset between the side valleys and the conduction band
minima at the K/K ′ points, which in turn are modified by
the carrier occupations in each valley. In Fig. 7 (a), we depict
the Σ↑ (top) and Λ↑ (bottom) side-valley electron densities
(black circles) as well as the corresponding conduction-band

offsets (red crosses) in dependence of the total density of ex-
cited charge carriers. Increasing the total carrier density from
2 × 1011 cm−2 to 1014 cm−2, the Σ↑ (Λ↑) conduction-band
offset increases by 7.0 meV (6.6 meV), while the fraction of
Σ↑ (Λ↑) electrons increases from about 3.1 % (5.8 %) in the
low-density regime to about 8.8 % (15.1 %) in the regime in-
vestigated by the pump-probe simulations. The larger elec-
tron drain towards the Λ↑ valleys arises from the smaller
side-valley offset, that increases from 82 meV (DFT value)
to 89.7 meV for the highest investigated carrier density. For
the Σ↑ valleys, the band offset increases from 97 meV (DFT
value) to 105.2 meV.

In addition to the electron drain, inter-valley scattering
leads to a drift of the hole density between the K and K ′

valleys. In our calculations, the influence of this is taken into
account in a similar manner as the side-valley drain, i.e. by
considering an equilibrium situation with a common chemi-
cal potential for the holes in different valleys. In Fig. 7 (b), we
plot the charge-carrier dependence of the fractional K ′↑ hole
density (black circles) and the correspondingK↑/K ′↑ valence-
band splitting (red crosses). Because of the large valence-band
splitting in the low-density limit, almost all the holes from
the K ′↑ valley have drifted to the energetically favorable K↑
valley after equilibration. Only for carrier densities as high
as 1014 cm−2, the K ′↑ valley is occupied with at least 1 % of
the spin-up holes. Thus, the increasing valence-band splitting
with increasing carrier density is exclusively introduced by
the dominant occupation of holes in the K↑ valley. For the
shown carrier densities, the valence-band splitting increases
by 7.4 meV from 231.4 meV to 238.8 meV.

Finally, we present the resulting optical absorption spec-
tra after equilibration within the entire Brillioun zone for el-
evated charge-carrier densities in Fig. 8. The carrier densi-
ties increase from orange (2.0 × 1013 cm−2) to black (1.2 ×
1014 cm−2). The solid (dotted) lines show the optical spectra
after (before) equilibration. The inset depicts the peak opti-
cal gain for the corresponding charge-carrier densities. Prior
to equilibration, all carriers are assumed to be located in the
K and K ′ valleys. As pointed out before, equilibration not
only leads to electron drain to the side valleys, but also to
hole drift between the K and K ′ valleys. Both processes have
counteracting effects on the optical spectra. While the electron
drain to the side-valleys leads to a loss of optically recombin-
ing electrons, the hole drift between the K and K ′ valleys in-
creases the amount of optically recombining holes. Because of
the large K↑/K ′↑ (K ′↓/K↓) valence-band splitting about 99 %
of the holes contribute to A-band population inversion after
equilibration, compared to the nearly 50 % before equilibra-
tion. This overcompensates the effect of electron drain – be-
tween 10.8 % and 26.9 % of the electrons for the stated carrier
densities – to the side valleys. Consequently, enhanced peak
optical gain is observed in equilibrium. In particular, for car-
rier densities of 0.8/1.0/1.2×1014 cm−2 peak optical gain in-
creases by 86/53/28 % due to equilibration. For a carrier den-
sity as high as 1.2× 1014 cm−2, we observe peak optical gain
occurring slightly below the low-density A-exciton resonance
with a magnitude of 0.83 % of the incoming light. Normal-
ized to the layer thickness of D = 6.99 Å (see Table I), this
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FIG. 7. (a) Σ↑ (top) and Λ↑ (bottom) side-valley electron densities
(left axis, black circles) and Σ↑ (top) and Λ↑ (bottom) conduction-
band offsets (right axis, red crosses) in dependence of the total
amount of excited charge carriers. (b) Similarly, charge-carrier de-
pendence of theK′↑ hole density (left axis, black circles) andK↑/K′↑
valence-band splitting (right axis, red crosses). The respective spin-
up electron (hole) densities are stated as fraction of the total spin-up
electron (hole) density.

FIG. 8. Optical absorption spectra before and after equilibration of
the carriers between the different valleys. The solid lines show the
optical spectra after equilibration, the dotted lines before equilibra-
tion, where all carriers are located in theK andK′ valleys. The inset
shows the peak optical gain for the corresponding charge-carrier den-
sities after (before) equilibration in circles (crosses).

corresponds to a peak gain of about 105 cm−1, which should
be compared to the gain maximum of 5000 cm−1 in typical
III/V semiconductors under realistic excitation conditions 45.

IV. DISCUSSION

In summary, we investigated the carrier dynamics in ML
MoTe2-H after excitation with a strong optical pump pulse
slightly above the interacting B-band gap. Our investigations
cover two distinct time regimes. In the excitation regime, i.e.,
during the optical pulse, generation of photo-induced charge
carriers is accompanied by an almost instantaneous band-gap
renormalization of about 410 meV in our case, that exceeds
the exciton binding energy of the unexcited crystal. In the low-
density regime, the band-gap renormalization is almost ex-
actly canceled by the weakening of the excitonic binding such
that the exciton resonance displays a negligible spectral shift.
The initial fast carrier relaxation is followed by a much slower
thermalization of the hot carriers. Due to efficient phonon cou-
pling, the thermalization occurs within a few picoseconds,
whereas it is typically of the order of tens of picoseconds
in conventional III-V quantum well systems. For the chosen
pump-pulse intensity, thermalization finally leads to popula-
tion inversion. Here, we observe the transition from plasma
absorption to broadband optical gain. The maximum of the
A-band optical gain occurs slightly below the low-density A-
exciton resonance and its magnitude approaches 0.5 % of the
incoming light.

On the longer time scale, equilibration of the excited car-
riers among different valleys is expected with a simultane-
ous electron drain from the K/K ′ to the side valleys at the
Σ/Λ points of the Brillioun zone. Although the electron drain
leads to an efficiency drop of several percent in the gain
regime, there is no evidence for an excitation-dependent roll-
over from a direct to an indirect band gap, as has been pre-
dicted theoretically for similar material systems 35,36. Instead,
we find that the drop due to the electron drain is overcompen-
sated by a hole drift between the K and K ′ valleys, leading to
a net increase of the optical gain up to several 10 % .

Our results are in general agreement with experimentally
observed excitation-induced band-gap shrinkage of similar
TMDC systems 15,16 and confirms the possibility of ultrafast
band-gap modulation by the injection of carriers. Further-
more, our results identify conditions for achieving plasma
gain in ML MoTe2-H and the short relaxation times enable
high repetition rates.
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action in TMDC MLs.



11

1 K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev.
Lett. 105, 136805 (2010).

2 A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim,
G. Galli, and F. Wang, Nano Lett. 10, 1271 (2010).

3 C. Zhang, H. Wang, W. Chan, C. Manolatou, and F. Rana, Phys.
Rev. B 89, 205436 (2014).

4 Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, and W. Tang, Physica B:
Physics of Condensed Matter 406, 2254 (2011).

5 D. Y. Qiu, F. H. da Jornada, and S. G. Louie, Phys. Rev. Lett. 111,
216805 (2013).

6 K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro
Neto, Science 353, aac9439 (2016).

7 T. Cheiwchanchamnangij and W. R. L. Lambrecht, Phys. Rev. B
85, 205302 (2012).

8 A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, and
O. B. Aslan, Phys. Rev. Lett. 113, 076802 (2014).

9 K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and
J. Shan, Phys. Rev. Lett. 113, 026803 (2014).

10 Z. Ye, T. Cao, O. K., H. Zhu, X. Yin, Y. Wang, S. G. Louie, and
X. Zhang, Nature 513, 214 (2014).

11 B. Zhu, X. Chen, and X. Cui, Scientific Reports 5, 9218 (2015).
12 O. Salehzadeh, M. Djavid, N. H. Tran, I. Shih, and Z. Mi, Nano

Lett. 15, 5302 (2015).
13 Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and

X. Zhang, Nat. Photonics 9, 733 (2015).
14 Y. Li, J. Zhang, D. Huang, H. Sun, F. Fan, J. Feng, Z. Wang, and

C. Z. Ning, Nat. Nanotech. 12, 987 (2017).
15 A. Chernikov, C. Ruppert, H. M. Hill, A. F. Rigosi, and T. F.

Heinz, Nat. Photonics 9, 466 (2015).
16 S. Ulstrup, A. G. C̆abo, J. A. Miwa, J. M. Riley, S. S.

Grønborg, J. C. Johannsen, C. Cacho, O. Alexander, R. T. Chap-
man, E. Springate, M. Bianchi, M. Dendzik, J. V. Lauritsen,
P. D. C. King, and P. Hofmann, ACS Nano 10, 6315 (2016),
https://doi.org/10.1021/acsnano.6b02622.

17 A. Steinhoff, M. Rösner, F. Jahnke, T. O. Wehling, and C. Gies,
Nano Lett. 14, 3743 (2014).

18 L. Meckbach, T. Stroucken, and S. W. Koch, Appl. Phys. Lett.
112, 061104 (2018).

19 T. Stroucken and S. W. Koch, in Optical Properties of Graphene,
edited by R. Binder (World Scientific Publishing, Singapur, 2017)
Chap. 2, pp. 43–84.

20 L. Meckbach, T. Stroucken, and S. W. Koch, Phys. Rev. B 97,
035425 (2018).

21 L. Meckbach, U. Huttner, L. Bannow, T. Stroucken, and S. W.
Koch, J. Phys.: Condens. Matter 30, 374002 (2018).

22 W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
23 G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
24 G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).
25 G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
26 G. Kresse and J. Furthmüller, Comp. Mater. Sci. 6, 15 (1996).
27 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 (1996).
28 S. Steiner, S. Khmelevskyi, M. Marsmann, and G. Kresse, Phys.

Rev. B 93, 224425 (2016).
29 S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys.

132, 154104 (2010).
30 S. Grimme, S. Ehrlich, and L. Goerigk, J. Comput. Chem. 32,

1456 (2011).
31 H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
32 A. Molina-Sánchez, K. Hummer, and L. Wirtz, Surface Science

Reports 70, 554 (2015).
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