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We explore quantum dynamics in Floquet many-body systems with local conservation laws in
one spatial dimension, focusing on sectors of the Hilbert space which are highly polarized. We
numerically compare the predicted charge diffusion constants and quantum butterfly velocity of
operator growth between models of chaotic Floquet dynamics (with discrete spacetime translation
invariance) and random unitary circuits which vary both in space and time. We find that for small
but nonzero density of charge (in the thermodynamic limit), the random unitary circuit correctly
predicts the scaling of the butterfly velocity but incorrectly predicts the scaling of the diffusion
constant. We argue that this is a consequence of quantum coherence on short time scales. Our
work clarifies the settings in which random unitary circuits provide correct physical predictions for
non-random chaotic systems, and sheds light into the origin of the slow down of the butterfly effect
in highly polarized systems or at low temperature.

1. INTRODUCTION

Understanding the approach to equilibrium in strongly
interacting many-body systems has become a problem of
significant interest in the past few years. It is widely ex-
pected that certain features of dynamics will be universal
among many different quantum systems – for example,
the emergence of diffusion and hydrodynamics in systems
with conserved quantities [1], or the quantum butterfly
effect in which the domain of support of operators ex-
pands ballistically in systems with sufficiently local in-
teractions [2]. Much recent work has accordingly focused
on cartoon models of quantum dynamics consisting of
random unitary gates applied in discrete time steps: the
random unitary circuit (RUC) [3–7]. These RUCs often
provide an analytical solution for many-body quantum
dynamics and, it is hoped, shed light on the dynamics
for more general quantum systems. Yet in all these RUC
models, a key feature is randomness in both time and
spatial directions. Averaging over this randomness leads
to substantial decoherence in the quantum unitary evolu-
tion and, in many simple cases, maps quantum dynamics
to a classical stochastic process. However, in systems
without randomness, it is less clear whether quantum
coherence is as negligible as RUCs suggest, and it is im-
portant to learn whether and when non-random chaotic
systems have different dynamical behavior than RUCs.
Indeed, there are simple models where such random cir-
cuits fail to properly describe chaotic Hamiltonian quan-
tum evolution [8].

In this paper, we focus on a specific question: do ran-
dom circuits correctly describe the growth of operators in
one dimensional Floquet systems? The operator growth
can be (partially) diagnosed by the out-of-time-ordered
correlator (OTOC)[9, 10],

C(r, t) = −Tr
{

[O1(0, t), O2(r, 0)]2
}
/Tr(I). (1.1)

where Tr(I) is the dimension of the total Hilbert space.
This quantity measures the non-commutativity between

a Heisenberg operator O1(0, t) = U†O1(0)U and a time
independent operatorO2(r, 0) initially separated by a dis-
tance r, where U is the time evolution operator. In RUC
models, the growth of the Heisenberg operator O(t) re-
duces to the solution of a classical stochastic problem:
the biased random walk [4, 5]. This directly implies that
C(r, t) ∼ C((r − vBt)/

√
t), where vB is the butterfly ve-

locity and the 1/
√
t factor indicates the diffusive broad-

ening of the front. Inspired by this work, a series of RUCs
with different symmetries have been proposed [6, 7, 11],
which introduce extra conservation laws in the quantum
dynamics and give rise to diffusive transport on top of
ballistic information propagation in conventional models.
With the right conservation laws [12–14], localization is
also possible.

Here, we consider both random and non-random dis-
crete time quantum circuits with U(1) symmetry and ex-
plore operator growth and OTOCs in distinct symmetry
sectors associated to the conserved charge. To be pre-
cise, we consider a one dimensional chain of length L,
with a spin- 12 degree of freedom on every site, and a con-

served Sz. The Hilbert space H = (C2)⊗L can be written
(in the obvious product state basis) as the direct sum of
subspaces with a fixed number of up spins:

H =

L⊕

N↑=1

HN
↑
, (1.2)

with

HN
↑

= span

{
|s1s2 · · · sL〉 :

L∑

i=1

si = 2N↑ − L

}
. (1.3)

Here si = 1 or −1 represents whether a spin is up (↑) or

down (↓) respectively. Define projectors PN↑
onto sub-

spaces HN↑
, we are interested in discrete time quantum

evolution arising from a many-body unitary matrix U(t)
obeying

[PN
↑
, U(t)] = 0. (1.4)



2

vB (RUC) D (RUC) vB (CFC) D (CFC)

∼ α O(1)
short time: O(1) ∼ 1/α
long time: ∼ α

TABLE I. The comparison of the quantum dynamics between
RUC and CFC.

In particular, we will focus on the regime with small
but finite density α = N↑/L of conserved charge in the
large L limit. These are highly polarized states which
are exponentially rare in H, but are often of particu-
lar physical interest. For example, these could serve as
crude models for dynamics in low temperature states in
Hamiltonian quantum systems. We compare and con-
trast diffusive transport and operator growth in a RUC
with a non-random, chaotic Floquet circuit (CFC). Our
results are summarized in Table I.

In Section 2, we study the RUC dynamics in a sys-
tem of spin- 12 degrees of freedom with z-magnetization
conserved. Analytically, we argue that operators spread
analogously to a classical biased random walker. The
bias in the random walk occurs when, loosely speaking,
operators that act on two spins of the same orientation
collide, and so vB ∼ α. The diffusion of the wave front,
and of the conserved charge, is controlled by the classical
stochastic noise, and D ∼ α0 does not strongly depend
on density. We verify this prediction numerically in large
scale simulations of a quantum automaton RUC [15–18].

In Section 3, we discuss diffusion and operator growth
in a CFC. At early times, and at small α, the dynam-
ics is controlled by the coherent quantum walk of an
effectively single particle operator, and so the diffusion
constant D ∼ 1/α and vB ∼ α0. At late times, rare
multi-particle collisions begin to dephase the quantum
walk and the operator wavefront spreads as vB ∼ α, as
in the RUC. However, we argue analytically that the dif-
fusion constant maintains its anomalous scaling with α
by analogy to a noisy quantum walk of a single particle.
We numerically justify our arguments about the late time
dynamics using a particular model of a CFC, described
below.

2. RANDOM CIRCUIT DYNAMICS

In a RUC, the time evolution operator U(t) is produced
by a quantum circuit which is composed of the staggered
layers of (products of) a random two-qubit gate U2(r, t):

U(t) =

t∏

m=1


 ∏

j=2,4,...

U2(j,m)




×


 ∏

j=1,3,...

U2(j,m)


 (2.1)

space

tim
e

t=2

t=3

t=1
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!

<latexit sha1_base64="JYe4dHSal7nGm26K5nFcf272lOE=">AAAB7XicbZDLSgMxFIbP1Futt6pLN8Ei6KbMiKDLUjcuK9gLtEPJpJlpbCYZkoxQhr6DGxeKuPV93Pk2ptNZaOsPgY//nEPO+YOEM21c99spra1vbG6Vtys7u3v7B9XDo46WqSK0TSSXqhdgTTkTtG2Y4bSXKIrjgNNuMLmd17tPVGkmxYOZJtSPcSRYyAg21uoMmiyKLobVmlt3c6FV8AqoQaHWsPo1GEmSxlQYwrHWfc9NjJ9hZRjhdFYZpJommExwRPsWBY6p9rN82xk6s84IhVLZJwzK3d8TGY61nsaB7YyxGevl2tz8r9ZPTXjjZ0wkqaGCLD4KU46MRPPT0YgpSgyfWsBEMbsrImOsMDE2oIoNwVs+eRU6l3XP8v1VrdEs4ijDCZzCOXhwDQ24gxa0gcAjPMMrvDnSeXHenY9Fa8kpZo7hj5zPH/NMjrQ=</latexit><latexit sha1_base64="JYe4dHSal7nGm26K5nFcf272lOE=">AAAB7XicbZDLSgMxFIbP1Futt6pLN8Ei6KbMiKDLUjcuK9gLtEPJpJlpbCYZkoxQhr6DGxeKuPV93Pk2ptNZaOsPgY//nEPO+YOEM21c99spra1vbG6Vtys7u3v7B9XDo46WqSK0TSSXqhdgTTkTtG2Y4bSXKIrjgNNuMLmd17tPVGkmxYOZJtSPcSRYyAg21uoMmiyKLobVmlt3c6FV8AqoQaHWsPo1GEmSxlQYwrHWfc9NjJ9hZRjhdFYZpJommExwRPsWBY6p9rN82xk6s84IhVLZJwzK3d8TGY61nsaB7YyxGevl2tz8r9ZPTXjjZ0wkqaGCLD4KU46MRPPT0YgpSgyfWsBEMbsrImOsMDE2oIoNwVs+eRU6l3XP8v1VrdEs4ijDCZzCOXhwDQ24gxa0gcAjPMMrvDnSeXHenY9Fa8kpZo7hj5zPH/NMjrQ=</latexit><latexit sha1_base64="JYe4dHSal7nGm26K5nFcf272lOE=">AAAB7XicbZDLSgMxFIbP1Futt6pLN8Ei6KbMiKDLUjcuK9gLtEPJpJlpbCYZkoxQhr6DGxeKuPV93Pk2ptNZaOsPgY//nEPO+YOEM21c99spra1vbG6Vtys7u3v7B9XDo46WqSK0TSSXqhdgTTkTtG2Y4bSXKIrjgNNuMLmd17tPVGkmxYOZJtSPcSRYyAg21uoMmiyKLobVmlt3c6FV8AqoQaHWsPo1GEmSxlQYwrHWfc9NjJ9hZRjhdFYZpJommExwRPsWBY6p9rN82xk6s84IhVLZJwzK3d8TGY61nsaB7YyxGevl2tz8r9ZPTXjjZ0wkqaGCLD4KU46MRPPT0YgpSgyfWsBEMbsrImOsMDE2oIoNwVs+eRU6l3XP8v1VrdEs4ijDCZzCOXhwDQ24gxa0gcAjPMMrvDnSeXHenY9Fa8kpZo7hj5zPH/NMjrQ=</latexit><latexit sha1_base64="JYe4dHSal7nGm26K5nFcf272lOE=">AAAB7XicbZDLSgMxFIbP1Futt6pLN8Ei6KbMiKDLUjcuK9gLtEPJpJlpbCYZkoxQhr6DGxeKuPV93Pk2ptNZaOsPgY//nEPO+YOEM21c99spra1vbG6Vtys7u3v7B9XDo46WqSK0TSSXqhdgTTkTtG2Y4bSXKIrjgNNuMLmd17tPVGkmxYOZJtSPcSRYyAg21uoMmiyKLobVmlt3c6FV8AqoQaHWsPo1GEmSxlQYwrHWfc9NjJ9hZRjhdFYZpJommExwRPsWBY6p9rN82xk6s84IhVLZJwzK3d8TGY61nsaB7YyxGevl2tz8r9ZPTXjjZ0wkqaGCLD4KU46MRPPT0YgpSgyfWsBEMbsrImOsMDE2oIoNwVs+eRU6l3XP8v1VrdEs4ijDCZzCOXhwDQ24gxa0gcAjPMMrvDnSeXHenY9Fa8kpZo7hj5zPH/NMjrQ=</latexit>

=<latexit sha1_base64="8uDF8DVeQnsAQmi3YnN5BydvDus=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfQiFL14bMF+QBvKZjtp1242YXcjlNBf4MWDIl79Sd78N27bHLT1hYWHd2bYmTdIBNfGdb+dwtr6xuZWcbu0s7u3f1A+PGrpOFUMmywWseoEVKPgEpuGG4GdRCGNAoHtYHw3q7efUGkeywczSdCP6FDykDNqrNW46ZcrbtWdi6yCl0MFctX75a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi1KGqH2s/miU3JmnQEJY2WfNGTu/p7IaKT1JApsZ0TNSC/XZuZ/tW5qwms/4zJJDUq2+ChMBTExmV1NBlwhM2JigTLF7a6EjaiizNhsSjYEb/nkVWhdVD3LjctK7TaPowgncArn4MEV1OAe6tAEBgjP8ApvzqPz4rw7H4vWgpPPHMMfOZ8/jM+MwQ==</latexit><latexit sha1_base64="8uDF8DVeQnsAQmi3YnN5BydvDus=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfQiFL14bMF+QBvKZjtp1242YXcjlNBf4MWDIl79Sd78N27bHLT1hYWHd2bYmTdIBNfGdb+dwtr6xuZWcbu0s7u3f1A+PGrpOFUMmywWseoEVKPgEpuGG4GdRCGNAoHtYHw3q7efUGkeywczSdCP6FDykDNqrNW46ZcrbtWdi6yCl0MFctX75a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi1KGqH2s/miU3JmnQEJY2WfNGTu/p7IaKT1JApsZ0TNSC/XZuZ/tW5qwms/4zJJDUq2+ChMBTExmV1NBlwhM2JigTLF7a6EjaiizNhsSjYEb/nkVWhdVD3LjctK7TaPowgncArn4MEV1OAe6tAEBgjP8ApvzqPz4rw7H4vWgpPPHMMfOZ8/jM+MwQ==</latexit><latexit sha1_base64="8uDF8DVeQnsAQmi3YnN5BydvDus=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfQiFL14bMF+QBvKZjtp1242YXcjlNBf4MWDIl79Sd78N27bHLT1hYWHd2bYmTdIBNfGdb+dwtr6xuZWcbu0s7u3f1A+PGrpOFUMmywWseoEVKPgEpuGG4GdRCGNAoHtYHw3q7efUGkeywczSdCP6FDykDNqrNW46ZcrbtWdi6yCl0MFctX75a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi1KGqH2s/miU3JmnQEJY2WfNGTu/p7IaKT1JApsZ0TNSC/XZuZ/tW5qwms/4zJJDUq2+ChMBTExmV1NBlwhM2JigTLF7a6EjaiizNhsSjYEb/nkVWhdVD3LjctK7TaPowgncArn4MEV1OAe6tAEBgjP8ApvzqPz4rw7H4vWgpPPHMMfOZ8/jM+MwQ==</latexit><latexit sha1_base64="8uDF8DVeQnsAQmi3YnN5BydvDus=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfQiFL14bMF+QBvKZjtp1242YXcjlNBf4MWDIl79Sd78N27bHLT1hYWHd2bYmTdIBNfGdb+dwtr6xuZWcbu0s7u3f1A+PGrpOFUMmywWseoEVKPgEpuGG4GdRCGNAoHtYHw3q7efUGkeywczSdCP6FDykDNqrNW46ZcrbtWdi6yCl0MFctX75a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi1KGqH2s/miU3JmnQEJY2WfNGTu/p7IaKT1JApsZ0TNSC/XZuZ/tW5qwms/4zJJDUq2+ChMBTExmV1NBlwhM2JigTLF7a6EjaiizNhsSjYEb/nkVWhdVD3LjctK7TaPowgncArn4MEV1OAe6tAEBgjP8ApvzqPz4rw7H4vWgpPPHMMfOZ8/jM+MwQ==</latexit>

⇢
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U3

<latexit sha1_base64="jcFiHOK2oRWZycPHeyHEVvJIkF8=">AAACJ3icbVBNSwMxEM367fpV9eglWARPZVcFPUnRi94UrApNWbLpbBvMZpdkVihL/40X/4oXQUX06D8xrXvw60Hg8d5MZubFuZIWg+Ddm5icmp6ZnZv3FxaXlldqq2uXNiuMgJbIVGauY25BSQ0tlKjgOjfA01jBVXxzPPKvbsFYmekLHOTQSXlPy0QKjk6KaodMQYKsZDH0pC65MXwwLNXQZynHfhyXp8NolzLmt6Jdn4HuViXMyF4fG1GtHjSCMehfElakTiqcRbUn1s1EkYJGobi17TDIseM+RSkUuLGFhZyLG96DtqOap2A75fjOId1ySpcmmXFPIx2r3ztKnlo7SGNXOdre/vZG4n9eu8DkoFNKnRcIWnwNSgpFMaOj0GhXGhCoBo5wYaTblYo+N1ygi9Z3IYS/T/5LLncaoePne/XmURXHHNkgm2SbhGSfNMkJOSMtIsgdeSDP5MW79x69V+/tq3TCq3rWyQ94H58OS6ad</latexit><latexit sha1_base64="jcFiHOK2oRWZycPHeyHEVvJIkF8=">AAACJ3icbVBNSwMxEM367fpV9eglWARPZVcFPUnRi94UrApNWbLpbBvMZpdkVihL/40X/4oXQUX06D8xrXvw60Hg8d5MZubFuZIWg+Ddm5icmp6ZnZv3FxaXlldqq2uXNiuMgJbIVGauY25BSQ0tlKjgOjfA01jBVXxzPPKvbsFYmekLHOTQSXlPy0QKjk6KaodMQYKsZDH0pC65MXwwLNXQZynHfhyXp8NolzLmt6Jdn4HuViXMyF4fG1GtHjSCMehfElakTiqcRbUn1s1EkYJGobi17TDIseM+RSkUuLGFhZyLG96DtqOap2A75fjOId1ySpcmmXFPIx2r3ztKnlo7SGNXOdre/vZG4n9eu8DkoFNKnRcIWnwNSgpFMaOj0GhXGhCoBo5wYaTblYo+N1ygi9Z3IYS/T/5LLncaoePne/XmURXHHNkgm2SbhGSfNMkJOSMtIsgdeSDP5MW79x69V+/tq3TCq3rWyQ94H58OS6ad</latexit><latexit sha1_base64="jcFiHOK2oRWZycPHeyHEVvJIkF8=">AAACJ3icbVBNSwMxEM367fpV9eglWARPZVcFPUnRi94UrApNWbLpbBvMZpdkVihL/40X/4oXQUX06D8xrXvw60Hg8d5MZubFuZIWg+Ddm5icmp6ZnZv3FxaXlldqq2uXNiuMgJbIVGauY25BSQ0tlKjgOjfA01jBVXxzPPKvbsFYmekLHOTQSXlPy0QKjk6KaodMQYKsZDH0pC65MXwwLNXQZynHfhyXp8NolzLmt6Jdn4HuViXMyF4fG1GtHjSCMehfElakTiqcRbUn1s1EkYJGobi17TDIseM+RSkUuLGFhZyLG96DtqOap2A75fjOId1ySpcmmXFPIx2r3ztKnlo7SGNXOdre/vZG4n9eu8DkoFNKnRcIWnwNSgpFMaOj0GhXGhCoBo5wYaTblYo+N1ygi9Z3IYS/T/5LLncaoePne/XmURXHHNkgm2SbhGSfNMkJOSMtIsgdeSDP5MW79x69V+/tq3TCq3rWyQ94H58OS6ad</latexit><latexit sha1_base64="jcFiHOK2oRWZycPHeyHEVvJIkF8=">AAACJ3icbVBNSwMxEM367fpV9eglWARPZVcFPUnRi94UrApNWbLpbBvMZpdkVihL/40X/4oXQUX06D8xrXvw60Hg8d5MZubFuZIWg+Ddm5icmp6ZnZv3FxaXlldqq2uXNiuMgJbIVGauY25BSQ0tlKjgOjfA01jBVXxzPPKvbsFYmekLHOTQSXlPy0QKjk6KaodMQYKsZDH0pC65MXwwLNXQZynHfhyXp8NolzLmt6Jdn4HuViXMyF4fG1GtHjSCMehfElakTiqcRbUn1s1EkYJGobi17TDIseM+RSkUuLGFhZyLG96DtqOap2A75fjOId1ySpcmmXFPIx2r3ztKnlo7SGNXOdre/vZG4n9eu8DkoFNKnRcIWnwNSgpFMaOj0GhXGhCoBo5wYaTblYo+N1ygi9Z3IYS/T/5LLncaoePne/XmURXHHNkgm2SbhGSfNMkJOSMtIsgdeSDP5MW79x69V+/tq3TCq3rWyQ94H58OS6ad</latexit>

=<latexit sha1_base64="8uDF8DVeQnsAQmi3YnN5BydvDus=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfQiFL14bMF+QBvKZjtp1242YXcjlNBf4MWDIl79Sd78N27bHLT1hYWHd2bYmTdIBNfGdb+dwtr6xuZWcbu0s7u3f1A+PGrpOFUMmywWseoEVKPgEpuGG4GdRCGNAoHtYHw3q7efUGkeywczSdCP6FDykDNqrNW46ZcrbtWdi6yCl0MFctX75a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi1KGqH2s/miU3JmnQEJY2WfNGTu/p7IaKT1JApsZ0TNSC/XZuZ/tW5qwms/4zJJDUq2+ChMBTExmV1NBlwhM2JigTLF7a6EjaiizNhsSjYEb/nkVWhdVD3LjctK7TaPowgncArn4MEV1OAe6tAEBgjP8ApvzqPz4rw7H4vWgpPPHMMfOZ8/jM+MwQ==</latexit><latexit sha1_base64="8uDF8DVeQnsAQmi3YnN5BydvDus=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfQiFL14bMF+QBvKZjtp1242YXcjlNBf4MWDIl79Sd78N27bHLT1hYWHd2bYmTdIBNfGdb+dwtr6xuZWcbu0s7u3f1A+PGrpOFUMmywWseoEVKPgEpuGG4GdRCGNAoHtYHw3q7efUGkeywczSdCP6FDykDNqrNW46ZcrbtWdi6yCl0MFctX75a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi1KGqH2s/miU3JmnQEJY2WfNGTu/p7IaKT1JApsZ0TNSC/XZuZ/tW5qwms/4zJJDUq2+ChMBTExmV1NBlwhM2JigTLF7a6EjaiizNhsSjYEb/nkVWhdVD3LjctK7TaPowgncArn4MEV1OAe6tAEBgjP8ApvzqPz4rw7H4vWgpPPHMMfOZ8/jM+MwQ==</latexit><latexit sha1_base64="8uDF8DVeQnsAQmi3YnN5BydvDus=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfQiFL14bMF+QBvKZjtp1242YXcjlNBf4MWDIl79Sd78N27bHLT1hYWHd2bYmTdIBNfGdb+dwtr6xuZWcbu0s7u3f1A+PGrpOFUMmywWseoEVKPgEpuGG4GdRCGNAoHtYHw3q7efUGkeywczSdCP6FDykDNqrNW46ZcrbtWdi6yCl0MFctX75a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi1KGqH2s/miU3JmnQEJY2WfNGTu/p7IaKT1JApsZ0TNSC/XZuZ/tW5qwms/4zJJDUq2+ChMBTExmV1NBlwhM2JigTLF7a6EjaiizNhsSjYEb/nkVWhdVD3LjctK7TaPowgncArn4MEV1OAe6tAEBgjP8ApvzqPz4rw7H4vWgpPPHMMfOZ8/jM+MwQ==</latexit><latexit sha1_base64="8uDF8DVeQnsAQmi3YnN5BydvDus=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfQiFL14bMF+QBvKZjtp1242YXcjlNBf4MWDIl79Sd78N27bHLT1hYWHd2bYmTdIBNfGdb+dwtr6xuZWcbu0s7u3f1A+PGrpOFUMmywWseoEVKPgEpuGG4GdRCGNAoHtYHw3q7efUGkeywczSdCP6FDykDNqrNW46ZcrbtWdi6yCl0MFctX75a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi1KGqH2s/miU3JmnQEJY2WfNGTu/p7IaKT1JApsZ0TNSC/XZuZ/tW5qwms/4zJJDUq2+ChMBTExmV1NBlwhM2JigTLF7a6EjaiizNhsSjYEb/nkVWhdVD3LjctK7TaPowgncArn4MEV1OAe6tAEBgjP8ApvzqPz4rw7H4vWgpPPHMMfOZ8/jM+MwQ==</latexit>: U2
<latexit sha1_base64="2fFJMl7f/VX+ICs/oNFp9aYsqaE=">AAAB7XicbZDNSgMxFIXv1L9a/6ou3QSL4KrMFEFxVXTjsoLTFtqhZNJMG5tJhiQjlKHv4MaFIm59H3e+jel0Ftp6IPBx7r3k3hMmnGnjut9OaW19Y3OrvF3Z2d3bP6geHrW1TBWhPpFcqm6INeVMUN8ww2k3URTHIaedcHI7r3eeqNJMigczTWgQ45FgESPYWKt93Uf+oDGo1ty6mwutgldADQq1BtWv/lCSNKbCEI617nluYoIMK8MIp7NKP9U0wWSCR7RnUeCY6iDLt52hM+sMUSSVfcKg3P09keFY62kc2s4Ym7Fers3N/2q91ERXQcZEkhoqyOKjKOXISDQ/HQ2ZosTwqQVMFLO7IjLGChNjA6rYELzlk1eh3ah7lu8vas2bIo4ynMApnIMHl9CEO2iBDwQe4Rle4c2Rzovz7nwsWktOMXMMf+R8/gBde45S</latexit><latexit sha1_base64="2fFJMl7f/VX+ICs/oNFp9aYsqaE=">AAAB7XicbZDNSgMxFIXv1L9a/6ou3QSL4KrMFEFxVXTjsoLTFtqhZNJMG5tJhiQjlKHv4MaFIm59H3e+jel0Ftp6IPBx7r3k3hMmnGnjut9OaW19Y3OrvF3Z2d3bP6geHrW1TBWhPpFcqm6INeVMUN8ww2k3URTHIaedcHI7r3eeqNJMigczTWgQ45FgESPYWKt93Uf+oDGo1ty6mwutgldADQq1BtWv/lCSNKbCEI617nluYoIMK8MIp7NKP9U0wWSCR7RnUeCY6iDLt52hM+sMUSSVfcKg3P09keFY62kc2s4Ym7Fers3N/2q91ERXQcZEkhoqyOKjKOXISDQ/HQ2ZosTwqQVMFLO7IjLGChNjA6rYELzlk1eh3ah7lu8vas2bIo4ynMApnIMHl9CEO2iBDwQe4Rle4c2Rzovz7nwsWktOMXMMf+R8/gBde45S</latexit><latexit sha1_base64="2fFJMl7f/VX+ICs/oNFp9aYsqaE=">AAAB7XicbZDNSgMxFIXv1L9a/6ou3QSL4KrMFEFxVXTjsoLTFtqhZNJMG5tJhiQjlKHv4MaFIm59H3e+jel0Ftp6IPBx7r3k3hMmnGnjut9OaW19Y3OrvF3Z2d3bP6geHrW1TBWhPpFcqm6INeVMUN8ww2k3URTHIaedcHI7r3eeqNJMigczTWgQ45FgESPYWKt93Uf+oDGo1ty6mwutgldADQq1BtWv/lCSNKbCEI617nluYoIMK8MIp7NKP9U0wWSCR7RnUeCY6iDLt52hM+sMUSSVfcKg3P09keFY62kc2s4Ym7Fers3N/2q91ERXQcZEkhoqyOKjKOXISDQ/HQ2ZosTwqQVMFLO7IjLGChNjA6rYELzlk1eh3ah7lu8vas2bIo4ynMApnIMHl9CEO2iBDwQe4Rle4c2Rzovz7nwsWktOMXMMf+R8/gBde45S</latexit><latexit sha1_base64="2fFJMl7f/VX+ICs/oNFp9aYsqaE=">AAAB7XicbZDNSgMxFIXv1L9a/6ou3QSL4KrMFEFxVXTjsoLTFtqhZNJMG5tJhiQjlKHv4MaFIm59H3e+jel0Ftp6IPBx7r3k3hMmnGnjut9OaW19Y3OrvF3Z2d3bP6geHrW1TBWhPpFcqm6INeVMUN8ww2k3URTHIaedcHI7r3eeqNJMigczTWgQ45FgESPYWKt93Uf+oDGo1ty6mwutgldADQq1BtWv/lCSNKbCEI617nluYoIMK8MIp7NKP9U0wWSCR7RnUeCY6iDLt52hM+sMUSSVfcKg3P09keFY62kc2s4Ym7Fers3N/2q91ERXQcZEkhoqyOKjKOXISDQ/HQ2ZosTwqQVMFLO7IjLGChNjA6rYELzlk1eh3ah7lu8vas2bIo4ynMApnIMHl9CEO2iBDwQe4Rle4c2Rzovz7nwsWktOMXMMf+R8/gBde45S</latexit>

FIG. 1. (a) The Haar random circuit with U(1) symmetry. A
single period of the circuit consists two layers. The rounded
block is a two-qubit gate where U↑↑ and U↓↓ are independent
random element of U(1) and U↑↓ is a Haar random unitary
element in U(2). (b) The quantum automaton circuit with
U(1) symmetry. A single period of the circuit consists three
layers. The block is a three-qubit gate which randomly picks
an identity operator or Fredkin gate. The dashed boxes in
both (a) and (b) indicate the circuit in one time step.

where U2(j,m) represents a Haar random two-qubit gate
acting on the spins at sites j and j+1 at time m, subject
to the constraint

[PN↑ , U2(j, t)] = 0, (for any N↑). (2.2)

See Fig. 1 (a). Previous calculations of operator dynam-
ics have largely studied OTOCs in the entire ensemble,
as defined in (1.1) [6, 7], although the dependence of but-
terfly velocity on chemical potential was examined in [6].
In the thermodynamic limit, operator dynamics in the
entire ensemble will be dominated by the dynamics at
density α = N↑/L ≈ 1/2. In this paper, we are more in-
terested in sectors with small α� 1, where we will show
that P plays a significant role.

2.1. Full polarization

Consider the OTOC in a polarized sector

CXX(r, t) = −
Tr
{(
PN↑ [Xx(t), Xx+r(0)]

)2}

TrPN↑
(2.3)

where X(t) = U(t)†XU(t) is a Heisenberg time evolved
local operator. Here the X operator denotes the Pauli X
matrix.

First, consider the fully polarized sector with α =
N↑ = 0:

P0 = | ↓↓ . . .〉〈↓↓ . . . | = |0〉〈0|. (2.4)
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In this simple limit,

CXX(r, t) = 4(Im〈0|X−x+r(0)X+
x (t)|0〉)2

= 4(Im〈0|X−x+rU†(t)X+
x |0〉)2, (2.5)

where X± = (X± iY )/2. If |L/2−x| � L, the OTOC is
approximately independent of x at short times. Observe
that

X+
x |0〉 = | ↓1 . . . ↓x−1↑x↓x+1 . . . ↓L〉. (2.6)

Under the unitary time evolution U†(t), the up spin at
x will move to other sites; by charge conservation, there
will always be exactly one up spin in U†(t)X+

x (0)|0〉. The
probability that the up spin is on site x + r at time t
is |〈0|X−x+rU†(t)X+

x |0〉|2, which is quite similar to (2.5).

Applying the U†(t) operator given by (2.1) and taking
average over different circuit realizations, it is easy to see
that this solitary up spin is performing a single particle
classical random walk in the background of down spins.
The diffusion constant D = 1 for this classical random
walk is derived in Appendix A. In the continuum limit,
C(r, t) becomes a Gaussian distribution:

C(r, t) ∼ e−r
2/4t

√
t

. (2.7)

Quantum information spreads diffusively with butterfly
velocity vB = 0. We numerically confirm this result in
Fig. 2(a).

It is instructive to also discuss this single particle quan-
tum walk directly in the language of growing operators.
We define a single site basis for Hermitian operators:

{P ↑,↓ = (I ± Z)/2, X± = (X ± iY )/2}. (2.8)

The space of many-body Hermitian operators is a tensor
product of this local basis. Any operator can be writ-
ten as a superposition of these basis operators (Pauli
string operators). Compared with the conventional
⊗{X,Y, Z, I} basis, this new basis is more convenient
when there is U(1) symmetry.

In order to analyze the OTOC in the polarized sector,
we need to study the dynamics of the projected operator
X+
x (t)PN↑ . For the fully polarized sector with N↑ = 0,

defining the spin propagator Gxy(t), spin conservation
demands that

X+
x (t)P0 =

L∑

y=1

Gx,y(t)X+
y P0

=

L∑

y=1

Gx,y(t)P ↓1 · · ·P
↓
y−1X

+
y P
↓
y+1 · · ·P

↓
L,

(2.9)

where
∑
y |Gx,y(t)|2 = 1. The result in (2.7) can easily

be understood by observing that P ↓P ↓ is invariant under

U2, while

E
[
U†2X

+
1 P
↓
2U2

]
= E

[
U†2X

+
2 P
↓
1U2

]

=
X+

1 P
↓
2 +X+

2 P
↓
1

2
, (2.10)

where E[·] denotes average over different circuit real-
izations. In other words, in the many-body operator
X+
x (t)PN↑ , the loneX+ performs a classical random walk

in a background of P ↓ and the averaged distribution func-
tion E

[
|Gx,x+r|2

]
satisfies the Gaussian distribution in

(2.7). The operator growth is entirely characterized by
the location of the X+ operator, for which the distribu-
tion function spreads out diffusively as time evolves.

2.2. Finite polarization

Now we turn to the dynamics of operator growth when
α > 0. It is most convenient to work in the operator
language and study X+

x (t)PN↑ at finite but small density
α. The allowed transition rates governed by the U2 can
be summarized as follows: the following (unnormalized)
operators mix into a random superposition of the others
in the same set: see Appendix B. For a growing operator
X+
x (t)PN↑ : (1) the total number of P ↑ and X+ is equal

to N↑ + 1; (2) the number of X+ is always larger than
X− by one.

We now try to estimate the location of the right most
X+ operator in X+

x (t)PN↑ , keeping in mind that (most
likely) this location serves as a reasonable proxy for the
right1 “edge” of the growing operator in the restricted
ensemble. Let us place an auxiliary hat label on this

right most X+: X̂+. If X̂+ operator has neighbor P ↑

or P ↓, it performs an unbiased random walk, as in the
N↑ = 0 sector. If the neighbor is X−, then it is possible

that X̂+ is destroyed and turned into a P ↑/↓; however,
we expect that in this case, with high probability an X+

will re-emerge at a similar location. As such, we will
assume that the presence of X− do not qualitatively alter

the dynamics of X̂+. The remaining possibility is that

X̂+ has another X+ to its left, in which case the X̂+

is blocked from moving to the left. This blocking of the

random walking X̂+ imparts some bias into the motion,

which will cause X̂+ to tend to drift to the right. Since
the density of X+ and P ↑ should scale as α, we expect
that with probability ∼ α we encounter an X+ which
biases the random walk, leading to the estimate

vB ∼ α. (2.11)

We also note that in this description, the diffusion con-
stant of the conserved charge, and of the operator wave

1 The left edge obeys an analogous description.
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(a) (b) (c)

FIG. 2. (a) The data collapse of CXX(r, t) in the full polarized sector with N↑ = 0. (b) CXX(r, t) vs r2/t in the N↑ = 1 sector.
(c) CXX(r, t) vs r2/t in the N↑ = 2 sector. In all these three plots, CXX(r, t) is obtained by taking average over more than 200
realizations.

front, is dominated by the single particle random walk
described previously; hence,

D ∼ α0 (2.12)

does not strongly depend on polarization.2

For this argument to be correct, it is necessary that the
right-moving X+ “scrambles” the projectors in its wake:
the number of X+ in the operator should scale as ∼ αt.
We expect that this does indeed occur due to random
dephasing of P ↑ and P ↓ as X+ moves through – this can
spawn pairs of X+ and X− according to the transition
rules above. As such, we expect that it is exponentially

unlikely to find X̂+ a distance� α−1 away from another
X+.

To confirm the cartoon above, we numerically compute
operator growth in the Haar RUC with U(1) symmetry
with small N↑. Due to the constraint that the superpo-

sition P ↓1 P
↑
2 +P ↑1 P

↓
2 is invariant under U2 gate, the Haar

RUC with U(1) symmetry cannot be mapped to a simple
Markov chain, and therefore we cannot perform classical
simulation for large system size. We directly simulate
this quantum RUC for small system size. The result is
presented in Fig. 2(b) and Fig. 2(c). We observe that the
curves do not collapse into a single curve if we employ
the previous scaling form for N↑ = 0 sector.

2 This result contradicts [6] who claimed that the diffusion con-
stant diverges in the limit of full polarization. Ref. [6] estimated
the diffusion constant from the correlator 〈Zr(t)Zr(0)〉 − 〈Zr〉2.
They found this correlator vanished in the limit of full polariza-
tion, and since this correlator is proportional to (Dt)−1/2 they
concluded that the diffusion constant must diverge. However,
close to full polarization even the t → 0 limit of this correlator
vanishes, and the vanishing of the correlator observed simply re-
flects this t = 0 normalization, and not any divergence of the
diffusion constant.

2.3. Quantum automaton circuit

Of course, this does not demonstrate the emergence
of a finite butterfly velocity. To observe this behavior
reliably in our numerics, we now turn to a different RUC:
the quantum automaton (QA) [15–18], which we expect
exhibits similar operator growth to the Haar RUC, while
allowing for large scale numerical simulation.

As shown in Fig. 1 (b), our QA consists of three-qubit
gates, which are randomly chosen to be U3 with proba-
bility f or the identity with probability 1−f . We choose
U3 to be the Fredkin gate [19],

U3 ≡ (1−Q) +Q(| ↓↓↑〉〈↑↓↓ |+ | ↑↓↓〉〈↓↓↑ |) (2.13)

where the projector Q is

Q = | ↓↓↑〉〈↓↓↑ |+ | ↑↓↓〉〈↑↓↓ | (2.14)

Note that U3 is U(1) symmetric: it swaps between the
two states | ↓↓↑〉 and | ↑↓↓〉 and leaves other states in-
variant.

Under the adjoint action of U3, a Pauli string of P ↑,↓

and X± either remains invariant or becomes another
Pauli string: see Appendix C. This property is similar
to the Clifford circuit dynamics where there is no super-
position for the operator dynamics [20]. Notice that this
property only holds in the special basis defined in (2.8)
and is not true in the conventional ⊗{X,Y, Z, I} basis.

For X̂+ in the background of P ↑/↓, under U3 gate, we

have X̂+P ↓P ↑,↓ ←→ P ↑,↓P ↓X̂+, therefore X̂+ can move
freely to the right or left with the same displacement.

However, for the Pauli string X+X+X̂+ and X+P ↑X̂+,

the location of X̂+ operator is invariant under U3. This

gives rise to a biased random walk for X̂+. The same
logic as before leads to the prediction (2.11).

Since Pauli strings map to Pauli strings, we can easily
perform large scale classical simulations of the QA, in
contrast to the Haar RUC. For numerical ease, we study
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a slightly different OTOC:

CXZ(r, t) = −
Tr
{
PN↑ [Xx(t), Zx+r]

2
}

TrPN↑

=
∑

s,s′

|〈s|[Xx, Zx+r(−t)|s′]〉|2

TrPN↑

=
∑

s

|〈s|Zx+r(−t)|s〉 − 〈s∗|Zx+r(−t)|s∗〉|2

TrPN↑

(2.15)

where |s∗〉 = Xx|s〉. In Fig. 3, we present the numerical
results for CXZ. We numerically find that the front of
OTOC is captured by a scaling function

CXZ(r, t) = F

(
r − vBt√

t

)
(2.16)

for a function F which may depend on α. Physically,
this F reveals a ballistically propagating wave front with
diffusive broadening, in agreement with earlier work [6,
7]. When the density α is small, we further find (2.11)
numerically, consistent with our analytical arguments.

3. FLOQUET NON-RANDOM DYNAMICS

For a realistic chaotic system without randomness, it
is believed that at high temperature, or in the polar-
ized sector with α ≈ 1/2, the quantum dynamics can be
well approximated by the RUC models with the same
symmetry. We now demonstrate that this assumption
generically fails when α� 1.

We numerically study a chaotic Floquet circuit (CFC),
defined as follows: for integer times t = 0, 1, . . .,

U(t) = U tF (3.1)

where as shown in Fig. 4(a),

UF =

(∏

m

U2m,2m+1

)
UZ,2

(∏

m

U2m−1,2m

)
UZ,1 (3.2)

where U2m,2m+1 and U2m−1,2m are defined on two neigh-
boring qubits and preserve U(1) symmetry: e.g.3

U2m−1,2m = exp[−i
√

2(X2m−1X2m + Y2m−1Y2m)],
(3.3a)

U2m,2m+1 = exp[−i
√

3(X2m+1X2m + Y2m+1Y2m)].
(3.3b)

3 The choice of irrational phase factors was for convenience and is
not essential to the model.

(a)

(b)

FIG. 3. (a) The data collapse for the front of OTOC in QA
circuit. The strong oscillatory behavior observed in the short
distance regime is due to a special feature of the three-qubit
Fredkin gate, which can only swap the spin configuration be-
tween the first and third qubits. (b) The butterfly velocity vs
α. In both plots, we take the probability f = 0.5.

UZ,1 and UZ,2 are both phase gates:

UZ,1 =
∏

m

exp[−iJzZmZm+1], (3.4a)

UZ,2 =
∏

m

exp[−iJzZmZm+1Zm+2]. (3.4b)

The phase gates are chosen so that a product state picks
up a relative phase whenever an up/down spin are adja-
cent.

When Jz = 0 (corresponding to the Floquet circuit
without UZ,1/2 gates), the above model is integrable:
the dynamics can be mapped to free fermions. When
Jz is nonzero, UZ,1/2 will introduce extra phases to the
many-body wave function, and this makes the dynamics
chaotic. However, if we consider the dynamics in a polar-
ized sector, the non-trivial phases from the UZ,1/2 gates
are only relevant when two up spins are either nearest or
next-nearest neighbors. So even if the phases from UZ,1/2
eventually lead to chaos, the approach to chaos may be
qualitatively distinct from the RUC.
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space

tim
e

t=2

t=1

(a) (b)

FIG. 4. (a) The schematics for the Floquet circuit. (b) The
probability distribution for the up spin under time evolution
generated with the staggered Um,m+1 gate. In order to ob-
tain a symmetric quantum walk, we take the initial state as
1/
√

2(|0〉 + i|1〉). The probability distribution P (r, t) can be
considered as C(r, t) for X operators in the N↑ = 0 sector.

3.1. Zero density

We first investigate the fully polarized limit α = 0,
evaluating (2.3). As in the RUC, this OTOC can be in-
terpreted as follows: one of the operators Xx+r(0) flips a
single spin up, and Xx(t) measures if the flipped spin is
at site x; hence, CXX(t) is closely related to the probabil-
ity for the up spin to reach site x at time t. Observe that
when α = 0, the phase gate UZ,1/2 will only generate an
unimportant overall phase for the entire wave function;
the dynamics is only determined by the Um,m+1 gates.
By consecutively applying the Um,m+1 gates, we see that
the up spin is performing a discrete quantum walk on a
line [21]. One important feature of the quantum walk
is that the dynamics is ballistic, and the quantum wave
packet has a significant spread (variance ∼ t2): see Ap-
pendix D. This is depicted in Fig. 4(b), where we show
that the “front” of the growing operator moves with a
constant velocity. This is in stark contrast with the slow
dynamics observed in RUC, where the quantum coher-
ence is completely lost and the up spin performs a clas-
sical random walk with vB = 0 and variance ∼ t.

Alternatively, we can also interpret the above dynam-
ics in terms of operator growth. The projected operator
X+(0, t)P0 evolves as

X+
x (t)P0 =

∑

y

Gxy(t)X+
y P0, (3.5)

and the coefficients Gxy(t) come from the single particle
quantum walk described above.

3.2. Low but finite density

We now move slightly away from the α = 0 limit, and
explore the highly polarized sector with small but finite
α. The UZ,1/2 phase gates can no longer be neglected.
As two up spins quantum walk collide, the wave func-
tion will accumulate overall phases which destructively

add, depending on the precise history of the walkers.
The accumulation of these phases will spoil the quan-
tum coherence observed in the fully polarized sector with
α = 0. For example, let us consider X+

x (t)PN↑ . Generi-
cally, there will be multiple X+ in the Pauli string. When
two X+ operators in the background of P ↓ are far away
from each other, they are independent quantum walk-
ers, as in the fully polarized sector. However, collisions
of two X+ operators dephase the quantum walks due to
the UZ,1/2 gates. In addition, neighboring P ↑ and X− in

the Pauli string X+
x (t)PN↑ also contribute to dephasing.

Our goal is now to determine the dephasing time of this
many-body operator, together with the consequences on
operator growth and transport.

Numerically computing the OTOC and analyzing the
long time dynamics is hard in the CFC. It is slightly sim-
pler to numerically study transport physics, such as the
relaxation of a local perturbation. If decoherence quali-
tatively changes the growth of operators, we can observe
a transition from ballistic (quantum walk) to diffusive
(classical walk) transport. We start with a random state
|ψ〉 uniformly drawn from the Hilbert spaceHN↑−1. Note
that this state has 〈Zy〉 = 2α − 1 for every site y. Then
we consider the initial state

|ψ0〉 = X+
x |ψ〉, (3.6)

which generates some inhomogeneity in 〈Zy〉. We then
numerically evolve the wave function forward in time,
and track the relaxation of 〈Zy(t)〉.

As shown in Fig. 5(a), when α is small, the spread of
〈Zy(t)〉 is ballistic. The peak of the front moves at a con-
stant velocity which does not depend (strongly) on α: see
Fig. 5(b). In contrast, for larger α, as shown in Fig. 5(c),
the dynamics becomes much slower. Fig. 5(d) further in-
dicates that the relaxation to equilibrium is diffusive, as
in the RUC [6, 7].

Fig. 6 shows 〈Zy(t)〉 at a fixed time slice for different
values of Jz. For Jz = 0, we observe that 〈Zy(t)〉 always
spreads ballistically; the speed is independent of α. In
contrast, for Jz = 1, as we gradually increase α, there
is a clear crossover from ballistic to diffusive transport.
While we cannot clearly extract a diffusion constant from
the finite size data in Fig. 5(d), the broadening of the
diffusive peak at smaller α suggests that the diffusion
constant is a decreasing function of α.

3.3. Cartoon model

Motivated by the above numerics, we propose a car-
toon picture to explain the dynamics of the initially lo-
calized up spin and estimate the diffusion constant. Sim-
ilarly to before, we model the quantum walk for the right

most X+ (labelled X̂+) in the Pauli string. The Hilbert
space of the quantum walk is spanned by single particle

states |m〉 which label the lattice site of X̂+. The unitary
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(a) (b)

(c) (d)

FIG. 5. (a) The 〈Zy(t)〉 profile under unitary evolution governed by CFC dynamics with L = 160 and N↑ = 3. (b) The
location of the peak of the right front vs time. Here we only present the results for t ≥ 10. (c) The 〈Zy(t)〉 profile with
L = 36 and N↑ = 7. (d) The dynamics of 〈Zy(t)〉 at y = 0 for various α. We observe that it will relax to the saturation value
〈Zsat〉 ≡ (2N↑ −L)/L diffusively when α is large. In all these simulations, the initial state is defined in (3.6) with X+

x applied
at the center of the spin chain.

time evolution operator is

U =

t∏

i=1

Uni

θ U2U1 (3.7)

where ni is a Bernoulli random variable with

P[ni = 0] = 1− α, (3.8a)

P[ni = 1] = α, (3.8b)

the U1 gate is defined separately on even vs. odd sites
as:

U1|2m− 1〉 =
1√
2

(|2m− 1〉+ |2m〉), (3.9a)

U1|2m〉 =
1√
2

(|2m− 1〉 − |2m〉), (3.9b)

U2 is

U2|2m〉 =
1√
2

(|2m〉+ |2m+ 1〉), (3.10a)

U2|2m+ 1〉 =
1√
2

(|2m〉 − |2m+ 1〉), (3.10b)

and the phase gate

Uθ|m〉 = eiθm |m+ 1〉 (3.11)

where θm ∈ [0, 2π) is a uniformly random phase.
This model can be interpreted as follows: the U1 and

U2 gates generate a single particle coherent quantum
walk with ballistic transport. With probability α, the

X̂+ encounters another up spin and the phase gates
UZ,1/2, which are mimicked by Uθ, dephase the wave
function. Also observe that the dephasing gate Uθ kicks

the X̂+ to the right, just as in our cartoon of the RUC.
The dynamics of this quantum walk are analyzed in

Appendix D; here we present a quick argument. At early
times t . α−1, the quantum walk is completely coherent.

After this time scale, X̂+ experiences a completely de-
phasing collision. After the collision, it will take another
time ∼ α−1 to dephase again, etc. Thus, we conclude
that the long time dynamics is a classical random walk,
but one whose diffusion constant is parametrically large:
D = ∆x2/∆t, where ∆x ∼ α−1 and ∆t ∼ α−1 are the
length and time step for the classical random walk. In
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(a) (b)

(c) (d)

FIG. 6. The numerical results for 〈Zy(t)〉 at the same time t = 25 with different L and N↑. All the numerical results are
averaged over 10 initial random states defined in (3.6). We notice that the difference between 〈Zy(t)〉 of Jz = 0 and Jz = 1
increases as we increase α ≡ N↑/L,

other words,

D ∼ α−1. (3.12)

Moreover, the butterfly velocity vB is controlled only by
the biased rightwards motion of the dephasing collisions:

vB ∼
1

∆t
∼ α. (3.13)

This argument is easily observed numerically in simula-
tions of this cartoon model: see Fig. 7.

Interestingly, vB is quite similar in the CFC and the
RUC, essentially because only the collisions of two up
spins contribute to operator growth. The diffusion con-
stant, which is physically (more) measurable than oper-
ator growth, parametrically differs from the CFC to the
RUC, as a consequence of coherent quantum dynamics on
short time and length scales. We conclude that the RUC
only quantitatively models operator dynamics in the “in-
finite temperature” sector α ≈ 1/2. These conclusions do
not depend on details of the model we studied: it is easy
to see that the coherent quantum dynamics that differ

from the noisy RUC dynamics at short times are univer-
sal properties of any time-independent Floquet system or
Hamiltonian system.

4. OUTLOOK

We have compared the physical predictions for oper-
ator growth between random circuit models and non-
random chaotic Floquet models with conservation laws
in one dimension. We find that vB ∼ α is consis-
tent between both models, but the diffusion constant
D ∼ α0 vs. D ∼ α−1 is parametrically different. This
presents a very simple, and physically realistic, exam-
ple of chaotic quantum dynamics which is only partially
captured by random circuits. (See also the more patho-
logical “star graph” model of [8].) It is important to un-
derstand whether the predictions of exotic dynamics in
other classes of random circuits are properties of chaotic
Floquet or Hamiltonian evolution without randomness,
or are peculiar features of time-dependent randomness.

We expect that in most physical models, the dominant
slow down of the butterfly velocity at high polarization,
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(a) (b)

(c) (d)

FIG. 7. The numerical results for quantum walk defined in (3.7) with random phase gate. The initial state is taken to be
1/
√

2(|0〉 + i|1〉). (a) We take the random phase gate Uθ|m〉 = eiθm |m〉 with probability α = 0.04 and we observe a crossover
from the ballistic to diffusive dynamics. This diffusive dynamics can be further supported by the data collapse in (b). This

result indicates that P (r, t) = 1√
4πDt

e−
r2

4Dt , in which the diffusion constant D can be read out from the slope of the single

straight line. (c) We use the same method to extract the diffusion constant D at other α and show that D ∼ 1/α. (d) We
take the random phase gate with a shift defined in (3.11) and perform data collapse for P (r, t). We observe a finite vB which
is linearly proportional to α (not shown in the plot).

or low temperature, is arising from quantum dephasing
between growing operators. So it is unclear whether cur-
rent techniques based on the Lieb-Robinson theorem [2]
or beyond [22, 23] provide non-trivial constraints on con-
strained quantum dynamics in generic models [24].

Lastly, it has been argued on rather general grounds
that [25, 26]

D . v2Bτhydro (4.1)

is a requirement of causality; here τhydro corresponds to
the time scale beyond which hydrodynamics is a sensible
effective theory. This inequality comes from demanding
that the diffusive front x ∼

√
Dt lies within the operator

light cone. In the RUC, (4.1) makes sense as written:
D ∼ α0, vB ∼ α and τhydro ∼ α−2 is set by the decay rate
of a diffusion mode on the length scale α−1 where a single
excitation (up spin) is present. However, if we apply
(4.1) to the CFC, it appears that τhydro & α−3 – namely,
hydrodynamics breaks down at anomalously late times

[26]. In this model, however, this reasoning is incorrect.
At early times t < α−1, in the CFC vB ∼ α0 due to
the single particle quantum walk. Hence, (4.1) should be
interpreted as α−1 . (α0)2α−1. In other words, the late
time butterfly velocity ends up irrelevant for diffusion,
which is controlled entirely by single particle dynamics.
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Appendix A: Single particle diffusion constant

Take an initial state with only one spin pointing up,
i.e., |ψ0〉 = | ↓ . . . ↓↓↑↓↓ . . . ↓〉, under the random cir-
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cuit described in Fig. 1 (a), the up spin is performing a
classical random walk. In this section, we compute the
diffusion constant for this random walker.

We first consider a two-qubit state | ↑↓〉, under U2 gate,
it becomes superposition of | ↑↓〉 and | ↓↑〉 with the same
probability 1/2 on average, i.e.,

E[|〈↑↓ |U2| ↑↓〉|2] =
1

2

E[|〈↑↓ |U2| ↓↑〉|2] =
1

2
, (A1)

where E[·] denotes average over random U2 gate. Notice
that

E[〈↑↓ |U2| ↑↓〉] = E[〈↑↓ |U2| ↓↑〉] = 0. (A2)

Therefore this quantum dynamics can be mapped to a
classical random walk.

For a state |ψ0〉 = | ↓ . . . ↓↓↑↓↓ . . . ↓〉, if the up spin
is at odd site n, after one time step (the dashed block
in Fig. 1 (a)), (1) this up spin can move to n + 2, n ± 1
and n with the same probability 1/4. Similarly, for a up
spin initially at even site n, after one time step, (1) this
up spin can move to n − 2, n ± 1 and n with the same
probability 1/4.

We define the probability that the up spin is at site
n as P (n, t). The first moment (the mean displacement)
and the second moment (variance) at each time is

M1(t) =
∑

n

nP (n, t) (A3)

M2(t) =
∑

n

n2P (n, t). (A4)

After evolving for one time step, the first moment be-
comes

M1(t+ 1) =
∑

n

nP (n, t+ 1)

=
∑

n

(2n+ 1 +
1

2
)Po(2n+ 1, t) + (2n− 1

2
)Pe(2n, t)

=
∑

n

nP (n, t) +
1

2

∑

n

(Po(2n+ 1, t)− Pe(2n, t)) = M1(t)

(A5)

where Po(2n+1, t) and Pe(2n, t) denote the probability at
odd and even sites respectively. Notice that Pe(2n, t) =
Po(2n+ 1, t) at any arbitrary time t > 0 (independent of
the initial state) and we have the first moment is invariant
under time evolution. Furthermore, we can show

∑

n

(2n+ 1)Po(2n+ 1, t+ 1) =
M1(t)

2
+

1

4

∑

n

(2n)Pe(2n, t+ 1) =
M1(t)

2
− 1

4
. (A6)

The second moment satisfies

M2(t+ 1) =
∑

n

n2P (n, t+ 1)

=
1

4

∑

n

Po(2n+ 1, t)
[
(2n+ 1)2 + (2n+ 1 + 1)2

+ (2n+ 1− 1)2 + (2n+ 1 + 2)2
]

+
1

4

∑

n

Pe(2n, t)
[
(2n)2 + (2n+ 1)2

+ (2n− 1)2 + (2n− 2)2
]

=M2(t) +
3

2
+
∑

n

[(2n+ 1)Po(2n+ 1, t)− 2nPe(2n, t)]

=M2(t) + 2. (A7)

Therefore we have M2(t+1)−M2(t) = 2 and the diffusion
constant for the random walker is D = 1 (since M2(t) =
2Dt by convention).

Appendix B: Operator growth in the Haar RUC

A Pauli string operator O acting on two adjacent
qubits transitions according to the following rules under
the Haar RUC.

• The following operators are invariant under the
RUC:

1. P ↓P ↓, P ↑P ↑, P ↓P ↑ + P ↑P ↓

2. X+X+, X−X−

• In each set below, operators (which we have not
normalized) mix amongst themselves with equal
probability:

1. P ↓P ↑ − P ↑P ↓, X+X−, X−X+

2. P ↑X−, X−P ↑

3. P ↓X+, X+P ↓

4. P ↓X−, X−P ↓

5. P ↑X+, X+P ↑

Appendix C: Operator growth in the quantum
automaton RUC

The Pauli string operator O defined on three qubits
can be classified into two classes according to the adjoint
action of gate U3:

• These operators are invariant under U†3OU3:

1. P ↑,↓P ↑P ↑,↓, P ↑P ↓P ↑, P ↓P ↓P ↓

2. P ↑X±P ↑, P ↓X±P ↓

3. X±P ↑P ↑,↓, P ↑,↓P ↑X±

4. X±P ↑X±, X+P ↓X+, X−P ↓X−
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5. P ↑X+X−, P ↓X+X+, X+X+P ↓, X−X+P ↑

P ↑X−X+, P ↓X−X−, X−X−P ↓, X+X−P ↑

6. X+X+X+, X−X−X−, X−X+X−,
X+X−X+

• These operators will transform in the following
way:

1. P ↑P ↓P ↓ ←→ P ↓P ↓P ↑,

2. P ↑X+P ↓ ←→ X+X+X−,
P ↓X+P ↑ ←→ X−X+X+,
P ↑X−P ↓ ←→ X−X−X+,
P ↓X−P ↑ ←→ X+X−X−

3. X±P ↓P ↑,↓ ←→ P ↑,↓P ↓X±,

4. X+P ↓X− ←→ X−P ↓X+,

5. P ↑X+X+ ←→ X+X+P ↑,
P ↑X−X− ←→ X−X−P ↑

P ↓X+X− ←→ X−X+P ↓,
P ↓X−X+ ←→ X+X−P ↓

Appendix D: Operator dynamics for quantum walk
on a line

1. Discrete time quantum walk

In this section, we study a class of Floquet circuit with
U(1) symmetry. We show that if the initial state only
has one up spin with the rest of spins pointing down, the
dynamics for the up spin corresponds to a quantum walk
problem [21]. The Floquet operator is defined as

UF =

(∏

m

U
(2)
2m,2m+1

)(∏

m

U
(1)
2m−1,2m

)
(D1)

with U
(1)
2m−1,2m and U

(2)
2m,2m+1 defined on two neighbor-

ing qubits. They preserve U(1) symmetry and take the
following form,

U (1)/(2) ≡




1

U
(1)/(2)
↑↓

1


 (D2)

where U
(1)/(2)
↑↓ is a 2 × 2 unitary matrix defined on the

subspace composed by | ↑↓〉 and | ↓↑〉. We define the
probability for the up spin at odd site as am(t) and even
site as bm(t) with the constraint

∑
m |am(t)|2+|bm(t)|2 =

1. Under Floquet operator, we have

(
am(t+ 1

2 )
bm(t+ 1

2 )

)
= U

(1)
↑↓

(
am(t)
bm(t)

)
(D3)

(
bm(t+ 1)
am+1(t+ 1)

)
= U

(2)
↑↓

(
bm(t+ 1

2 )
am+1(t+ 1

2 )

)
(D4)

The above equation characterizes the discrete quantum
walk process and can be convenient rewritten in the mo-
mentum space. We define the Fourier transformation,

ak(t) =
1√
L

∑

m

e−imkam(t), bk(t) =
1√
L

∑

m

eimkbm(t),

(D5)

and we have
(
ak(t+ 1)
bk(t+ 1)

)
= Mk

(
ak(t)
bk(t)

)
, (D6)

where Mk is 2 × 2 unitary matrix. The distribution of
am(t) and bm(t) can be studied by diagonalizing Mk ma-
trix and performing the inverse Fourier transformation.

We consider a simple example with

U (1) =
1√
2

(
1 1
1 −1

)
, U (2) =

1√
2

(
0 −1
1 0

)
, (D7)

so that

Mk =
1√
2

(
−e−ik eik

e−ik eik

)
. (D8)

This actually is the famous Hadamard quantum walk
and has been analytically studied in Ref. 27. Below we
briefly review their main results. If we start with an ini-
tial state with the amplitude a0 = 1 and rest of them
equal to zero, as time evolves, the position probability of
the up spin will spread out rapidly. At time t, |am(t)|2
and |bm(t)|2 will become roughly uniform in the interval

[−t/
√

2, t/
√

2], with the variance σ2 ∼ t2. Outside the

interval, it dies out quickly. At the fronts at ±t/
√

2, there
are two peaks with width t−1/3. This ballistic spreading
is in contrast with the classical random walk where we
have σ2 ∼ t.

2. Quantum walk in random medium

The ballistic spreading in quantum walk is due to
quantum coherence and is unstable if we introduce de-
coherent events. In this section, we introduce unitary
random phase gate into quantum walk and study the
transition to the classical random walk in the long time
limit. The method we are using here is following Ref.
28, where they were considering the dephasing effect due
to the non-unitary projective measurement. Consider an
initial product state |ψ0〉 = | ↓↓ . . . ↓↑↓ . . . ↓↓〉, under
unitary time evolution, the up spin performs one dimen-
sional ballistic quantum walk and the wave function can
be written as

|ψ(t)〉 =
∑

n

cn(t)|n〉, (D9)

where |n〉 denotes the state with spin at site n pointing
up. For this quantum walk model, after involving it for
time t, we apply a random phase gate

Uθ|n〉 = eiθn |n〉, (D10)
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where θn ∈ [0, 2π] is a random phase. This random phase
removes the quantum coherence in the quantum wave
function (D9). The probability that the spin is pointing
up at site n is Pn(t) = |cn(t)|2. Notice that Pn satisfies
the constraint

∑
n Pn = 1. Below we are going to study

how Pn(t) spreads out in time. We average over the
random phase gate, as in Appendix A.

The first and second moments are defined as

M1(t) =
∑

n

nPn(t) (D11)

M2(t) =
∑

n

n2Pn(t). (D12)

Furthermore, the variance is defined as

σ2(t) ≡M2(t)−M2
1 (t). (D13)

After applying this random phase gate, the quantum
interference between different |n〉 is lost. We continue
to evolve the wave function with quantum walk gate for
time T . The probability distribution at time t+ T is

Pn(t+ T ) =

n+2T∑

j=n−2T
Pn−j(T )Pj(t). (D14)

At this time, the first moment has

M1(t+ T ) =
∑

n

nPn(t+ T ) =
∑

n

n

n+2T∑

j=n−2T
Pn−j(T )Pj(t)

=
∑

j

2T∑

l=−2T
(j + l)Pj(t)Pl(T ) =

∑

j

jPj(t) +

2T∑

l=−2T
lPl(T )

= M1(t) +M1(T ). (D15)

The second moment has

M2(t+ T ) =
∑

n

n2Pn(t+ T ) =
∑

j

2T∑

l=−2T
(j + l)2Pj(t)Pl(T )

= M2(t) +M2(T ) + 2M1(t)M1(T ). (D16)

Therefore we have the variance σ2(t+ T ) satisfies

σ2(t+ T ) ≡M2(t+ T )−M2
1 (t+ T ) = σ2(t) + σ2(T ).

(D17)

Using the above result, we are ready to consider a
quantum circuit model, in which we apply Uθ gate at
random times with time intervals T1, T2, T3 . . .. In this
case, the wave function evolves as

|ψ〉 = . . . U(T3)UθU(T2)UθU(T1)|ψ0〉. (D18)

The total variance σ2(
∑
i Ti) =

∑
i T

2
i , and the diffusion

constant is

D =
1

2

σ2(
∑
i Ti)∑
i Ti

∼ T ∼ 1

α
, (D19)

where T is the mean time interval. We can extend the
above result to the random phase gate with a shift, i.e.,

Uθ|n〉 = eiθn |n+ 1〉. (D20)

In this case, we have the biased random walk with the
same diffusion constant and butterfly velocity vB ∼ α.

[1] Leo P Kadanoff and Paul C Martin, “Hydrodynamic
equations and correlation functions,” Annals of Physics
24, 419 – 469 (1963).

[2] Elliott H. Lieb and Derek W. Robinson, “The finite group
velocity of quantum spin systems,” Communications in
Mathematical Physics 28, 251–257 (1972).

[3] Adam Nahum, Jonathan Ruhman, Sagar Vijay, and
Jeongwan Haah, “Quantum Entanglement Growth un-
der Random Unitary Dynamics,” Physical Review X 7,
031016 (2017), arXiv:1608.06950 [cond-mat.stat-mech].

[4] Adam Nahum, Sagar Vijay, and Jeongwan Haah, “Op-
erator Spreading in Random Unitary Circuits,” Physical
Review X 8, 021014 (2018).

[5] C.W. von Keyserlingk, Tibor Rakovszky, Frank Poll-
mann, and S. L. Sondhi, “Operator Hydrodynamics,

OTOCs, and Entanglement Growth in Systems with-
out Conservation Laws,” Physical Review X 8, 021013
(2018).

[6] Tibor Rakovszky, Frank Pollmann, and C. W. von
Keyserlingk, “Diffusive hydrodynamics of out-of-time-
ordered correlators with charge conservation,” Phys. Rev.
X 8, 031058 (2018).

[7] Vedika Khemani, Ashvin Vishwanath, and David A.
Huse, “Operator spreading and the emergence of dissi-
pative hydrodynamics under unitary evolution with con-
servation laws,” Phys. Rev. X 8, 031057 (2018).

[8] Andrew Lucas, “Quantum many-body dynamics on the
star graph,” arXiv e-prints , arXiv:1903.01468 (2019),
arXiv:1903.01468 [cond-mat.str-el].

[9] A. I. Larkin and Yu. N. Ovchinnikov, “Quasiclassical

http://dx.doi.org/ https://doi.org/10.1016/0003-4916(63)90078-2
http://dx.doi.org/ https://doi.org/10.1016/0003-4916(63)90078-2
https://doi.org/10.1007/BF01645779
https://doi.org/10.1007/BF01645779
http://dx.doi.org/ 10.1103/PhysRevX.7.031016
http://dx.doi.org/ 10.1103/PhysRevX.7.031016
http://arxiv.org/abs/1608.06950
https://link.aps.org/doi/10.1103/PhysRevX.8.021014
https://link.aps.org/doi/10.1103/PhysRevX.8.021014
https://link.aps.org/doi/10.1103/PhysRevX.8.021013
https://link.aps.org/doi/10.1103/PhysRevX.8.021013
https://link.aps.org/doi/10.1103/PhysRevX.8.031058
https://link.aps.org/doi/10.1103/PhysRevX.8.031058
https://link.aps.org/doi/10.1103/PhysRevX.8.031057
http://arxiv.org/abs/1903.01468


13

Method in the Theory of Superconductivity,” Soviet
Journal of Experimental and Theoretical Physics 28,
1200 (1969).

[10] Juan Maldacena, Stephen H. Shenker, and Douglas
Stanford, “A bound on chaos,” Journal of High Energy
Physics 2016, 106 (2016).

[11] Daniel A. Rowlands and Austen Lamacraft, “Noisy cou-
pled qubits: Operator spreading and the Fredrickson-
Andersen model,” Phys. Rev. B 98, 195125 (2018),
arXiv:1806.01723 [cond-mat.stat-mech].

[12] Shriya Pai, Michael Pretko, and Rahul M. Nandkishore,
“Localization in Fractonic Random Circuits,” Physical
Review X 9, 021003 (2019), arXiv:1807.09776 [cond-
mat.stat-mech].

[13] Vedika Khemani and Rahul Nandkishore, “Local con-
straints can globally shatter hilbert space: a new
route to quantum information protection,” (2019),
arXiv:1904.04815 [cond-mat.stat-mech].

[14] Pablo Sala, Tibor Rakovszky, Ruben Verresen, Michael
Knap, and Frank Pollmann, “Ergodicity-breaking aris-
ing from hilbert space fragmentation in dipole-conserving
hamiltonians,” (2019), arXiv:1904.04266 [cond-mat.str-
el].

[15] Sarang Gopalakrishnan, “Operator growth and eigen-
state entanglement in an interacting integrable Flo-
quet system,” Phys. Rev. B 98, 060302 (2018),
arXiv:1806.04156 [cond-mat.stat-mech].

[16] Sarang Gopalakrishnan and Bahti Zakirov, “Facilitated
quantum cellular automata as simple models with non-
thermal eigenstates and dynamics,” Quantum Science
and Technology 3, 044004 (2018), arXiv:1802.07729
[cond-mat.stat-mech].

[17] Jason Iaconis, Sagar Vijay, and Rahul Nandk-
ishore, “Anomalous Subdiffusion from Subsystem Sym-
metries,” arXiv e-prints , arXiv:1907.10629 (2019),
arXiv:1907.10629 [cond-mat.stat-mech].

[18] V. Alba, J. Dubail, and M. Medenjak, “Operator En-

tanglement in Interacting Integrable Quantum Systems:
The Case of the Rule 54 Chain,” Phys. Rev. Lett. 122,
250603 (2019), arXiv:1901.04521 [cond-mat.stat-mech].

[19] Edward Fredkin and Tommaso Toffoli, “Conservative
logic,” International Journal of Theoretical Physics 21,
219–253 (1982).

[20] Daniel Gottesman, “The Heisenberg Representation
of Quantum Computers,” arXiv e-prints , quant-
ph/9807006 (1998), arXiv:quant-ph/9807006 [quant-ph].

[21] J. Kempe, “Quantum random walks: an introductory
overview,” Contemporary Physics 44, 307–327 (2003),
arXiv:quant-ph/0303081 [quant-ph].

[22] Chi-Fang Chen and Andrew Lucas, “Finite speed of
quantum scrambling with long range interactions,”
(2019), arXiv:1907.07637 [quant-ph].

[23] Chi-Fang Chen and Andrew Lucas, “Operator growth
bounds from graph theory,” (2019), arXiv:1905.03682
[math-ph].

[24] Xizhi Han and Sean A. Hartnoll, “Quantum Scrambling
and State Dependence of the Butterfly Velocity,” SciPost
Phys. 7, 045 (2019), arXiv:1812.07598 [hep-th].

[25] Thomas Hartman, Sean A. Hartnoll, and Raghu Maha-
jan, “Upper Bound on Diffusivity,” Phys. Rev. Lett. 119,
141601 (2017), arXiv:1706.00019 [hep-th].

[26] Andrew Lucas, “Constraints on hydrodynamics from
many-body quantum chaos,” (2017), arXiv:1710.01005
[hep-th].

[27] Andris Ambainis, Eric Bach, Ashwin Nayak, Ashvin
Vishwanath, and John Watrous, “One-dimensional
quantum walks,” in Proceedings of the thirty-third an-
nual ACM symposium on Theory of computing (ACM,
2001) pp. 37–49.

[28] A. Romanelli, R. Siri, G. Abal, A. Auyuanet, and
R. Donangelo, “Decoherence in the quantum walk on
the line,” Physica A Statistical Mechanics and its Ap-
plications 347, 137–152 (2005), arXiv:quant-ph/0403192
[quant-ph].

https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1007/JHEP08(2016)106
http://dx.doi.org/10.1103/PhysRevB.98.195125
http://arxiv.org/abs/1806.01723
http://dx.doi.org/ 10.1103/PhysRevX.9.021003
http://dx.doi.org/ 10.1103/PhysRevX.9.021003
http://arxiv.org/abs/1807.09776
http://arxiv.org/abs/1807.09776
http://arxiv.org/abs/1904.04815
http://arxiv.org/abs/1904.04266
http://arxiv.org/abs/1904.04266
http://dx.doi.org/10.1103/PhysRevB.98.060302
http://arxiv.org/abs/1806.04156
http://dx.doi.org/10.1088/2058-9565/aad759
http://dx.doi.org/10.1088/2058-9565/aad759
http://arxiv.org/abs/1802.07729
http://arxiv.org/abs/1802.07729
http://arxiv.org/abs/1907.10629
http://dx.doi.org/10.1103/PhysRevLett.122.250603
http://dx.doi.org/10.1103/PhysRevLett.122.250603
http://arxiv.org/abs/1901.04521
http://dx.doi.org/10.1007/BF01857727
http://dx.doi.org/10.1007/BF01857727
http://arxiv.org/abs/quant-ph/9807006
http://dx.doi.org/ 10.1080/00107151031000110776
http://arxiv.org/abs/quant-ph/0303081
http://arxiv.org/abs/1907.07637
http://arxiv.org/abs/1905.03682
http://arxiv.org/abs/1905.03682
http://dx.doi.org/10.21468/SciPostPhys.7.4.045
http://dx.doi.org/10.21468/SciPostPhys.7.4.045
http://arxiv.org/abs/1812.07598
http://dx.doi.org/10.1103/PhysRevLett.119.141601
http://dx.doi.org/10.1103/PhysRevLett.119.141601
http://arxiv.org/abs/1706.00019
http://arxiv.org/abs/1710.01005
http://arxiv.org/abs/1710.01005
http://dx.doi.org/10.1016/j.physa.2004.08.070
http://dx.doi.org/10.1016/j.physa.2004.08.070
http://arxiv.org/abs/quant-ph/0403192
http://arxiv.org/abs/quant-ph/0403192

	Quantum butterfly effect in polarized Floquet systems
	Abstract
	Introduction
	Random circuit dynamics
	Full polarization
	Finite polarization
	Quantum automaton circuit

	Floquet non-random dynamics
	Zero density
	Low but finite density
	Cartoon model

	Outlook
	Acknowledgments
	Single particle diffusion constant
	Operator growth in the Haar RUC
	Operator growth in the quantum automaton RUC
	Operator dynamics for quantum walk on a line
	Discrete time quantum walk
	Quantum walk in random medium

	References


