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1Department of Physics and Astronomy, Uppsala University, 751 21 Uppsala, Sweden
2Department of Engineering Sciences, Uppsala University, 751 21 Uppsala, Sweden

3Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden
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In magnetic trilayer systems, spin pumping is generally addressed as a reciprocal mechanism
characterized by one unique spin mixing conductance common to both interfaces. However, this
assumption is questionable in cases where different types of interfaces are present. Here, we present
a general theory for analyzing spin pumping in cases with more than one unique interface and where
the magnetic coupling is allowed to be non-collinear. The theory is applied to analyze layer-resolved
ferromagnetic resonance experiments on the trilayer system Ni80Fe20/Ru/Fe49Co49V2 where the
Ru spacer thickness is varied to tune the indirect exchange coupling. It is demonstrated that
the equation of motion of macro spins driven by spin-pumping need to be modified in case of non-
collinear coupling. Our analysis also shows that the spin pumping in trilayer systems with dissimilar
magnetic layers in general is non-reciprocal.

Spin transport in thin film heterostructures can gener-
ate a rich spectrum of physical effects1–9 and has great
potential for realizing new spintronic functionality10,11.
Pure spin currents, which can modify the dynamics of
magnetic multilayers, can be generated in metallic fer-
romagnetic (FM) / non-magnetic (NM) heterostructures
via the spin pumping process12. Precessing spins in the
FM generate a spin current that can diffuse away from
the FM / NM interface and into the NM layer. Propaga-
tion of spin currents in the NM can lead to spin accumu-
lation in the NM13, spin to charge conversion in a NM
layer14, increased Gilbert-like damping15, and non-local
perturbation of a second FM layer16.

The efficiency of the spin pumping process across a
FM / NM interface is typically parameterized by the
spin mixing conductance g↑↓ which relates the additional
damping from spin pumping to the film thickness and
intrinsic properties12,17. In magnetic trilayer structures
(FM1 / NM / FM2), spin pumping is often treated as

a reciprocal process (FM1
SP⇐=⇒ FM2), characterized by

a single g↑↓ common to both interfaces; this approach
works well when FM1 and FM2 are the same material
that generates an equivalent FM / NM interface18,19.
Many spintronic devices rely on layered magnetic struc-
tures where FM1 and FM2 are different materials20–25,
with different interfaces on each side of the spacer layer.
In several cases these systems have more complex inter-
layer exchange, such as biquadratic exchange, combined
with non-collinear magnetic configurations. This calls
for an analytical framework to analyse magnetisation dy-
namics of such systems, where such complexities are ex-
plicitly considered. We provide such an theoretical model
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in this article, together with experimental data.
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FIG. 1. (Color online) Trilayer system composed of Permal-
loy (1) and Permendur (2) layers separated by a Ruthenium
spacer. The coordinate system is shown on the bottom right.
The blue arrow represents the precession of the spin in the
ŷ− ẑ plane and the black arrow indicates the direction of the
external magnetic field. The sphere represents the locus of
constant magnetization length while Π stands for the plane
tangential to the surface of the sphere. The red-yellow arrows
indicate the local (αii) and inter-layer (αij) spin pumping
damping due to the currents flowing in and out of the layers.
The magnetic layer’s thickness is represented by d1 and d2.

The model proposed accounts for FM1 and FM2 layers
with different intrinsic parameters. Two key features of
the treatment are (a) the separation of the spin-mixing
conductance into distinct contributions for the two dis-
similar interfaces, and (b) a self-consistent macrospin
framework for non-colinear magnetizations. We apply
this theory to analyze layer-resolved ferromagnetic res-
onance (FMR) experiments measured with X-ray de-
tected FMR (X-FMR) from magnetic trilayer samples



2

where the NM spacer thickness is varied to tune the indi-
rect exchange coupling. The analysis demonstrates that
the spin pumping damping from FM1 into FM2 is non-
reciprocal with the spin pumping damping in the reverse
direction. The non-reciprocity is significant, which may
enable new spintronics technologies.

We consider a trilayer system involving Permalloy (Py
- Ni80Fe20), Ru and Permendur (Pmd - Fe49Co49V2). In
the Py/Ru/Pmd system, the Py and Pmd layers provide
large magnetic moments, while Ru is the NM spacer. In
the following, the first magnetic layer (Py) is labeled by
1 and the second magnetic layer by 2 (Pmd), as shown in
Fig. 1. We assume that each layer can be represented by
a single mi and mj (macrospin approximation), where
i, j = 1, 2.

The equation of motion of the macrospins can be recast
as:

∂mi

∂t
=− γmi ×Hi

eff + (α0
i + αspii )mi ×

∂mi

∂t

−
αspij
|mi|2

mi ×
(
mj ×

∂mj

∂t

)
×mi (1)

where γ ≈ 3.5 · 10−5 (GHz ·m)/A is the gyromagnetic
ratio. Both macrospins (mi, i = 1, 2) precess around

their effective fields Hi
eff = −∂H/∂mi, where H is the

spin-Hamiltonian. The non-local, inter-layer damping,
αspij , accounts for spin-pumping contributions into layer

i from layer j, while the local damping, αspii , parameter-
izes spin-pumping out of layer i. The influence of the
spin-pumping damping ( αspij ) on the model is discussed
in the Appendix A. The intrinsic damping of layer i is
given by α0

i . The last term is of a form previously not dis-
cussed, and represents the influence of non-local dynamic
spin-pumping of a non-collinear magnetic arrangement
between two ferromagnetic layers of a trilayer system.

This term describes a projection of the vector mj × ∂mj

∂t
from layer j over the plane Π tangential to the sphere cir-
cumscribed by the macrospin i, as shown in Fig. 1. The
last term of Eq. (1) fulfills the requirement that the rate
of change of magnetization (∂mi

∂t ) is perpendicular to the

magnetization (mi) at all times (mi · ∂mi

∂t =0).
The coupled trilayer system in the coordinate system

indicated in Fig. 1 is described by the following Hamil-
tonian H:

H =− Aex
µ0di

mi ·mj

|mi||mj |
− Bex
µ0di

(mi ·mj)
2

|mi|2|mj |2
+

1

2
¯̄Nim

2
i

−H0x̂ ·mi +
1

2
δix̂ ·mi − hŷ ·mi

+
Ku

1i

µ0|mi|2
(mi · êu)

2
+

Kc
1i

µ0|mi|4
[
(mi · x̂)2(mi · ŷ)2

+ (mi · ŷ)2(mi · ẑ)2 + (mi · ẑ)2(mi · x̂)2
]

(2)

where the first (Aex) and second (Bex) term represent
the bilinear- and biquadratic exchange energy, respec-

tively. The parameter di indicates the thickness of the
ferromagnetic layer while µ0 ≈ 4π · 10−7J/(m ·A2) is the
vacuum permeability. The next term is the demagneti-
zation energy. In a thin film with x, y � z and with the
magnetization in-plane (x-y plane), the demagnetization

tensor ¯̄Ni is almost zero and will not be considered here-
after. The fourth term (H0) represents the energy of a
static external magnetic field along the x̂ direction while
the following term is the magnetic dipolar field where δi is
a term that depends on the structural parameters of the
layer as shown in Ref. [26]. We consider here only the in-
fluence of the field along the x̂ direction since the dipolar
field at a distant point (0,0,z) has only x-component for

the field. The next term is the microwave field h = h̃e−iωt

oscillating at a frequency ω along the ŷ direction in the
experimental setup. Finally, the last two terms represent
the uniaxial (with the easy axis eu) and cubic magne-
tocrystalline anisotropy energy, respectively.

Since the moments rotate around the external mag-
netic field, the condition mx � my,mz is fulfilled; hence
dmx

i

dt = 0. Moreover, the sinusodial microwave field in-
duces a magnetisation that conveniently can be expressed
in a complex form. Thus, my

i (t) = m̃y
i exp[i(φi + ωit)],

mz
i (t) = m̃z

i exp[i(φ′i + ωit)] with φ′i = φi + π/2 and
ω = ωi. The phase φi at time t=0 of layer i is a func-
tion of the external magnetic field and is measured by
X-FMR experiments (see Fig. 2d-f). Assuming that the
angle of precession of the macrospin is relatively small
(mx � my,mz) and also that h � H0, it is a good
approximation to linearize the equations of motion. We
retain only the terms linear in h, my and mz. By in-
serting Eq. (2) into Eq. (1) through the definition of the
effective field, the linearized coupled equations of motion
for both magnetic layers are given by:

¯̄χ


0

h̃
0

h̃

 =

m̃
y
1

m̃z
1

m̃y
2

m̃z
2

 (3)

where the elements of the magnetic susceptibility matrix,
¯̄χ are shown in Appendix B. The dimensionless intrinsic
Gilbert damping parameter is defined as η0

i = mx
i α

0
i .

The spin pumping damping parameter out of layer i is
ηspii = mx

i α
sp
ii , while the dimensionless spin backflow into

layer i from layer j is defined as ηspij = mx
jα

sp
ij . The

amplitude of the macrospin precession shown in Fig. 2
(a) – (c) is calculated from the four-index susceptibility
matrix27 of the system, ¯̄χ, as:

ψ1 =
√

[R(χ12 + χ14)]2 + [I(χ12 + χ14)]2 (4)

ψ2 =
√

[R(χ32 + χ34)]2 + [I(χ32 + χ34)]2. (5)

where ψ1 and ψ2 represent the amplitudes of Py and Pmd
layers, respectively.

X-FMR28–31 is the ideal technique to investigate non-
reciprocal spin pumping damping. Using X-FMR it is
feasible to measure the full complex susceptibility (χ′ and
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χ′′)32 or equivalently the amplitude and phase of oscil-
lation resolved to individual elements and hence distinct
magnetic layers33–35. X-FMR was used to determine the
relative orientation of precessing spins in ferrimagnets36

as well as to examine topics including spin pumping and
the influence of spin currents37–39. For the investigation
of non-reciprocal spin pumping damping, the measured
response of the individual layers can be compared directly
with the equation of motion [Eq. (1)] for FM1 and FM2.

We use the X-FMR technique to study a series
of Py / Ru / Pmd magnetic trilayer film struc-
tures. The film samples were fabricated at room tem-
perature using dc magnetron sputtering (base pres-
sure of 5 × 108 Torr) with the following structure:
substrate/Ta(30 Å)/Py(80 Å)/Ru(tRu)/Pmd(80 Å)
/Ta(30 Å). Here tRu varies between 7 – 170 Å. Single
films of Pmd and Py with the same seed and cap lay-
ers were also fabricated for control measurements. The
Ru spacer layer was deposited at low sputtering rate
(0.4 Å/s) and low Ar gas pressure (3 mTorr) for opti-
mal uniformity and interface smoothness. Composition
and thickness of the films was verified using Rutherford
Backscattering Spectrometry (RBS). Each sample was
fabricated simultaneously on an oxidized Si-substrate for
magnetometry and structural measurements and on a
100 nm thick Si3N4 membranes for X-FMR. To minimize
the number of free parameters in Eq. (2), we conducted
a series of static magnetometry and FMR measurements
on the samples. In the X-FMR studies, the Ni in Py
and Co in Pmd provide the elemental contrast to resolve
the dynamics in the individual FM layers while Ru pro-
duces a strong interlayer exchange coupling that can be
tuned from favoring parallel or anti-parallel ground state
coupling as a function of the NM spacer thickness40.

In X-FMR we perform time delay scans (equivalent to
varying the phase between the sinusoidal RF excitation
at 3.96 GHz and the X-ray bunches) with the photon en-
ergy tuned to the Ni or Co L3 edge. The inset to Fig. 2(b)
presents a subset of these delay scans; additional details
on X-FMR are presented in Appendix C and in Ref. [32].
The amplitude and phase of the sinusoidal waveforms are
extracted and plotted as discrete points in Fig. 2 (a) – (f).
Also shown as insets to Fig 2-(d),-(e) and -(f) are nor-
malized magnetization curves for the tRu = 170 Å, 12 Å,
and 7 Å samples, showing the magnetic coupling is very
weak (170 Å-Fig. 2d), ferromagnetic (12 Å–Fig. 2e), and
biquadratic (7 Å-Fig. 2f).

The tRu = 170 Å sample does not exhibit any bilinear
or biquadratic interlayer exchange coupling and the am-
plitude data in Fig. 2 (a) reveal two resonances at ∼27
mT and at ∼9 mT. The coupled nature of the dynamics
of the FM layers precludes assignment of the combined
resonance to a single layer and we refer to these as a
low field and high field resonance (LFR or HFR). The
other samples also present a LFR and HFR. At either
resonant field, a particular FM layer does not respond
independently; the other layer also exhibits a distinct,
albeit weaker, response. This is clear e.g. from Fig. 2 (a),

where the Py and Pmd layer has a maximum at the HFR
and LFR, respectively. However, each layer has a second
smaller peak in the amplitude that coincides with the res-
onance field of the other magnetic layer. This produces a
non-trivial behaviour of the amplitudes, originating from
the coupling between the layers, and we observe a similar
effect for all samples of this investigation.

The phase data also reveal a complex response of the
oscillation phase as the magnetic field is swept through
the resonance. For non-interacting layers, the phase of
FM1 would change by 180◦ when passing through the res-
onant field while the other layer would remain essentially
unchanged. For coupled magnetic layers the phases of the
dynamic response would change according to Eq. (3). In
the sample with the weakest coupling between Py and
Pmd (tRu = 170 Å, Fig. 2 (d)), the phase of the Py
layer changes by ∼180◦ through the HFR. However, the
Pmd layer undergoes approximately the same phase shift
through the HFR and then experiences an additional
phase shift of ∼120◦ through the LFR, indicating that
there is sufficient coupling to cause a response distinctly
different from that of non-interacting layers.

The variations in amplitude and phase are even
more dramatic for the more strongly coupled samples
(tRu = 12 Å and 7Å). In these systems, the phase of
the Py layer shifts by about 180◦ as the field is tuned
from high fields down through the HFR; the Pmd phase
initially follows the increase in phase, but once the HFR
is passed it falls off again. The effect is particularly pro-
nounced in the FM-coupled tRu = 12 Å sample, where
the two phases are essentially equal from high field down
through the HFR at ∼16 mT. As the field is reduced to-
wards the LFR, the Pmd phase rises sharply to approach
a value that is ∼120◦ lower than that of the Py layer.
For the tRu = 7 Å sample with biquadratic coupling,
the phases of the two layers are distinctly different for
all field strengths. This suggests, somewhat surprisingly,
that the system with the closest distance between the Py
and Pmd layers, has the largest degree of independence
in the magnetic response of both Py and Pmd.

We begin our analysis with the phase data in Fig. 2
(d), (e) and (f). We fit the experimental phase data with
a high order B-spline41 and use these interpolated values
for the phase, together with the parameters for magneti-
zation, anisotropy and interlayer exchange, to calculate
the amplitude response based on Eqs. (4)-(5). The re-
sults are presented as the solid lines in Fig. 2 (a), (b),
and (c). Apart from the phase data, all sample param-
eters used in the amplitude calculations (i.e. magneti-
zation, anisotropy, layer thickness, exchange parameters,
etc.) were obtained from independent magnetometry and
conventional ferromagnetic resonance measurements (see
Appendix D for details).

Generally, the theoretical model is in good agreement
with the data in Fig. 2. The model captures the essen-
tial features of the Py and Pmd layers, across both the
LFR and HFR; peak positions and amplitudes are well-
reproduced for the main resonance and also the weaker
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FIG. 2. (color online) Non-reciprocal spin pumping damping theory and X-FMR measurements. Measured X-FMR amplitude
and phase data (discrete points) acquired at an excitation frequency of 3.96 GHz are shown as function of applied field for
three different Ru spacer layer thicknesses: 170 Å(a,d) 12 Å(b,e) and 7 Å(c,f). Solid lines in the graphs showing the phase
are high order B-splines while the solid lines for the amplitude response are model calculations based on Eq. (1). The Pmd
layer response is shown in blue while the Py is in red. The inset to (b) presents typical X-FMR delay scans for the Co and Ni
edges acquired at different static bias fields. Inset in (c) shows model calculations for the tRu 7 Å sample with symmetric spin
pumping damping (η12 = η21= 0.54 ). Insets in (d,e,f) present static magnetometry data, showing independent switching / no
coupling (170 Å -(d)), ferromagnetic coupling (12 Å-(e)), and biquadratic interaction (7 Å-(f)).

response connected to the second layer. For example,
in the coupled tri-layer sample with shortest interlayer
distance (Fig. 2 (c), tRu = 7 Å), the model reproduces
the increased amplitude in the response of the Pmd layer
at the resonant field of the Py layer. For the ferromag-
netically coupled sample (Fig. 2 (b), tRu = 12 Å), the
model accurately produces a reduced amplitude of the
Pmd response at 5 mT in comparison with the main
Py resonance at 16 mT, in agreement with our exper-
imental observations. The sample with the thickest Ru
spacer (Fig. 2 (a), tRu = 170 Å), where interlayer ex-
change and dipolar coupling effects are negligible, is par-
ticularly interesting. For completely decoupled layers, we
would expect that the amplitude of the two resonances
can be described by smooth, symmetric Lorentzian func-
tions. However, the experimental data show an increase
of the Pmd (Py) amplitude at the resonant field of the
Py (Pmd) layer, and a deviation from Lorentzian shape,
an effect that is clearly reproduced by the theory.

By using the measured phase response, along with the
independently derived material parameters, our model
provides estimates of the precessional damping and the

contributions from spin pumping (see Table I). R (g↑↓i )
(the real part of the spin mixing conductance of layer i)
is related to the dimensionless spin pumping parameter

ηij as42:

R(g↑↓i ) =
8πmx

j djηji

gjµB
, where i 6= j. (6)

Here, gj is the spectroscopic g-factor and µB is the Bohr
magneton. The contributions of the two interfaces (Py
/ Ru or Ru / Pmd) to the spin mixing conductance are
not reciprocal. For all the samples studied, we observe
that the real part of the spin-mixing conductance from
the Py layer, that influences the Pmd layer, is clearly
bigger than the reversed spin-mixing conductance. The
latter is close to values reported in the literature 42. A
symmetric spin pumping damping model reproduces the
data poorly, as can be seen in the inset to Fig. 2-c, which
assumes η12 = η21 = 0.54. Apart from an overall poor
description of the shape of the X-FMR data, such a model
overestimates the magnitude of the Pmd (Py) response
at most fields.

In the standard picture of spin pumping, a magnetic
layer excited into precession drives a diffusive spin cur-
rent in the direction transverse to the FM1 / NM in-
terface. The spin current incident upon the NM layer
leads to spin accumulation in the NM near the interface
and generates a flow of spin current back to the FM1.
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The spin mixing conductance parameterizes the balance
of the initial spin current (FM1 → NM) and the back-
flow into the magnetic layer. For NM layers that are
thin compared to the spin diffusion length in this layer
(∼150Å in Ru43) the spin current driven transports an-
gular momentum across the NM / FM2 interface (with its
own characteristic spin mixing conductance) and thereby
influencing the dynamics of FM2. The two spin mix-
ing conductances are often assumed to be equivalent42.
However, the multilayer spin pumping theory presented
above together with the X-FMR data clearly indicate
that spin pumping damping is non-reciprocal (i.e. de-
pendent on direction of the spin current normal to the
interface) in systems with nonequivalent interfaces44–46.
The asymmetry of the spin-mixing conductance, albeit
little discussed, is physically motivated, as it is propor-
tional to the self-energy and the electronic structure of
the respective magnetic layer47. There is no reason why
this self-energy should be the same for Py and Pmd. In
terms of symmetry, the non-reciprocity of the spin pump-
ing damping could be explained by breaking of the space
inversion symmetry in the neighborhood of the interfaces
induced by having two dissimilar ferromagnetic layers, as
it was shown in Ref. [48] for the non-reciprocal magnon
transport in synthetic magnets.

Interface spin transport governs a variety of phenom-
ena such as spin injection, the generation of pure spin
currents, and the determination of spin Hall angles3,49–51.
Spin pumping presents another method for manipulat-
ing magnetization across an interface, allowing for non-
local effects. Spin pumping damping in magnetic tri-
layers has been examined previously in configurations
with both parallel alignment and anti-parallel moments
canted in the direction of an external field52,53. Our
analysis extends spin pumping theory towards more gen-
eral magnetic multilayer structures, which may have
non-collinear or biquadratic interlayer exchange, differ-
ent layer anisotropies and distinctly different spin-mixing
conductances. These effects will influence the dynamics
of individual layers; however, when these issues are as-
sessed independently, the asymmetry of the spin pump-
ing damping is revealed. Also, the description of mag-
netisation dynamics, in Eq. (1), is novel, since it allows
for spin-pumping in non-collinear systems. In this work,
we report for the first time non-reciprocal spin pumping
damping in magnetic trilayers with dissimilar interfaces,
and our findings may open new possibilities in spintron-

TABLE I. Estimated spin pumping induced damping param-
eters and real part of the spin mixing conductance in cm−2

for samples with tRu = 7 Å, 12 Å and 170 Å.

tRu ηsp11 ηsp22 ηsp12 ηsp21 R(g↑↓1 ) R(g↑↓2 )
Å 10−4 10−3 1015 1015

7 3 1.6 0.47 0.61 11.75 3.64
12 3 1.0 0.69 0.45 8.65 5.33
170 3 9.2 0.30 0.40 7.76 2.30

ics technology. Earlier first principles calculations of spin
pumping indicate that band matching across the inter-
face (the matching of states in the NM with spin-resolved
propagating states in the FM layer), greatly affects spin
transmission and reflection across the interface44,45. Our
analysis supports this viewpoint and shows that X-FMR
can uniquely reveal differences in spin pumping damp-
ing. Finally, we note that additional contributions to
spin pumping damping, such as spin-orbit coupling at
the Ru / FM interfaces and spin current backflow varia-
tions for thick NM spacer layers, may affect the mutual
spin dynamics in the FM layers. These contributions are
being investigated with on-going first principles calcula-
tions of the FM / NM interfaces, spin transport theory,
and additional analytical modeling.
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Appendix A: Influence of spin-pumping damping

In Figs. (3-4), we show the influence of the variation
of the spin-pumping damping on the amplitude of the
resonant response, for the particular case of the sample
with Ru thickness of 7 Å. In general, a small variation of
the spin-pumping damping produces a significant varia-
tion of the amplitude particularly around the resonance
field. Since η21 determines the spin-pumping in Pmd
layer produced by Py layer, the small resonant peak (or
secondary peak) at around 20 mT varies with η21 (see
Fig. (3), dashed red and dotted black lines) while the
small resonant peak at around 5 mT is unchanged. No-
tice also that if η21 decreases, the secondary resonant
peak also decreases and vice-versa. The physical inter-
pretation is as follows: By decreasing the spin-pumping
damping, the Pmd layer experiences a smaller influence
of the magnetization precession in Py layer. The same
line of reasoning is applied to the spin-pumping damping
η12 as shown in Fig. (4).

The FMR results are generally consistent with single
layer damping values presented in Table I. In particular,
the FMR linewidth data indicate a higher damping value
for the Pmd layer in the tRu = 170 Å sample, as might
be expected with a slightly rougher Ru / Pmd interface
with the thicker Ru spacer.
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TABLE II. Estimated exchange constants and intrinsic dampings for samples with tRu = 7 Å, 12 Å and 170 Å.

tRu Aex Bex η1 η2
(J/m2) (J/m2)

7 0 −10.5 · 10−5 0.00852 0.00426
12 4.5 · 10−5 0 0.00852 0.00442
170 0 0 0.00852 0.00640

FIG. 3. (Color online) Amplitude of the resonant response
for the sample with Ru thickness of 7 Å. The spin-pumping
damping η21 has been varied while keeping constant the re-
maining parameters expect for the dipolar field and the scal-
ing parameter. The spin-pumping damping η12 was fixed to
0.47.

FIG. 4. (Color online) Amplitude of the resonant response
for the sample with Ru thickness of 7 Å. The spin-pumping
damping η12 has been varied while keeping constant the re-
maining parameters expect for the dipolar field and the scal-
ing parameter. The spin-pumping damping η21 was fixed to
0.60.

Appendix B: Non-Reciprocal Spin Pumping
Damping Theory

The magnetic susceptibility, which is a 4 × 4 matrix
(according to Eq. (3) of the main part of the paper), is
defined as:

¯̄χ = ¯̄A−1 (B1)

where the elements of the matrix ¯̄A are:
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a11 =
−iωeiφ1

γmx
1

,

a12 =

(
−Aex + 2Bex cosβ

µ0d1mx
1

2 − H0 − δ1
mx

1

− 2Kc
11

µ0mx
1

2 +
2Ku

11

µ0mx
1

2 cos2 θ1 −
(η0

1 + ηsp11)iω

γmx
1

)
ieiφ1 ,

a13 = 0,

a14 =

(
Aex + 2Bex cosβ

µ0d1mx
1m

x
2

+
ηsp12iω

γmx
1

)
ieiφ2 ,

a21 =

(
2Ku

11

µ0mx
1

2 (1− 2 cos2 θ1) +
2Kc

11

µ0mx
1

2 +
Aex + 2Bex cosβ

µ0d1mx
1

2 +
H0 − δ1
mx

1

+
(η0

1 + ηsp11)iω

γmx
1

)
eiφ1 ,

a22 =
ωeiφ1

γmx
1

,

a23 =

(
−Aex + 2Bex cosβ

µ0d1mx
1m

x
2

− ηsp12iω

γmx
1

)
eiφ2 ,

a24 = 0,

a31 = 0,

a32 =

(
Aex + 2Bex cosβ

µ0d2mx
1m

x
2

+
ηsp21iω

γmx
2

)
ieiφ1 ,

a33 =
−iωeiφ2

γmx
2

,

a34 =

(
−2Kc

12

µ0mx
2

2 −
Aex + 2Bex cosβ

µ0d2mx
2

2 − H0 − δ2
mx

2

+
2Ku

12 cos2 θ2

µ0mx
2

2 − (η0
2 + ηsp22)iω

γmx
2

)
ieiφ2 ,

a41 =

(
−Aex + 2Bex cosβ

µ0d2mx
1m

x
2

− ηsp21iω

γmx
2

)
eiφ1 ,

a42 = 0,

a43 =

(
2Ku

12

µ0mx
2

2 (1− 2 cos2 θ2) +
2Kc

12

µ0mx
2

2 +
Aex + 2Bex cosβ

µ0d2mx
2

2 +
H0 − δ2
mx

2

− (η0
2 + ηsp22)iω

γmx
2

)
eiφ2 ,

a44 =
ωeiφ2

γmx
2

.

The angle between the direction of the magnetization
in Py layer with respect to the magnetization in Pmd
layer is indicated here by the symbol β. By using the
data collected in Tables IV-II and the measured phase
shown in Fig. 2, the model described by Eq. (3) provides
the spin-pumping dampings, angle β and dipolar field
prefactors (δi). These data are collected in Tables I and
III.

Appendix C: X-FMR Measurements

X-ray detected ferromagnetic resonance28–31, or X-
FMR, is the ideal technique to investigate non-reciprocal
spin pumping damping. X-FMR combines x-ray mag-
netic circular dichroism (XMCD) with FMR and an
overview of the technique is presented in Fig. 5. As

TABLE III. Angle between the direction of the magnetization
in Py layer with respect to the magnetization in Pmd layer as
well as the layer-dependent dipolar field prefactor for samples
with tRu = 7 Å, 12 Å and 170 Å.

tRu β δ1 δ2
rad mT mT

7 2 -117.78 111.88
12 0 -91.83 121.56
170 0 -124.02 156.29

with measurements of element-specific hysteresis loops,
tuning the x-ray energy to the absorption edge of differ-
ent elements (e.g. the Co or Ni L3 edges) isolates the
magnetic contribution from a single layer in a multilayer
magnetic structure. And by using a microwave FMR ex-
citation that is phase-locked with the x-ray bunch clock
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at a synchrotron storage ring, the full complex suscep-
tibility (χ′ and χ′′)32 or equivalently the amplitude and
phase of the FMR oscillation is resolved to individual el-
ements and hence distinct magnetic layers33–35. X-FMR
was previously used to determine the relative orientation
of precessing spins in ferrimagnets36 as well as to examine
topics including spin pumping and the influence of spin
currents37,38,55,56. For the investigation of non-reciprocal
spin pumping damping, the measured motion of the indi-
vidual layers via X-FMR can then be compared directly
with results that come from the equation of motion [Eq.
(1)] for FM1 and FM2.

In our implementation of the technique, X-FMR is a
pump-probe measurement where the pump is a sinusoidal
RF signal that is phase-locked to the photon bunch rep-
etition frequency of the synchrotron. The probe is the
circularly polarized x-rays whose energy is tuned to the
L3 absorption edge of Co for sensitivity to the Pmd layer
or Ni for the Py layer (see Fig. 5 (a)). The thin film sam-
ple is placed on a custom co-planar waveguide that per-
mits transmission of the incident x-rays. The RF signal
excites precession of the magnetization in the magnetic
layers and the x-rays transmitted through the sample are
detected with a photodiode (Fig. 5 (b)). We conducted
the X-FMR measurements at beamline 4-ID-C of the Ad-
vanced Photon Source (Argonne National Lab, Argonne,
IL USA). In X-FMR experiments we perform time delay
scans, which are equivalent to varying the phase between
the sinusoidal RF signal and the arrival of the x-ray pho-
tons. Fig. 5 (c) presents a subset of these delay scans; for
further details, refer to [29]. The X-ray photon bunches
with a bunch length of ∼60 ps32 sample the projection
of the magnetization along the beam propagation direc-
tion as a function of time delay or phase. The simple
sinusoidal waveforms of the delay scans allow us to ex-
tract the amplitude of the precessional motion and phase
relative to the microwave field of the pump. We use a
fixed frequency of 3.96 GHz (the 45th harmonic of the
88 MHz bunch repetition frequency of the synchrotron)
and recorded the response of the Pmd and Py layers as
we varied the static bias field HB through both the high-
and low-field resonances. The resulting amplitude and
phase data for the three samples are shown in Fig. 2 (a)
- (f) of the main text as discrete points.

Appendix D: Static magnetometry and
ferromagnetic resonance measurements

Field hysteresis measurements of single magnetic layers
of the control samples provided the saturation magneti-
zation for each magnetic layer: 4πmPy = 0.89·107 A/m
and 4πmPmd = 2.25·107 A/m. Magnetization curves for

a selected number of samples with tRu = 7, 12, 170 Å
are shown as insets in Fig. 2 (f), (e) and (d) respec-
tively. The tRu = 7 Å sample shows the behavior typical
for a 90◦ coupling between Py and Pmd layers. A Ru
thickness of tRu = 12 Å favors ferromagnetic (FM) cou-
pling between magnetic layers and for a thick Ru spacer
(tRu = 170 Å) the magnetic layers are de-coupled. Mag-
netometry results correlate well with the ferromagnetic
resonance (FMR) measurements.

We measured the in-plane uniaxial anisotropy con-
stants with angular dependent X-band (9.8 GHz) FMR
(rotation about the surface normal) while the inter-
layer exchange constants (Aex and Bex) were determined
from in-plane FMR measurements at varying excitation
frequencies (2 - 12 GHz).The uniaxial anisotropy field
is in-plane, i.e., it lies in the x-y plane. Here θi is
the angle between the uniaxial easy axis and the mag-
netization at layer i. Then, the dependence of the
uniaxial anisotropy field on θi angle is (mi · êu) êu =
(mx

i cos θi +my
i sin θi) (cos θi, sin θi, 0). In the samples

considered here, the uniaxial anisotropy is along the x
axis, i. e. θi = 0. The angular dependent X-band mea-
surements indicate that all samples exhibit a weak uni-
axial anisotropy, with the largest anisotropy constant at
about Ku

Pmd = 2408 J/m3 for Pmd and Ku
Py = 184 J/m3

for Py. Cubic anisotropy was found to be negligibly
small: Kc

Pmd = 179 J/m3 and Kc
Py = 10.6 J/m3. Note

that we consider the anisotropy constants as independent
of the spacer layer thickness. All measured parameters
are summarized in Table IV.

We determined Aex and Bex from fits of the resonant
field vs. frequency as outlined in Ref. [54]. The sample
with the thickest NM spacer layer (tRu = 170 Å) does
not present any bilinear or biquadratic coupling, consis-
tent with the M vs. H loops which show the switching
of the individual layers (See inset in Fig. 2 (d)). As
the Ru thickness decreases, interlayer-exchange coupling
begins to correlate the switching of the two layers. The
tRu = 12 Å sample shows FM coupling between mag-
netic layers with only a bilinear type of coupling present
Aex = 4.5 · 10−5 J/m2; the field hysteresis loops confirm
this as only a single switching field is evident (See in-
set in Fig. 2 (e)). Finally, for the tRu = 7 Å sample we
find the bilinear exchange coupling constant Aex = 0,
although there is a large biquadratic coupling parame-
ter Bex = −10.5 · 10−5 J/m2. This indicates that the
coupling of the two layers is shifting from FM to AFM,
leaving a ∼90◦ coupling between the Py and Pmd layers.
Exchange constants together with the intrinsic dampings
are summarized in Table II.
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CoFeV

NiFe

Ni L3Co L3

Ru

CoFeV

NiFe

Ru

CoFeV

NiFe

Ru

(A)

XMCD
Spectra

(B)   X-FMR Schematic (C)   X-FMR Delay Scans

μ-waves (4 GHz)

X-ray bunches

FIG. 5. (Color online) X-FMR principle and set-up. (a) XMCD spectra from a Pmd / Ru / Py trilayer. By tuning the photon
energy to the Co (Ni) L3 edge, the magnetization dynamics of the Pmd (Py) layer can be isolated from the collective response.
(b) X-FMR scans are conducted in x-ray transmission mode. The sample is placed on a co-planar waveguide and the microwave
excitation is synchronized with the x-ray bunches. A digital delay generator (not shown) varies the phase between the x-ray
bunches and the rf excitation. (c) Typical delay scans from the Pmd or Py layer are sinusoidal functions, from which the
amplitude and relative phase can be extracted.
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TABLE IV. Measured physical magnitudes for Permalloy (Py) and Permendur (Pmd) layers.

Layer Ku
i Kc

i di mx
i ω

(J/m3) (J/m3) (m) (A/m) (GHz)
Py (i = 1) 184.142 10.624 8 · 10−9 (0.89 · 107)/(4π) 3.96
Pmd (i = 2) 2408.213 179.049 8 · 10−9 (2.25 · 107)/(4π) 3.96
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