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Abstract 

Moiré superlattices form in twisted graphene bilayers due to periodic regions of 

commensurability, but truncation of the moiré patterns affects the rotational stability of finite-

sized sheets. Here, we report the stepwise untwisting of nanometer-sized bilayer graphene flakes 

at elevated temperatures, each step corresponding to a potential energy barrier formed by 

changes to the commensurability between the moiré superlattice and flake size with twist angle. 

The number of locally-stable energy states and their barrier energies scale with the flake size, 

allowing twisted graphene flakes of several tens of nanometers to remain thermally stable even at 

chemical vapor deposition temperatures.  
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1. Introduction 

 The successful isolation of graphene by exfoliating graphite has led to the realization of 

many other 2D atomic sheet structures [1]. With appropriate methods, atomic sheets of the same 

or different types can be stacked together in precise sequences to form a variety of layered 2D 

materials [2]. Changing the orientation of one layer with respect to another provides an 

additional degree of freedom to manipulate the weak van der Waals forces binding the layers 

together, resulting in layered structures with tailorable properties [3]. Bilayer graphene 

represents the simplest 2D multilayered structure. In its unrotated form, bilayer graphene exists 

in a Bernal (AB)-stacked configuration, which is the repeated stacking sequence of crystalline 

hexagonal graphite. Such perfectly-stacked bilayer structures have been synthesized by 

mechanical exfoliation or chemical vapor deposition (CVD) processes [1,2,4]. Selected area 

electron diffraction and dark-field transition electron microscopy (TEM) studies confirm the 

presence of twisted regions in CVD grown bilayer graphene patches [5]. Recent studies have 

now established synthesis protocols to enable twisting of bilayer graphene to change the stacking 

order, thus yielding a new class of low-dimensional carbon materials [3,6,7].  

 Twisted bilayer graphene can display a wide spectrum of unusual properties, including 

superlubricity [8–10], superconductivity [11], and ferromagnetism [7,12], due to changes in 

interlayer coupling with twist angle. An important parameter determining interlayer coupling is 

the period of the commensurate unit cell, termed the moiré superlattice, which varies 

significantly with small changes in the twist angle. The rotational stability of these twisted 

structures underpins material performance  [13]. Friction force microscopy (FFM) studies show 

that cleaved, twisted graphitic flakes on graphite surfaces can undergo smooth sliding 

(superlubricity), followed by sudden termination of sliding associated with rotation of the 
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graphene flake back to its commensurate AB-stacking [8,9,14–16]. Conversely, transition from a 

commensurate (AB-stacked) to an incommensurate (twisted) registry of the graphene flakes 

followed by sliding have also been observed [10]. Molecular statics calculations have reported 

the existence of potential energy barriers for untwisting of the graphene flakes [12,16], but the 

origin of these energy barriers in relation to the flake size, as well as the thermal stability (e.g. 

under CVD growth conditions) are not well understood. Here, we demonstrate that finite edge 

effects arising from truncation of the periodic moiré patterns generate a multiplicity of potential 

energy barriers for untwisting of the graphene flake at discrete twist angles. The number and 

magnitude of these energy barriers scales with the flake size, and result in size-dependent 

thermal stability of the rotational states.  

2. Computational Methods 

 We study the rotational stability of twisted bilayer graphene with large-scale molecular 

dynamics (MD) simulations using LAMMPS [17]. We create model structures of finite-size, 

twisted bilayer graphene by rotating AB-stacked graphene flake on a freely-suspended infinite 

graphene sheet with an initial twist misorientation angle of ߠ ൌ 7.34° about the out-of-plane axis 

(Fig. 1a). The superposition of the two twisted graphene lattices at this twist angle creates moiré 

patterns of periodicity ܮ ൌ 1.9 nm (Fig. 1b). Each moiré unit cell consists of atoms with several 

distinct stackings, termed as AB, AA, BA, and SP (Fig. 1c). We crop the graphene flake (top 

sheet) to conform to the dimensions of the moiré unit cell, i.e. the graphene flake has exactly 1 

moiré period at ߠ ൌ 7.34° and is termed 1ܮ ൈ  ,We periodically replicate this unit cell 2, 4, 6 .1ܮ

and 32 times in the in-plane directions to obtain 2ܮ ൈ 4ܮ ,2ܮ ൈ 6ܮ ,4ܮ ൈ 32ܮ and ,6ܮ ൈ  32ܮ

graphene flakes with corresponding rhombic edge dimensions of 3.8 nm, 7.6 nm, 11.4 nm, and 
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61.4 nm, respectively. We select the shape of the flake to be integral multiples of the moiré unit 

cell to allow a systematic study of the flake size effects relative to the period of the moiré unit 

cell, without introducing shape effects. The bottom periodic graphene sheet is modeled to be 

several times larger than the largest 32ܮ ൈ  graphene flake, while a 20 nm thick vacuum 32ܮ

layer in the out-of-plane direction is included in our fully-periodic simulation box.  

 In our bilayer graphene model, the in-plane C-C bonded interactions are described by the 

Reactive Empirical Bond Order (REBO) potential [18], while the non-bonded interlayer 

interactions are represented by a registry-dependent Kolmogorov-Crespi potential [19] which 

correctly captures the magnitude and anisotropy of the interlayer potential energy surface 

consistent with first principles calculations [20]. We have separately performed stacking fault 

energy (SFE) calculations of AB-stacked bilayer graphene using these potentials. The obtained 

SFEs are within 2% difference of those obtained from our Density Functional Theory (DFT) 

calculations using local density approximation as well as DFT calculations that account for van 

der Waals interactions  [20].  

3.  Results 

  The above twisted graphene flakes are thermally equilibrated at temperatures ranging 

from 300 K to 3000 K with a Berendsen thermostat for 1 ns, followed by a Nose-Hoover 

thermostat for 3 ns (fixed time step of 1 fs). Figure 2a-d shows the change in twist angle for an 4ܮ ൈ  graphene flake over the 4 ns equilibration period at various temperatures. At 300 K, the 4ܮ

graphene flake rotates from its initial twist angle of ߠ ൌ 7.34° to a larger twist angle of ߠ ൌ ~8° 

(Fig. 2a). At 600 K, however, the graphene flake rotates in a reverse direction (untwists) to ߠ ൌ ~6.4° (Fig. 2b). Higher temperature of 640 K drives the step changes in twist angle, first 
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from ߠ ൌ 7.34° to ~6.4° at ~0.25 ns, and next to ߠ ൌ ~4.5° at 0.5 ns, and finally to  ߠ ൌ ~2.6° 

at 2.25 ns (Fig. 2c). At slightly higher temperature of 650 K, the graphene flake instantaneously 

untwists to recover its AB-stacked configuration at ߠ ൌ 0° (Fig. 2d). These distinct transitional 

rotations of the graphene flake are accompanied by changes to the moiré pattern and periodicity 

(Fig. 2g). Interestingly, these transitional rotations of the graphene flake are strongly size-

dependent. For a smaller 1ܮ ൈ -graphene flake, an instantaneous untwisting to the stable AB 1ܮ

stacking (ߠ ൌ 0°ሻ occurs at 300 K (Fig. 2e), while a larger 32ܮ ൈ  graphene flake exhibits 32ܮ

negligible changes in ߠ even at temperatures of 1000 K (Fig. 2f).  

 We compute the total potential energy ܧఏ௧ , relative to the global minimum energy ܧ௧ , 

during untwisting of the various graphene flakes using a climbing-image nudged elastic band 

(NEB) method [21]. As shown in Fig. 3, we observe the existence of multiple energy barriers 

and local minimum potential energy states as the graphene flakes untwist from ߠ ൌ ~8° to 

achieve the unrotated state constituting the global minimum at ߠ ൌ 0° [12]. Increasing the flake 

size increases the number of potential energy barriers for untwisting as well as the magnitude of 

these energy barriers. The smallest 1ܮ ൈ ߠ graphene flake has exactly one local minimum at 1ܮ ൌ ~8° with a low barrier energy of 0.052 eV (Fig. 3a), which explains the spontaneous 

untwisting at room temperature (Fig. 2e). For the 2ܮ ൈ  graphene flake, two local minimums 2ܮ

now develop at 7.13° and 3.47° with barrier energies of 0.17 eV and 0.31 eV, respectively (Fig. 

3b). For the 4ܮ ൈ  graphene flake, we observe four locally stable rotation angles (Fig. 3c) 4ܮ

corresponding to the four transitional states in Figs. 2a-d. The initial state at ߠ ൌ 7.34° is 

energetically unfavorable since it resides near a local peak, causing the graphene flake to rotate 

by a further ∆ߠ ൌ 0.58° to its local minimum energy state ߠ ൌ 7.92° (Fig. 2a). The graphene 

flake has sufficient thermal energy to overcome the first energy barrier (ܧ ൌ 0.36 eVሻ at 600 K, 
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and all but the final energy barrier (ܧ ൌ 0.74 eVሻ at 640 K. Slightly higher temperatures of 650 

K allow crossing of the final energy barrier to reach the AB state. While the decreasing moving 

average of ܧఏ௧ െ ௧ܧ  with decreasing ߠ reflects the driving force for untwisting of the 4ܮ ൈ  4ܮ

graphene flake, the increasing ܧ imparts rotational stability. For the larger 32ܮ ൈ  graphene 32ܮ

flake, 32 energy barriers (each of ܧ ൌ ~3-6 eV) corresponding to the 32 initial moiré 

superlattices along each direction are now observed (Fig. 3d). These multiple energy barriers 

provide rotational stability to the 32ܮ ൈ  graphene flake even at high temperatures of 3000 32ܮ

K, comparable to the CVD temperatures for graphene growth. We remark that for a nanoribbon 

type geometry ݉ܮ ൈ ݉ with ݊ܮ ് ݊, the number of locally stable states is governed by the 

number of initial moiré periods along the shorter dimension of the nanoribbon. An 4ܮ ൈ  32ܮ

graphene nanoribbon, for example, is observed to undergo 4 distinct transitions initiating at 

temperatures of ~600 K before reaching the AB state.  

  Using an Arrhenius relation, the rate of transition from one rotational state ሺߠଵሻ to 

another ሺߠଶሻ can be expressed as ݇ఏభ՜ఏమ ൌ ି݁ܣ ಶ್ೖಳ, where ݇ is the Boltzmann constant. We 

obtain the potential energy barriers ܧଵ for five graphene flakes of increasing dimensions at the 

first stable state (ߠଵሻ near the initial twist angle of ߠ ൌ 7.34°. We incrementally increase the 

temperature to determine the activation temperature T at which the graphene flake crosses ܧଵ 

and untwists to the neighboring stable state (ߠଶሻ. We approximate ݇ఏభ՜ఏమ as the inverse of the 

activation time in our MD simulations for this first jump, and we summarize these parameters, 

along with the frequency pre-factor ܣ, in Table 1. We note that increasing the flake size 

significantly increases ܧଵ and results in a higher activation temperature T for the first instance 

of untwisting. Because of the high ܧଵ of 3.93 eV for the largest 32ܮ ൈ  graphene flake, we 32ܮ
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observe no untwisting of the graphene flake even at temperatures of 3000 K. For completeness, 

we include the subsequent barrier energies (ܧଶ, ଷܧ … … ሻ for the graphene flakes and note a 

general trend of increasing number and magnitude of these energy barriers with increasing flake 

dimensions.  

 We have performed potential energy calculations for fully-periodic twisted graphene 

bilayers with complete moiré superlattices, scaled to the same number of atoms in a 32ܮ ൈ  32ܮ

graphene flake for comparison purposes. We show a gradual but smooth decay of ܧఏ௧ െ ௧ܧ  (i.e. 

no energy barriers) with untwisting of fully-periodic moiré superlattices (dashed curve in Fig. 

3d). In finite twisted graphene flakes, however, the moiré superlattices are truncated near the 

edges, which ultimately results in periodic fluctuations in the potential energy with untwisting. 

We quantify this incomplete periodicity of the moiré superlattices at the finite edges, ݎ, as the 

remainder of the flake dimension ܮ over the moiré period ܮሺߠሻ, and include its evolution with ߠ 

for the various graphene flakes in Fig. 3. Note that the twist angles at which ݎ ⁄ܮ  sharply 

transitions from 1 to 0 denote a fully-developed (untruncated) moiré pattern for the graphene 

flake, akin to fully-periodic twisted bilayer graphene. These discrete twist angles correspond to 

the saddle-point stacking configurations, with local energy minimum stacking configurations in 

between. During untwisting, each graphene flake crosses over a multitude of local minimum 

(and saddle-point) energy states equal to the initial number of moiré periods (4 for 4ܮ ൈ  32 ;4ܮ

for 32ܮ ൈ   .(32ܮ

 The origin of the local minimum and saddle-point energy states can be traced to the 

incommensurability resulting in truncation of the moiré patterns at the edges, and can be 

conveniently described using a van der Waals dislocation model [22]. As shown in Fig. 4a and 
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4b, the per-atom potential energies for both twisted graphene ܧఏ as well as AB-stacked graphene ܧ are significantly higher at the edges due to asymmetric termination of carbon bonds. To 

remove this edge effect, we adopt ܧఏ െ   as a measure of the local change in energiesܧ

associated with the twisted configuration relative to the global minimum AB stacking 

configuration (Fig. 4c). Atoms in the AB stacking configuration are already in the global 

minimum configuration and have ܧఏ െ   = 0, i.e. zero disregistry. Atoms in the BA stackingܧ

configuration are also in the global minimum configuration. However, these atoms have the 

maximum disregistry since they have opposite stacking to atoms in the AB configuration 

(stacking faults), as shown by the maximum differences in atomic energies (ܧఏ െ ܧ ൌേ13 meV). Therefore, the magnitude of the excess potential energy of each atom relative to that 

in its unrotated state, |ܧఏ െ  |, constitutes a quantifiable measure of the extent of atomܧ

disregistry.  We then classify groups of atoms based on the range of |ܧఏ െ  |: AB (0-2.2ܧ

meV), AA (2.2-3.7 meV and 10-11.5 meV), SP (3.7-10 meV), and BA (11.5-13 meV), as shown 

in Fig. 4d. This energy-based descriptor enables easy identification and quantification of the AB 

and BA stacking domains separated by a network of partial dislocations (SP) and intersecting at 

the dislocation junctions (AA) with Burger’s vectors బଷ ሾ011ത0ሿ, బଷ ሾ11ത00ሿ, and బଷ ሾ1ത010ሿ as 

shown in the Supplementary Material [23], and is analogous to experimentally observed dark-

field electron micrographs of as-grown bilayer graphene depicting alternating dark (AB) and 

bright (BA) domains [24,25].  

 Figure 5 shows contours of the atomic disregistry for the 4ܮ ൈ  graphene flake at twist 4ܮ

angles corresponding to the local minimum and saddle-point energy states along the minimum 

potential energy path in Fig. 3c. At the saddle point states, fully-periodic moiré patterns can now 

develop (Fig. 5a) because the flake dimension ܮ is commensurate with the moiré period ܮ. As a 
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result, the barrier energy for interfacial sliding becomes very low since the stacking 

configurations of atoms in the periodic geometry is independent of the translational motion of the 

graphene flake relative to the substrate. In contrast, at twist angles corresponding to the local 

minimum energy states, ܮ and ܮ are strongly incommensurate and tend to minimize the total 

potential energy by favoring the presence of AB rather than AA stacking (Fig. 5b). Thus, small 

lattice shifts from this energy-minimized configuration can result in large changes in the stacking 

sequence for the incomplete moiré period at the edges, resulting in large barrier energies for both 

rotation and interfacial sliding. Consequently, the unstable SFEs or sliding energy barriers 

(without rotation) are higher at the local minimum energy states than at the neighboring saddle 

point states, as shown in the Supplementary Material [23]. We summarize the changes in the 

relative proportions of atoms with AA stacking (ߟAA) as well as combined AB and BA stacking 

 ABାBA and correspond to the unstable saddle-point energyߟ AA coincide with the valleys ofߟ with untwisting of all four graphene flakes in Fig. 6. We note that the local peaks of (ABାBAߟ)

states (U). Similarly, the valleys of ߟAA coincide with the peaks of ߟABାBA and correspond to the 

locally stable minimum energy states (S).  

4. Barrier Energy Model 

 Our above results show that the number of locally-stable energy states and their barrier 

energies for untwisting of bilayer graphene scale with the flake size. Consider a graphene flake 

of dimensions ݊ܮఏబ ൈ  ఏబ denotes the moiréܮ , whereߠ ఏబ and with initial twist angleܮ݊

periodicity and ݊ is the number of moiré periods along each flake dimension at ߠ. During 

untwisting to the stable AB-state, a total of ݊ locally-stable energy states will be observed along 

the minimum potential energy path separated by ఏబ  equal intervals. At these energy minimum 
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states, the area encompassed by the truncated moiré patterns at the edges of the twisted flake is 

considered as the edge area, and is given by 

ௗܣ ൌ ఏబܮቀ2݊ݎ െ ቁݎ sin గଷ      (1)  

where ݎ is the remainder of the flake dimension ݊ܮఏబ over the current moiré period ܮ at the 

minimum energy states (i.e. ݎ ൌ  ሻ and is consistently shown to beݎ

~ = ݎ ܮ 3⁄          (2) 

across all flake dimensions in Fig. 3 except at small ߠ. The discrete twist angles corresponding to 

each minimum energy state can be expressed as 

ߠ ൌ ߠ  ఏబ ൬ െ ܾ  1൰      (3)   

where ܾሺൌ 1 … … ݊ሻ is the number of barrier crossings during untwisting starting from the first 

barrier crossing ܾ ൌ 1 at ߠ. Note that ߠ is one of the saddle points, and the graphene flake first 

settles to its minimum energy state at ܾ ൌ 1 with corresponding twist angle ߠ  ఏబଷ. Since 

ܮ ൌ ܽ ቀ2 sin ఏଶቁ⁄  where ܽ ൌ 2.46 Հ is the graphene lattice constant [26], we obtain a semi-

analytical expression from (1) to (3) relating ܣௗ with the flake dimension ݊ܮఏబ at the ݊ 

locally-stable energy states along the minimum potential energy path.  

 Figure 7a shows the cross-plot of the first potential energy barrier ܧଵ versus the edge 

area ܣௗ for seven graphene flakes of increasing dimensions (݊ܮఏబ) at the first stable state near 

the initial twist angle of ߠ ൌ 7.34° (ܾ ൌ 1ሻ. Since ܣௗ scales almost linearly with the flake 
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edge dimension ሺ݊ܮఏబሻ per (1), the similar linear relationship between ܧଵ and ܣௗ confirms 

that the proportional increase in the area encompassing the incomplete moiré period at the finite 

flake edges is responsible for the increased barrier energies for untwisting with flake size. This 

increased edge area allows greater propensity for larger flakes to minimize the total potential 

energy by favoring the presence of AB rather than AA stacking. This sole dependence of the 

barrier energy on the edge area encompassing the truncated moiré periods suggests that the 

results here are general and not dependent on the flake shape. Approximating a barrier energy 

density of ݀ܧ ⁄ௗܣ݀ ൌ 0.64 meV/Հଶ from Fig. 7a, we can then predict all the ܾ ൌ 1 … … ݊ 

barrier energies for various flake sizes, as shown in Fig. 7b. Our analytical predictions (solid 

lines) are in excellent agreement with our simulation results (symbols) for the first couple of 

barrier energies. At larger ܾ, however, some deviations from the analytical predictions are 

observed, potentially due to validity of the constant barrier energy density assumption (based on ܾ ൌ 1) as well as a shift in ݎ at small ߠ close to the AB state (Fig. 3). 

5. Discussion and Conclusion 

The multiple energy barriers governing rotational stability of twisted graphene flakes 

result in the thermally-driven rotation of bilayer graphene from its incommensurate twisted 

stacking at ߠ ൌ 7.34° into commensurate AB stacking as observed experimentally [10], and also 

explain the depletion of twisted bilayer graphene with ߠ ൏ 4° during CVD growth [5]. Our 

studies here show that the edge effect drives the rotation of twisted homogeneous nanometer-

sized atomic sheet layers governed by pure van der Waals interactions. For inhomogeneous 

systems consisting of twisted 2D atomic sheets of different crystal lattices, it has been reported 
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that bulk effects arising from elastic lattice mismatch energies can drive self-rotations at much 

larger (macroscopic) scales [27].  

One consequence of incommensurability is the smaller interfacial binding leading to 

superlubricity along the twisted graphene interface. For example, graphitic mesas on bulk 

graphite surfaces subjected to mechanical loading via surface probe tips are reported to undergo 

smooth sliding followed by sudden rotation into stable locked-in positions [9]. Similarly, sliding 

of graphene flakes (averaging 12.5 nm in size, comparable to 6ܮ ൈ -on graphene reveal a tip (6ܮ

induced rotation of the flakes from a commensurate to an incommenstrate registry prior to rapid 

sliding [10]. As shown by our SFE calculations in the Supplementary Material [23], the dramatic 

decrease in the sliding barrier energies with increasing ߠ suggests that it may be energetically 

favorable for an AB-stacked graphene flake to rotate into its twisted form before sliding, which 

explains the experimental observations. Interestingly, the superlubric experiments demonstrate 

longer sliding distances at lower than at higher temperatures, potentially because of the higher 

probability of overcoming the potential energy barriers to rotate back to the stable AB state at 

higher temperatures as shown in Table 1. These superlubric experiments also suggest a bias 

towards smaller-sized graphene samples in displaying such transitional twisting and untwisting 

behaviors [14]. Separately, atomic force microscopy studies on the driven dynamics of a finite 

graphite flake on a graphite surface show that larger flakes and low temperature conditions 

induce superlubric sliding without rotation, while smaller flakes or higher temperatures lead to 

flake rotation [28]. These experimental observations are in good agreement with the size- and 

temperature-dependence exhibited by our twisted graphene bilayers. 

  The observed rotational transitions for twisted bilayer graphene (ܧ per area ~7 to 15 

meV/nm2 for 4ܮ ൈ  flakes) are applicable to interfacial systems governed by weak van der 4ܮ
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Waals interactions, such as graphene physisorbed on aluminum or titanium oxide (ܧ per area ~3 to 40 meV/nm2) [29] or graphene on h-BN (ܧ per area ~319 meV/nm2) [20]. In fact, the 

existence of multiple barriers for stepwise untwisting is solely a crystallographic phenomenon, 

and we expect similar energy landscapes and evolution in moiré patterns during untwisting of all 

bicrystal structures. Nevertheless, thermally-driven rotation may not spontaneously occur 

because of the high barrier energies associated with covalently or metallically-bonded bicrystals, 

such as graphene chemisorbed on titanium (ܧ~2.2 eV/nm2)  [29], and metallic bicrystals with 

twist grain boundaries (ܧ~1.5 eV/nm2) [30]. 

In summary, finite edge effects arising from truncation of the moiré pattern control the 

rotational stability of finite, twisted 2D materials of the same type. Specifically, the varying 

moiré periodicity during untwisting of the bilayer material generates multiple potential energy 

barriers due to the spatially varying degree of commensurability in atom stackings. These edge 

effects explain the underpinning mechanisms for rotational transitions of such structures, as well 

as the size- and temperature-dependence for such transitions. Results have significant 

implications for the design of twisted 2D structures for nanotribological and nanoelectronic 

applications.  
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Table 1: Activation energetics for untwisting of bilayer graphene 

  

Flake Size ܧଵ, ܧଶ , … ଷܧ … ܧ  (eV) ܣ (ps-1) for ܧଵ  T (K) for ܧଵ 1ܮ  ൈ 2ܮ 150 0.22  0.052 1ܮ ൈ 4ܮ 300 5.66 0.31 ,0.17 2ܮ ൈ 6ܮ 600 22.56  0.74 ,0.79 ,0.55 ,0.36 4ܮ ൈ 32ܮ 700 228.83 0.66 ,1.02 ,1.42 ,1.14 ,0.79 ,0.62 6ܮ ൈ   3000< - 6.6…… ,4.45 ,4.71 ,4.45 ,3.93 32ܮ
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