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Using the semiclassical quantum Boltzmann theory and employing the Dirac model with twist
angle-dependent Fermi velocity we obtain results for the electrical resistivity, the electronic ther-
mal resistivity, the Seebeck coefficient, and the Wiedemann-Franz ratio in near magic angle twisted
bilayer graphene, as functions of doping density (around the charge-neutrality-point) and modi-
fied Fermi velocity ṽ. The ṽ-dependence of the relevant scattering mechanisms, i.e. electron-hole
Coulomb, long-range impurities, and acoustic gauge phonons, is considered in detail. We find a range

of twist angles and temperatures, where the combined effect of momentum-non-conserving collisions
(long-range impurities and phonons) is minimal, opening a window for the observation of strong hy-
drodynamic transport. Several experimental signatures are identified, such as a sharp dependence
of the electric resistivity on doping density and a large enhancement of the Wiedemann-Franz ratio
and the Seebeck coefficient.

PACS numbers: 81.05.ue , 72.80.Vp ,

INTRODUCTION

Since the 2018 discovery of exotic superconductivity
and correlated insulating phases in magic angle twisted
bilayer graphene (tBLG) [1–3], this system has been the
subject of many theoretical and experimental investiga-
tions, e.g. see Ref. [4] and references therein. The in-
tense interest arises mainly from the new physics brought
in by the low-lying flat bands near magic angles in tBLG
[5]. The average Coulomb interaction [6, 7] between the
quasiparticles in narrow bands is far larger than the ki-
netic energy, giving access to a strongly correlated regime
and providing an ideal system for the observation of col-
lective many-body phenomena.

In this paper we focus on a particular collec-
tive phenomenon, namely hydrodynamic transport in
tBLG. Hydrodynamic transport is expected whenever
the momentum-conserving collisions between particles
are much more frequent than the momentum-non-
conserving collisions with impurities and/or lattice vibra-
tions (phonons). In addition, umklapp processes must be
negligible. Under these conditions the electric and ther-
mal transport can be described by hydrodynamic equa-
tions for the flow of quasiparticles - electrons in the con-
duction band and holes in the valence band. Close to
the charge neutrality point (CNP), where the densities of
electrons and holes are nearly equal, a key indicator of the
hydrodynamic regime is the ratio γ = τd/τeh between the
electron-hole scattering rate 1/τeh and the single-particle
scattering rate 1/τd from momentum-non-conserving col-
lisions with impurities and phonons. A large value of
γ ≫ 1 defines the so-called “hydrodynamic transport
window” [8], which has been theoretically predicted and
experimentally observed in single-layer graphene [9, 10],
as well as in AB-stacked bilayer graphene [10–14].

One important finding of the present work is that for
some of the experimental samples in the literature e.g.
Ref. [3, 15], these are already of sufficiently low disorder
that our formalism predicts a robust hydrodynamic win-
dow close to twist angle of 1.11◦. (From the very low
temperature electrical transport, we estimate a charged
impurity density of 1.6×1011 cm−2 for sample D5 in [3]).
Other groups have data [1] where the impurity concentra-
tion is just above the threshold to observe hydrodynamic
features, and therefore, the predictions we make below
should be seen in cleaner samples in the near future.

In the hydrodynamic regime, the electric and ther-
mal transport have distinctive features that are described
by the following expressions for the electric resistiv-
ity ρel and the thermal resistivity ρth, as functions of
the dimensionless doping away from charge neutrality
µ̄ ≡ µ/(kBT ):

ρel(µ̄) ≃ ρC
Γ2

Γ2 + (αµ̄)2
, (1)

ρth(µ̄) ≃ ρC
[

Γ2 + (αµ̄)2
]

(

e2

k2BT

)

, (2)

where α = 4 ln 2/9ζ(3) ≈ 1/4 is constant and µ̄ ≪ 1.
In these formulas ρC ∝ 1/(e2τeh) is the electric resis-
tivity due to Coulomb electron-hole scattering at CNP
[12, 16–18], and Γ = (kB/e)

√

Tρth(0)/ρC where ρth(0) is
the thermal resistivity at charge neutrality, which is due
to momentum non-conserving collisions only, because the
thermal current density coincides with the conserved mo-
mentum density at CNP. Making use of the conventional
Wiedemann-Franz law for noninteracting systems we can
express Γ more incisively as a ratio of disorder and inter-
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action contributions to the electric resistivity, i.e.,

Γ ≃ 0.35

√

ρel,d(0)

ρC
∝

1

γ1/2
, (3)

and ρel,d(0) is the non-interacting electric resistivity col-
lisions. Thus, we see that the cumulative effect of all
types of disorder, e.g., charged impurities, phonons, etc.,
is included in the single parameter Γ which becomes ef-
fectively a measure of “hydrodynamicity”.
As shown in Ref. 18, the derivation of Eqs. (1) and (2)

requires that the conditions Γ2 ≪ 1 and µ̄ ≪ 1 be satis-
fied. These conditions define a temperature window for
the observation of hydrodynamic effects: µ̄ ≪ 1 implies
that the temperature is not too low, and Γ ≪ 1 excludes
high temperatures, where the phonon contribution to the
resistivity would become very large. In practice inter-
mediate temperature in a 50 K -100 K range are most
suitable. Eqs. (1) and (2) provide us with explicit an-
alytical expressions for the resistivities as functions of
doping density, via the chemical potential.
Following the theory outlined above, the purpose of

this paper is to understand how the electric and thermal
resistivity, as well as the Wiedemann-Franz (WF) and
the Seebeck coefficient, behave as functions of the angle-
dependent Fermi velocity in tBLG near charge neutrality.
While employing a linear Dirac model to describe the the
low-energy bands of tBLG, we note that the twist angle
acts as a new knob to vary the Fermi velocity and thus
the strength of interactions. An incomplete theory, tak-
ing into account only electron scattering from long-range
impurities would suggest hydrodynamic effects to gain
strength at higher temperatures and as the magic an-
gle is approached. Careful consideration of the role of
gauge phonons, which remain unscreened and contribute
strongly to the resistivity, [19] reveals quite a different
reality. A strong hydrodynamic regime is found in the
vicinity of the magic twist angle and at rather low tem-
perature range (10K . T . 50K) compared to single
and bilayer graphene systems [12, 18]. This enhanced
hydrodynamic is traced back to the strong suppression
of electronic screening in tBGL near magic angle.
Experimentally, the signature of the hydrodynamic

regime should be clear and strong in the electrical resis-
tivity, which is predicted to decrease sharply as a function
of increasing doping density as nearly-free electrons be-
come available for conduction (see Fig. 3a). By contrast,
the noninteracting electric resistivity is nearly indepen-
dent of density, as seen by comparing Figs. 3a and 3b.
Differently stated, Eq. (1) predicts that the electric con-
ductivity (inverse of the resistivity) grows as µ̄2/Γ2 as
one moves away from CNP. The positive curvature of the
conductivity versus density is thus proportional to 1/Γ2

and provides a direct measure of “hydrodynamicity”.
Another striking signature of hydrodynamics, although
more challenging to observe experimentally, would be the

value of the Wiedemann-Franz ratio between the electric
and thermal resistivity at CNP, which, from Eqs. (1) and
(2) is seen to be proportional to 1/Γ2. The position of a
maximum in the Seebeck coefficient, which is predicted
to occur at αµ̄ = Γ would be yet another signature. The
behavior of the key parameter Γ as a function of temper-
ature and twist angle is summarized in Fig. 4, which we
hope will be a valuable guide to experimentalists hunting
for signatures of hydrodynamic transport in tBLG.

This paper is organized as follows. In Sec. II, we first
evaluate the angle-dependence of the screened intrinsic
electric and thermal resistivitities. In Sec. III, we obtain
the resistivities associated with the long-range charged
impurity as well as the gauge phonons. Having the key
ingredients, i.e. ρC and Γ, in Section IV we calculate
the electric resistivities and the Seebeck coefficient, and
show that the WF ratio – a direct indicator of the hy-
drodynamic regime – is strongly enhanced at CNP as the
magic angle is approached. Sec. V presents our outlook
and conclusions.

INTRINSIC RESISTIVITY

At low-densities around the CNP, the energy spectrum
of tBLG, can be approximated by the Dirac model ǫk,± =
±~ṽk with a twist angle-dependent Fermi velocity ṽ,

ṽ =
1− 3λ2

1 + 6λ2
, λ =

w

~v∆K
, ∆K ≈ kDθ (4)

where ṽ is in units of the graphene Fermi velocity v ≃ 106

m/s, θ is the twist angle, w = 110 meV is the interlayer
hopping, and kD = 4π/3a with a = 0.246 nm is the
graphene lattice constant. Comparing with the tight-
binding band structure, the authors in Ref. [19], show
that the Dirac model is a valid model at densities n .

8× 1010 cm−2 and for twist angles θ & 1◦.

In our recent work [18] we have demonstrated that
within a Dirac model and in the absence of any disorder

(i.e., for Γ = 0), the electrical and thermal resistivities
can be identified as

ρel,C(0) = ρC = ICa
2/e2, ρel,C(µ̄ 6= 0) = 0,

ρth,C(0) = 0, ρth,C(µ̄ 6= 0) = ICb
2/(k2BT ),

(5)

where, IC(µ̄, T ) is the Coulomb collision kernel, given
by Eq. (21) in Ref. [18], a ∼ πβ~2/ ln 4 and b ∼
[2πβ~2/9ζ(3)]µ̄ for µ̄ → 0. The intrinsic electric resistiv-
ity ρC (first calculated in Refs. [16, 17] for graphene) is
associated with the Coulomb drag between the electrons
and holes at the CNP (µ = 0). In agreement with Refs.
[16] and [17] we find that in the absence of screening

ρ unscreened
C = I unscreened

C a2 ∝ ṽ−2. (6)
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With screening the bare Coulomb interaction vq is mod-
ified to,

V (q, ω → 0) =
vq

|1− vqΠ0|
, (7)

where, throughout our results in this paper we have cal-
culated the finite-temperature polarizability Π0(q, ω, T )
numerically over the full range of ferequencies ω and wave
vectors q. To explain the dependence of the ressitivi-
ties on the renormalized Fermi velocity ṽ close to the
CNP, we employ the assymtotic low-frequency form of
Π0(q, ω → 0, T ) at T ≫ TF [20, 21],

Π0(q, T ) =
8kF
2π~ṽ

[

T

TF
ln 4 +

1

24

q2

k2F

TF

T

]

, (8)

using which we can write,

ρC ∼
ρ unscreened
C

|1− vqΠ0|2
∝ (c+ ṽ)−2, (9)

where c has the dimension of a velocity and we obtain its
value numerically, e.g. c ≈ 1.2v at T = 50 K. In Fig. 1a
we show the numerical results for the screened ρC as a
function of ṽ. In contrast to the T -dependent ρunscreened,
it is interesting to note that the screened ρscreenedC has
a very weak (logarithmic) dependence on temperature,
which is neglected here [17]. At the magic twist angle
(ṽ → 0), we obtain ρC ≈ 0.7 (~/e2).
In Fig. 1b we have shown a 2D contour-plot of the

Coulomb thermal resistivity ρC,th as a function of doping
density n and Fermi velocity ṽ at fixed T = 50 K. At the
CNP, ρC,th(0) vanishes for any value of ṽ, see Eqs. (5).
Within the Dirac model n ≈ 8µ̄/[πβ2(~ṽ)2] (note that the
Dirac model breaks down at precisely magic twist angle
ṽ = 0), and therefore away from the CNP we obtain

ρC,th(µ̄ 6= 0) = ρC(b
2/a2)(e2/k2BT ) ∝ ρC µ̄2 ∝

ṽ4

(c+ ṽ)2
,

(10)
which exhibits a substantial suppression of ρC,th as ṽ → 0
as seen in Fig. 1b.

MOMENTUM NON-CONSERVING COLLISIONS

A. Long-range charged impurity

We now evaluate the contribution of charged impu-
rities and its ṽ-dependence within the Dirac-modeled
tBLG. We recall that the momentum non-conserving col-
lision integral of the scattering potential of randomly dis-
tributed screened (long-range) impurity charge centers is
given by [20],

Idis(k, η) = 8×
2πnimp

~

∑

η′

∑

k′

|
vq

1− vqΠ0(q, T )
|2F ηη′

k,k′×

(fk,η − fk′,η′)δ(ǫk,η − ǫk′,η′),

(11)
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Figure 1. (a) Electric resistivity ρC from electron-hole
Coulomb scattering at µ̄ = 0 (Coulomb drag resistivity)
approaches a constant value as the modified Fermi veloc-
ity ṽ tends to zero. ρC also has a very weak (logarithmic)
dependence on temperature, which is neglected here. (b)
2D contour-plot of the intrinsic Coulomb thermal resistivity
ρC,th ≡ ρC(αµ̄)

2e2/(k2
BT ) obtained from Eq. (2) in the limit

of zero disorder (Γ = 0) as a function of doping density n and
ṽ (in units of graphene Fermi velocity v) at fixed T = 50 K.
Notice that ρC,th vanishes at µ̄ = 0, reflecting the conserva-
tion of momentum.

where η(η′) = ±1 sums over the two bands, q = k − k′

and nimp is the disorder density. The factor 8 accounts for
the spin and both graphene and moiré valley degenera-
cies. Inserting the non-equilibrium distribution function
f = f0 + f ′

0vk · (pn + βǫ̃k,γps), where pn and ps are the
momentum shifts due to the charge and heat (entropy)
currents respectively, we write the linearized collision ker-
nels as

I
(m)
imp =

4nd
~3

(

e2

κ

)2 ∫ 2π

0

dθ (1 + cos θ)×

∫ ∞

0

dǭ
(ǭ − µ̄)mf ′(ǭ) + (−1)α(ǭ+ µ̄)mf ′(−ǭ)

|ε(ǭ, θ)|2
,

(12)

where m = 0, 1, 2 give the matrix elements I11imp, I
12
imp =

I21imp, I
22
imp, respectively. ǭ = βǫk, f

′(ǭ) = exp(ǭ− µ̄)/(1 +

exp(ǭ − µ̄)2, and using Eq. (8) the dielectric function
ε(ǭ, θ) is

ε(ǭ, θ) = 1 +
8(e2/κ)

~ṽ
√

2(1− cos θ)

[

ln 4

ǭ
+

ǭ

12

]

. (13)

The resistivity matrix is obtained using ρ = D−1 · Iimp ·
D−1, where D is a symmetric 2 × 2 matrix of Drude

weights, which are functions of µ̄. These functions are
calculated analytically in Ref. [18] and do not depend on
ṽ since we work within the same Dirac model. Therefore,
the ṽ-dependence of ρdis,th is completely defined through
the ṽ-dependence of Iimp,

ρ long−range
imp,th (ṽ → 0) ∝ ṽ2. (14)

The red curves in Figs. 2(a) and 2(b), show, respectively,
the ṽ- and T -dependence of ρimp,th at the CNP (n = 0).
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Figure 2. Thermal resistivity associated with the long-range
charged impurity (red curves) and acoustic gauge phonons
(blue curves) as functions of (a) ṽ/v (at T = 50 K) and (b)
temperature T (at ṽ/v = 0.05). Both sets of curves are calcu-
lated at the charge-neutrality-point and the charged impurity
density in (a) is set to nimp = 1 × 1010 cm−2. ρth,dis can be
linked to the corresponding electric resistivity ρel,dis, through
the Wiedemann-Franz law for noninteracting electronic sys-
tems, which takes the form ρel,dis/ρth,dis ≃ 2.4π2k2

BT/(3e
2)

for the Dirac model near charge neutrality.

We note that ρth,dis can be linked to the disorder elec-
tric resistivity ρel,dis, through the standard WF relation,
i.e. for the Dirac model ρel,dis/ρth,dis ≃ 2.4π2k2BT/(3e

2).
While we see that Iimp in Eq. (12) is independent of
T , the T -dependence of the ρimp, see Fig. 2(b), comes
entirely from the 1/T 2-dependence of the inverse Drude
weights.

B. Gauge phonons

In addition to the long-range charge impurities, the im-
portance of phonons have been highlighted in the recent
theoretical and experimental literature e.g. Refs. [15, 19,
22]. We leave a detailed discussion of the differences
between the theoretical formulations and the degree to
which it explains available experimental data to a forth-
coming publication [23]. For our purposes, we need the
collision integral for electron-phonon scattering that is
given by

Ie−ph =
∑

k′,λ′=±1

Wλ′λ
k′k fk′,λ′ (1− fk,λ)−Wλλ′

kk′ fk,λ (1− fk′,λ′) (15)

where Wλ′λ
k′k is the probability of scattering from state |k, λ〉 to state |k′, λ′〉 (with λ(λ′) = ±1 are band indices), given

by

Wλλ′

k,k+q =
2π

~

∣

∣

∣
gλλ

′

kq

∣

∣

∣

2

[Nqδ (ǫk+q,λ′ − ǫk,λ − ~vAq) + (1 +Nq) δ
(

ǫmk+q,λ′ − ǫk,λ + ~vAq
)]

, (16)

which describes phonon absorption and emission. Here,
Nq = 1/{exp[~vAq/(kBT )]− 1} is the Bose-Einstein dis-

tribution function and gλλ
′

kq is electron-phonon coupling,
given by

gλλ
′

kq = β̃Aq

√

~

2Aρωq

Fλλ′

k,k+q, (17)

with effective gauge phonon coupling constant β̃A and
chirality factor Fλλ′

kk′ = (1 + λλ′ cos θk,k′)/2. Employing
the ansatz fk,λ = f0

k,λ+λeEṽ cos θkτk,λ(∂f
0
k,λ/∂ǫk,λ), we

obtain (up to linear order) the electron-phonon scattering
time

1

τλe−ph(k)
=

∑

k′,λ′

Wλ′λ
k′k

1− f0
k′,λ′

1− f0
k,λ

(1− λλ cos θk,k′) , (18)

which can be evaluated numerically. For this work we use
µs = 7.66×10−7 kg/m2 for the mass density of graphene,
and vA = 1.62× 104 m/s is the effective acoustic phonon
velocity and β̃A ≈ βA (ṽ/vF ) /[2 tan(θ/2)] is the effective

electron-phonon coupling constant [19] with βA = 3.6 eV
is the best estimate for monolayer graphene determined
from density functional perturbation theory and tight-
binding calculations [24, 25].
The contribution of gauge phonon limited resisitivity

is obtained by averaging

1

ρe−ph
= e2

∫ ∞

−∞

dǫND(ǫ)
ṽ2

2
τe−ph(ǫ) [−f ′

0(ǫ)] , (19)

where ND(ǫ) = 4|ǫ|/[π(~ṽ)2] is the density of states and
τe−ph(ǫ) is the electron-phonon scattering time (18). At
ṽ/vA & 2, we can use quasielastic approximations and
obtain

ρe−ph(T ≪ TBG) ≃
1

ṽ2
48ζ(4)β̃2

A(kBT )
4

e2~4µsv5A(π|n|)
3/2

,

ρe−ph(T ≫ TBG) ≃
1

ṽ2
πβ̃2

AkBT

e2~µsv2A
.

(20)

In both cases ρe−ph is proportional to (β̃A/ṽ)
2 ∝

1/ tan2(θ/2) ∼ (1 − ṽ)/(1 + 2ṽ) at fixed T and linearly
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increases with T for T ≫ TBG, where TBG is the Bloch-
Gruneisen temperature (kBTBG = 2~vAkF ) (see the blue
curves in Fig. 2). In the limit of ṽ → 0, the interband
scattering dominates and this changes the dependence on
ṽ [23]. In particular, for T ≫ TF , while ρe−ph remains
linear with T , it scales as ṽ4 at fixed T . The dependence
of the considered resistivities on the renormalized Fermi
velocity ṽ and temperature T are summarized in Table I.

-5 0 5

n (10
10

 cm
-2

)

0.1

0.2

0.3

0.4

0.5

0.7 0.8 0.9 1 1.1

-5 0 5

n (10
10

 cm
-2

)

0.1

0.2

0.3

0.4

0.5

0.3 0.4 0.5 0.6(a) (b)

Figure 3. (a) Contour plot of the total electric resistivity,
Eq. (1) – including the contributions of charged impuri-
ties, gauge phonons, and Coulomb scattering – as a func-
tion of ṽ/v and doping density n at fixed T = 50 K. The
charged impurity density is set to nimp = 1 × 1010 cm−2.
(b) Same plot for the non-interacting electric resistivity, in-
cluding only charged-impurity and gauge-phonon scattering:
ρdisel = ρel,imp + ρel,e−ph. Observe how the total resistivity in
(a) decreases sharply with increasing doping density, in con-
trast to ρdisel in (b), which is weakly density-dependent. Thus,
a sharp peak of ρtotalel around the charge neutrality point con-
stitutes experimental evidence of strong hydrodynamic trans-
port.

In Figs. 3a, and 3b we respectively show the total elec-
tric resistivity ρtotalel , defined in Eq. (1), as well as the (b)
non-interacting (only the charged impurity and gauges
phonon contributions) electric resistivity ρdisel as functions
of ṽ and doping density n. The total resistivity ρtotalel fol-
lows the Lorentizan form of Eq. (1) as a function of
density (n ∝ µ). When µ → 0, the relevant contribution
is the Coulomb term ρC, i.e. ρel → ρC which increases as
ṽ → 0. In the absence of Coulomb interactions, we ob-
serve the ṽ- and density-dependence of ρdisel is completely
dominated by the behavior of the total contributions of
ρel,imp+ρel,e−ph (see Fig. 2a). Accordingly, we observe a
minimum in Fig. 3b at ṽ ∼ 0.4. As a function of density,
it is interesting to note that ρdisel is density-independent
at small ṽ where the gauge phonons dominate. Although
the WF ratio and 1/Γ2 are the main parameters for iden-
tifying the hydrodynamic regime, we note that ρel has
a localized peak around the CNP. This is the opposite
behaviour from the non-interacting contributions, and
observing this feature in the experiments would be an
immediate indication of strong hydrodynamic transport
directly from electrical conductivity measurements. The

Table I. The dependence of relevant resistivities on Fermi ve-
locity ṽ and temperature T for T ≫ TF .

Resistivity ṽ-dependence T -dependence

Intrinsic e-h Coulomb ρscreenedC (const.+ ṽ)−2 independent

Long-range charged impurity ρe−imp ṽ2 1/T 2

Gauge phonons ρe−ph(ṽ & 2vA)
∗ (1− ṽ)/(1 + 2ṽ) T

Gauge phonons ρe−ph(ṽ → 0) ṽ4 T
∗
vA = 1.62 × 104 m/s is the effective acoustic phonon velocity.

strong density-dependence of the electric resistivity on a
scale controlled by Γ near CNP, can be in general used
as a signature of hydrodynamic transport in semimetals
with dominating electron-hole scattering, e.g. see Refs.
[26, 27].

C. Calculation of Γ

We define the parameter 1/Γ2, Γ is given in Eq. (3), as
a hydrodynamic parameter which shows the strength of
the momentum-non-conserving disorder collisions vs the
intrinisc electron-hole momentum-conserving Coulomb
collisions:

1

Γ2
∝

ρC
ρth,imp + ρth,ph

≡
τ−1
eh

τ−1
imp + τ−1

ph

(21)
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θ
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Figure 4. Contour plot of 1/Γ2 in the (T − ṽ) plane , where
Γ, defined in Eq. (3), determines the width in density of
the hydrodynamic transport region. An enhanced “hydrody-
namic window” characterized by exceptionally large values of
1/Γ2

≃ 10 is clearly visible in a range of twist angles on the
left side of the figure.

Note that at the CNP, 1/Γ2 is the physical thermo-
electric parameterWF (0), which is given at finite doping
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density by the square Lorentzian law [18]

WF (µ̄) ≃

[

Γ

Γ2 + (αµ̄)2

]2 (
kB
e

)2

. (22)

In Fig. 4 we mapped out the (T − ṽ) 2D-contour plot of
1/Γ2 at velocities very close to the magic angle and at
low temperatures. We point out that Γ has a weakly de-
pendence on the doping density n around the CNP (see
Fig. 3b). When ṽ → 0, ρe−ph is the dominant disorder
mechanism which linearly increases with T . At the other
limit ṽ → 1 (which is the case of monolyaer graphene),
ρe−imp becomes important and decays as 1/T 2 (see Fig.
2). Since, ρC is fairly independent of T (has a weakly log-
arithmic dependency) and slowly varying with ṽ (see Fig.
1a), the competition between ρe−imp and ρe−ph in Eq.
(21), results in the two different regions with stronger
hydrodynamic effects (1/Γ2 ≫ 1) in Fig. 4 : i) near
magic angle and for 10K . T . 50K and ii) ṽ → 1
with T & 70K (We have neglected the effect of acoustic
phonons which are relevant for T & 150 K in graphene
[28] and should suppress the hydrodynamicity as T in-
creases). The crossover between these two regions oc-
curs at ṽ ∼ 0.4, associated with the velocity at which
ρe−ph = ρe−imp (see Fig. 2a).

WIEDEMAN-FRANZ RATIO AND SEEBECK

COEFFICIENT

Having all the ingredients we can now calculate the
WF, see Eq. (22), as well as the Seebeck coefficient,
which near the CNP takes the form[18]

Q(µ̄) ≃ −
αµ̄

(αµ̄)2 + Γ2

kB
e

. (23)

Figures 5a and 5b show respectively the results for the
WF and the Seebeck coefficient, including the contribu-
tion of both the charged impurity and gauge phonons as
functions of doping density n and renormalized Fermi ve-
locity (alias twist angle) ṽ. For clarity WF is scaled with
the Lorentz number π2k2B/3e

2 and shown as log(WF).
Consistent with the results in Fig. 4, where at T = 50K,
1/Γ2 is large for 0.1 . ṽ . 0.45, we observe a large en-
hancement of the WF at these near magic twist angle
velocities. The broadening of the square-Lorentzian WF
peak when ṽ → 0, i.e. approaching the magic twist angle,
is caused by the density-independent ρe−ph which is the
dominant disorder scattering mechanism in this regime.
As seen in Fig. 3b, ρdis becomes density independent at
small ṽ, while it decreases as a function of density as ṽ
increases. Therefore, we observe that the Seebeck coeffi-
cient in Fig. 5b, which is proportional to µ̄ ∝ n, peaks
at twist angles corresponding to ṽ & 0.4.
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Figure 5. Contour plot of (a) log(WF) and (b) Seebeck coeffi-
cient Q as a function of doping density n and Fermi velocity ṽ
at T = 50 K. WF is scaled with the Lorentz number π2k2

B/3e2

and the charged impurity density is set to nimp = 1 × 1010

cm−2. The large enhancement of the WF and the peak in
the Seebeck coefficient at small ṽ are both signatures of the
hydrodynamic regime.

CONCLUDING REMARKS

In this paper, we have calculated the transport prop-
erties of twisted bilayer graphene near magic twist an-
gle and at low densities around the charge neutrality
point (K-point). We have obtained our results for the
electric and thermal resistivities, the Wiedemann-Franz
ratio, and the Seebeck coefficient. Momentum non-
conserving scattering mechanisms, such as long range
(screened) charge impurities and acoustic gauge phonons,
which become most relevant in twisted bilayer graphene
near magic angle, are all included in a single parameter
Γ ≪ 1, which controls the doping density dependence
of the thermoelectric transport coefficients in a region of
µ/(kBT ) ≪ 1 around the charge neutrality point. Includ-
ing the effect of screening, we obtained (renormalized)-
Fermi velocity ṽ-dependence of the resistivities pertinent
to the e-h Coulomb interaction, long range charged im-
purities, and the gauge phonons (see Table I).

Our most interesting result is that the hydrodynamic
transport anomaly, characterized by large values of the
WF ratio and the Seebeck coefficient, is very strong in
the vicinity of the magic twist angle and in a temperature
range of 10K . T . 50K, where the gauge phonons are
the dominant disorder mechanism. Besides the enhanced
thermoelectric coefficients we have studied here, twisted
bilayer graphene could also be an interesting system
for the realization of non-linear hydrodynamic effects
such as turbulent viscous electron flow [29]. This is
due to the large fine structure constant at the magic
twist angle which leads to a low viscosity to entropy ratio.
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