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First-principles study of the phonon replicas in the photoluminescence spectrum of

4H-SiC

Sai Lyu∗ and Walter R. L. Lambrecht
Department of Physics, Case Western Reserve University,

10900 Euclid Avenue, Cleveland, Ohio 44106-7079, USA

The free-exciton photoluminescence (PL) spectrum of 4H-SiC exhibits a detailed fine structure
due to the different phonons involved in the indirect gap transition. Here a first-principles calculation
of these phonons, their symmetry labeling and their contribition to the photoluminescence spectrum
is presented. The calculation uses phonons and electron-phonon coupling matrix element computed
via density functional perturbation theory and energy bands and optical phonon matrix elements
calculated in density functional theory. The results are in excellent agreement with experiment for
the phonon energies and the polarization dependence of the spectrum. The relative intensities are
also in fair agreement if we allow for some phonons within a few meV to be interchanged. There
is however a remarkable discrepancy that the experimental spectrum shows a distinct behavior for
phonons with energy below ∼ 55 meV and above that energy, which is absent in the theory. The
experimental PL lines corresponding to phonon energies below 55 meV are about a factor 5-10
smaller in intensity. This is not found in our calculations. The calculations show a similar peak
distribution as the experiment in this range but with intensities comparable to those above 55
meV. This indicates that another mechanism outside the scope of the electron-phonon mediated
transitions is operative for photon energies of the PL lines closer to the indirect exciton gap than
this 55 meV cut-off, which reduces the overall intensity of these lines. We propose that this may
result from competition between the phonon-assisted PL and trapping of the electron in the available
unoccupied hexagonal site N-donor shallow level at 53 meV binding energy. As part of this study,
we also present the phonon dispersions and density of states in 4H-SiC and the electronic band
structure including quasiparticle corrections.

I. INTRODUCTION

Photoluminescence (PL) is a light-emission process in
which solids (or molecules) radiate photons as a conse-
quence of recombination of electron-hole pairs. These
electron-hole pairs are created by exciting light. The PL
technique can also be used to identify phonons in indirect
gap semiconductors. This is because the PL spectrum
in indirect gap semiconductor corresponds to a second-
order transition process assisted by phonon absorption
or emission. In indirect gap materials where the valence
band maximum (VBM) and conduction band minimum
(CBM) occur at different points in the Brillouin zone, di-
rect transitions due to the photon field alone are forbid-
den by momentum conservation and the fact that visible
light has negligible momentum compared to the Brillouin
zone dimensions.
4H-SiC is well known to have an indirect band gap be-

tween the VBM at Γ and the CBM at the points M of
the hexagonal Brillouin zone. Because of the large size of
the unit cell, consisting of 4 layers, the phonon spectrum
is rather complex and leads to fine structure of the band
gap exciton PL, known as the phonon replicas. These
spectra were already reported in 1965 by Patrick et al.

[1] and used in an attempt to determine the k-space loca-
tion of the conduction band minimum although that pa-

∗ Current address: Chaire de Simulation à l’ Échelle Atomique
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per used the donor-bound excitons (for a N-impurity on a
hexagonal C-site), the so-called P -lines. Using symmetry
arguments and the limited information at that time on
the phonons based on folding of a simple assumed phonon
dispersion led them to the conclusion that the conduc-
tion band minimum could not be at M but had to be
in between M and L. This was in contrast with first-
principles band structure calculations performed later on
and the issue was resolved in Ref. 2 by using the phonon
spectra that had been reported by then by Hoffmann et

al. [3]. A satisfactory fit of the P -series phonon repli-
cas with the phonon data was reported by Choyke et al.

[4]. The phonon replica spectrum based on the free ex-
citon I-lines has more recently been reported by Ivanov
et al. [5]. The relative intensity of the P and I lines de-
pends on the degree of N-doping. Although that study
already included an analysis in terms of the phonon spec-
trum, it was based on a semi-empirical model for the force
constants and symmetry analysis. A full first-principles
description has not yet been provided. More recently,
the phonon replicas have also been measured by high-
resolution differential absorption by Klahold et al. [6].

Here, we adapt a first-principles formalism recently
used for indirect absorption[7] to simulate the PL spec-
trum in indirect gap semiconductors. This formalism is
based on density functional theory (DFT) and density
functional perturbation theory (DFPT) for the phonons
and electron-phonon coupling matrix elements. We ap-
ply this approach to the case of 4H-SiC and compare our
theoretical calculations with available experimental re-
sults. Although the measured spectrum corresponds to
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excitons, we here neglect the electron-hole interaction or
exciton binding energy. In other words, we view the PL
replicas as a recombination of a free CBM electron with
a free VBM hole via different phonons without taking
into account that the electron and hole start out from a
bound exciton state. Nonetheless, it is the clear separa-
tion of the exciton state from the continuum of the band
that allows us to treat the transitions as well defined dis-
crete energies with a simple lineshape not requiring an
integration over k-points near the band extrema.

II. COMPUTATIONAL METHOD

The approach used here to treat indirect transitions
is similar to the one recently introduced by Noffsinger
et al. [7] for the calculation of the indirect absorption
in Si. The difference is that instead of integrating over
the Brillouin zone, we here focus on the phonon-assisted
recombination between only the k-points corresponding
to the minimum indirect gap.
The process considered here corresponds to the recom-

bination of a free electron at the conduction band mini-
mum (CBM) (at theM points in 4H-SiC) with a free hole
at the valence band maximum (VBM) (at the Γ point).
This is a second-order process involving a phonon and
a photon so that both energy and momentum are con-
served. The perturbation Hamiltonian due to electron-
photon interaction and electron-phonon interaction can
be expressed as

∆H = Hr +Hep (1)

where Hr = (−e/cm)p ·A is the radiation Hamiltonian
in the momentum gauge with E = Eǫ̂ = −i(ω/c)A the
electric field with polarization ǫ̂. We prefer here the mo-
mentum or velocity gauge rather than the length gauge
because for periodic solids the matrix elements of the po-
sition operator between Bloch functions require special
care[8]. On the other hand, Hep is the electron-phonon
interaction Hamiltonian

Hep =
1√
N

∑

k,q,mnν

gmnν(k,q)c
†
mk+qcnk(aqν + a†−qν)

(2)
written in second quantization form with cnk the electron
annihilation and aqν the phonon annihilation operator
for mode ν at wavevectro q and N the number of unit
cells in the crystal using periodic boundary conditions.
The electron-phonon coupling matrix elements are

gmnν(k,q) = 〈mk+ q|∂qνV KS |nk〉uc (3)

which couples the electron Bloch state |nk〉 to state
|mk+q〉 and the integral is taken over the unit cell. It in-
volves the first order change in the Kohn-Sham potential
in response to the phonon mode qν written as ∂qνV

KS .
This can in turn be written in terms of the derivatives
of the Kohn-Sham potential as a function of individual

atomic displacements τα of atom τ in the Cartesian di-
rection α and the phonon eigenvector:

∂qνV
KS(r) = lqν

∑

τα

(

M0

Mτ

)1/2

eτα,ν(q)∂τα,qV
KS(r)

(4)

with lqν =
√

~/(2M0Ωqν) the characteristic length of the
particular phonon with frequency Ωqν using an arbitrary
reference mass M0 and

∂τα,qV
KS(r) =

∑

T

e−iq·(r−T)∂V
KS

∂τα
(r−T) (5)

The phonon eigenvector is the eigenvector of the dynam-
ical matrix:

∑

τ ′α′

Dτα,τ ′α′eτ ′α′,ν(q) = Ω2
qνeτα,ν(q) (6)

For details of the formalism and how the matrix elements
are obtained in DFPT see for example the review article
by Giustino [9].
The transition rate from inital state |i〉 of an electron

at the CBM at M and the ground state of the vibra-
tional system, to the final state |f〉 with an electron at
the VBM (here at Γ) and one phonon emitted is obtained
in second order perturbation theory involving each of the
interaction Hamiltonians once and is given by a Fermi’s
Golden Rule like formula:

wfi(ω) =
2π

~

∑

ν

∣

∣

∣

∣

∑

m1

〈f |Hr |m1〉 〈m1|Hep |i〉
εi − εm1

− ~Ωqν

+
∑

m2

〈f |Hep |m2〉 〈m2|Hr |i〉
εi − εm2

− ~ω

∣

∣

∣

∣

2

×δ(εf − εi + ~ω + ~Ωqν). (7)

Here the matrix element of the Hep corresponds to
〈m1|Hep |i〉 = gm1iν(ki,q) in the first term and the inter-
mediate state m1 is at ki + q = kf . The matrix element
of Hr is between the intermediate state m1 and the final
state at the final kf and is a vertical momentum matrix
element. Using p = mv, we write it instead in terms of
velocity matrix elements:

〈f |Hr |m1〉 = 〈f | ǫ̂ · v |m1〉 |E|/ω (8)

The magnitude of the electric field |E|2 ultimately cor-
responds to the energy density of the electromagnetic
field and is a factor of no interest here because we are
not deriving the absolute emission rate but only the rel-
ative intensity of transitions involving different phonons.
The overall factor 1/ω2 resulting from each velocity ma-
trix element modulo squared varies little over the range
of interest and can therefore be ignored. Similarly, in
the second term, m2 is a state at ki and involves a
vertical velocity matrix element at the initial ki and
〈f |Hep |m2〉 = gfm2ν(ki,q). We assumed here that be-
cause at low temperature, there are few (or no) phonons
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present initially, the dominant process involves phonon
emission and hence it is the sum of the phonon and pho-
ton energy ~(Ωqν + ω) that must equal the band gap
εf − εi. The phonons involved correspond obviously to
the q point connecting the initial to the final band state,
so here the phonons at M .

The equation for the optical absorption coeffcient given
in Ref. 7 can be derived from the above but would in-
terchange the role of the initial and final states. Also,
from the absorption coefficient, one can obtain the spon-
taneous emission coefficient using the Einstein relation
between spontaneous emission and stimulated absorption
involving the blackbody distribution coefficient. Com-
pared to our expression for the transition rate, which has
a common factor 1/ω2, the absorption coefficient has a
prefactor of 1/[ωn(ω)] with n the index of refraction and
for the emission coefficient this would be multiplied by
a factor ω3. We ignore here these factors because over
the range of the phonons involved, they vary little. In
the present expression for the transition rate, we do not
include the Fermi-Dirac distribution factor because the
conduction band is occupied and a hole is assumed to
be present in the valence band by the initial process of
exciting the electron hole pairs and subsequently letting
them thermalize to the band edges. We also do not need
to include phonon occupation numbers because at low
temperature we only need to take into account phonon
emission.

A few other remarks are in order when applying these
equations to the specific case of 4H-SiC. The final state
f is the two fold degenerate VBM of Γ5 symmetry. Thus
the contributions of both eigenvectors used as the basis
in the corresponding two-dimensional vector space must
be added. So, there is a sum over the two f states out-
side the | . . . |2 in Eq.(7). We here neglect the spin-orbit
splitting of the VBM which is of order 7 meV. There are
also 3 equivalent initial state M -points in the Brillouin
zone that contribute. These need to be summed over and
here again we assume that this sum can be done over the
absolute values modulo squared rather than adding the
amplitudes coherently. Although, in principle, the exci-
ton could be a coherent superposition of the contributions
from the three M -valleys, we here assume that excitons
from each valley recombine independently of each other.
We have verified that each of the three M -points gives
the same contribution for E ‖ c and for the E ⊥ c case
this amounts to a symmetrizing average ensuring that
the final result is isotropic in the c-plane.

The calculations are performed using the ABINIT
package [10] using Hartwigsen-Goedecker-Hutter (HGH)
pseudopotentials [11]. We employ a 8 × 8 × 2 k-point
mesh and the plane wave energy cutoff is set as 80 Ha.
The electronic band structure are calculated at the level
of DFT in the LDA. The velocity matrix elements are
obtained from the ABINIT parts for optical absorption
calculations involving direct interband transitions by us-
ing the printed out matrix elements only at the two spe-
cific k-points we need here. Note that they are not equal

to the momentum matrix elements divided by the elec-
tron mass because of the non-local part of the pseudopo-
tential, which does not commute with the Hamiltonian.
The electron-phonon coupling matrix elements are also
provided by the ABINIT code and are calculated as ex-
plained in Ref. 9. The phonon frequencies and eigen-
vectors needed in here are obtained in DFPT from the
ABINIT code. We note that, in principle, in these expres-
sions there is no limitation on the intermediate states, so
f = m1 and i = m2 should be included. However, these
intra-band matrix elements of the velocity operator re-
duce simply to the band velocity ∇kEn(k)/~, which is
zero for all the bands at Γ and M .
For the electronic band structures, we also use the en-

ergy bands calculated in the LDA by ABINIT. How-
ever, we also can use the more accurate band struc-
ture energies obtained in the quasiparticle self-consistent
GW or QSGW method [12, 13] where G stands for the
one-particle Green’s function and W for the screened
Coulomb interaction [14, 15]. In the GW calculations, we
use a spdf−spd basis set, Σ is calculated up to 2.5 Ry and
self energy is approximated by a diagonal average matrix
when above 2 Ry. A 3.5 Ry interstitial plane-wave cut-
off is used for Columb interactions and basis functions.In
contrast to the LDA, which is well known to underesti-
mate the band gaps severely, this method typically only
slightly overestimates the band gaps because of the un-
derscreening of W in the random phase approximation.
This can be corrected by incuding only 80% of the self-
energy correction to the LDA exchange and correlation
potential [16]. We will show that for present purpose in-
cluding the GW corrections to the bands does not make
a significant change for the phonon replica spectrum.

III. RESULTS

A. Crystal structure and symmetry

The crystal structure of 4H-SiC is shown in Fig. 1.
In cartesian coordinates, the three lattice vectors can be
expressed as

a1 = a(

√
3

2
,
1

2
, 0)

a2 = a(0,−1, 0) (9)

a3 = c(0, 0,−1)

The relaxed lattice constants a and c are given in Ta-
ble I and comparisons are made to the available results
in literature. Our relaxed lattice constants slightly un-
derestimate experimental ones as is usually the case for
LDA. There are four atomic double layers perpendicular
to the c axis. Each double layer is composed of one pure
Si layer and C layer. Each Si atom is surrounded by four
C atoms forming a tetrahedron and vice versa for the C
atom.
The space group is C4

6v which contains 12 symmetry
operations in the corresponding point group. The group
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b

c

a

FIG. 1. The crystal structure of 4H-SiC. The smaller brown
spheres and larger blue spheres denote C atoms and Si atoms
respectively. Note that there are 8 atoms per cell, 4 Si-C pairs
in ABCA stacking. The atoms included in the figure occurring
in neighboring cells are shown to emphasize the tetrahedral
coordination.

TABLE I. Lattice parameters of 4H-SiC.

a( Å) c( Å)
This work 3.048 9.978
Ref.[17] 3.067 10.032
Expt.[18] 3.073 10.052

of k at the M point in the Brillouin zone is C2v, which
includes 4 symmetry operations. It is used to label the
relevant phonons. We use the same character table as in
Ref. 5.
The symmetry operations of the point group C2v at

the M point are indicated in Fig. 2. There are three
independent M points in the centers of the sides of the
hexagonal Brillouine zone (not connected by a reciprocal
lattice vector). As already mentioned above, their contri-
butions are added, which results in an isotropic intensity
in the c-plane. The mirror planes at one of the M -points
are shown in Fig. 2. They define the symmetry label-
ing: M1 and M2 states are even under σv in the xz-plane
while M3 and M4 are odd. M1 and M3 irreducible rep-
resentations are even under the two-fold rotation about
the z-axis and M2 and M4 are odd. Thus M1 behaves as
z, M4 as x, M2 as y and M3 as xy.

B. Electronic band structure

In Fig. 3, we show the LDA electronic band structure
of 4H-SiC calculated by ABINIT. 4H-SiC is found to have
an indirect gap (M -Γ) of 2.21 eV in LDA, compared with
the experimental value [19] of the exciton gap of 3.2664
eV. The exciton binding energy is small compared to this
discrepancy and clearly not the major issue. The Kohn-
Sham eigenvalues and corresponding symmetry labels at
the Γ and M points are given in Table II. Our results

② ✭�✈✬✮

① ✭�✈ ✮

▼

▼✁✁

▼✁

✂

❜✷

❜✶

❛✶

❛✷

FIG. 2. Projection of the Brillouin zone on the c-plane with
reciprocal lattice vectors b1, b2, in relation to the real space
primitive vectors: a1, a2. Of the three equivalent M , M ′, M ′′

points, the M -point along the b1 direction, which coincides
with Cartesian x axis is the one used to give the optical matrix
elements in the Appendix. The mirror planes and x,y axes
are shown in dashed red lines.
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FIG. 3. The LDA band structure of 4H-SiC.

are in accord with previous calculations by Persson et al.

[17]. Those Kohn-Sham eigenvalues are used in the en-
ergy denominators in Eq.(7). For comparison, the band
structure calculated in the QSGW 0.8Σ approximation
are given in Fig. 4 and the relevant eigenvalues at Γ and
M obtained in this method are also included in Table
II. In this approximation, the indirect band gap is found
to be 3.20 eV in excellent agreement with experiment to
within 0.1 eV. We have also used these band energies in
the calculation of the indirect transitions. While it is not
entirely consistent to use QSGW bands combined with
LDA calculated matrix elements, it allows us at least to
check to what extent the band energies used modify in-
tensities. We will show it has little effect.
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TABLE II. Symmetry label and energies ( in eV relative to
the VBM) of the electronic band structure at Γ and M points.

band at Γ(C6v) at M(C2v)
DFT QSGW sym DFT QSGW sym

Ev16 -15.64 -15.94 Γ1 -12.08 -12.51 M1

Ev15 -14.43 -14.75 Γ4 -11.53 -11.98 M4

Ev14 -14.40 -14.70 Γ4 -11.25 -11.73 M4

Ev13 -11.91 -12.36 Γ1 -10.50 -11.00 M1

Ev12 -8.80 -9.00 Γ1 -8.72 -8.96 M4

Ev11 -4.41 -4.67 Γ4 -8.40 -8.66 M1

Ev10 -4.37 -4.63 Γ4 -7.09 -7.44 M1

Ev9 -1.20 -1.31 Γ5 -6.66 -7.02 M4

Ev8 -1.20 -1.31 Γ5 -5.02 -5.18 M1

Ev7 -0.73 -0.80 Γ6 -4.18 -4.33 M4

Ev6 -0.73 -0.80 Γ6 -3.32 -3.51 M2

Ev5 -0.59 -0.65 Γ6 -2.43 -2.57 M3

Ev4 -0.59 -0.65 Γ6 -2.41 -2.56 M3

Ev3 -0.05 -0.004 Γ1 -2.25 -2.36 M4

Ev2 0.00 0.00 Γ5 -1.60 -1.67 M1

Ev1 0.00 0.00 Γ5 -1.13 -1.23 M2

Ec1 5.29 6.07 Γ1 2.21 3.20 M4

Ec2 5.86 6.71 Γ4 2.33 3.34 M1

Ec3 6.50 7.22 Γ4 4.23 5.29 M4

Ec4 6.66 7.36 Γ1 4.82 5.77 M1

Ec5 7.05 8.16 Γ5 5.31 6.45 M4

Ec6 7.05 8.16 Γ5 5.78 7.00 M1

Ec7 7.05 8.24 Γ6 7.23 8.45 M2

Ec8 7.05 8.24 Γ6 7.66 8.86 M1

Ec9 7.50 8.60 Γ1 8.86 10.02 M4

Ec10 8.13 9.34 Γ5 10.33 11.44 M4

Ec11 8.13 9.34 Γ5 10.43 11.57 M1

Ec12 8.41 9.57 Γ6 10.50 11.75 M3

Ec13 8.41 9.57 Γ6 10.58 11.84 M3

Ec14 9.07 10.16 Γ4 11.87 13.07 M4

Ec15 9.61 10.74 Γ4 12.03 13.35 M1

Ec16 10.87 12.24 Γ1 14.09 15.29 M2

Ec17 12.30 13.74 Γ5 14.16 15.38 M4

Ec18 12.30 13.74 Γ5 14.81 16.05 M1

Ec19 13.16 14.61 Γ6 15.21 16.49 M1

Ec20 13.16 14.61 Γ6 16.73 18.27 M1

Ec21 14.13 15.64 Γ4 16.88 18.28 M4

Ec22 14.55 16.22 Γ1 17.18 18.58 M2

Ec23 15.95 17.31 Γ6 17.61 19.00 M3

Ec24 15.99 17.31 Γ6 17.84 19.24 M3

C. Phonon dispersion and density of states

The phonon dispersions and phonon density of states
are shown in Fig. 5. The discontinuities at the Γ point
are due to the fact that in this plot the LO-TO split-
ting at Γ is not included, only the TO mode. So, the LO
branch suddenly changes to the TO mode at the Γ-point.
The LO modes at Γ depend on which direction one ap-
proaches Γ from. In the phonon density of states we can
see that the higher optical modes are dominated by the
lower mass C-atom.
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FIG. 4. The QSGW band structure of 4H-SiC.

D. Phonon modes at the M point

The phonon modes relevant to the present calculation
of the PL spectra are the modes at M and are given in
Table III. For each mode we give our calculated phonon
energy in meV, the corresponding values from Ivanov et

al. [5], and from Klahold et al. [6], the symmetry label ac-
cording to the irreducible representations of the C2v point
group and the light polarization for which this phonon
mode gives allowed transitions. M2 and M4 correspond
to E ⊥ c, while M1 and M3 correspond to E ‖ c. We can
see that the calculated and the observed phonon frequen-
cies agree generally to within ±2 meV. We re-ordered
a few of the experimentall observed phonon frequencies
to match as closely as possible with our calculated ones
based on their polarization. Note that our calculated M3

phonon at 94.5 meV and M1 mode at 95.5 meV may be
hidden in the experimental 94.7 mode for E ‖ c which is
the strongest peak in the experiment. We have indicated
this in the Table III with the question marks. It matches
very well with our calculatedM3 mode at 94.8 meV which
indeed we also find to have the highest intensity among
all E ‖ c modes. The experimental peak reported at
109.5 meV does not match any of our modes and is in
fact very weak in experiment. Some of the peaks from
Ref. [6] are labeled as corresponding to transitions from
the spin-orbit split-off valence band to the conduction
band, e.g. 94.5+6.8 (SO) or 96.0+7.1 (SO) for E ⊥ c.
While we do not question this interpretation, we note
that 96.0+7.1=103.1 is also close to our calculated 103.6
meV for E ⊥ c and so both the top valence band and
a phonon at ∼ 103 ± 1 meV and the spin-orbit split-off
VB with a slightly lower phonon could contribute to the
same experimental peak.
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FIG. 5. The phonon dispersion along different k-directions
and phonon density of states of 4H-SiC.

E. Symmetry considerations for optical and

electron-phonon coupling matrix elements

For E ‖ c and for the vertical matrix elements at M
we note that because a vector along z or c belongs to the
irreducible representation M1 and the CBM is of sym-
metry M4 the only non-zero matrix elements occur with
the M4 symmetry electronic energy bands. For E ⊥ c we
note that for the M -point lying in the x-direction, the
M4 states have the same symmetry as a vector along x.
For an optical matrix element with polarization along x,
then only the M1 band states give a non-zero contribu-
tion (because M4⊗M4 = M1) and for polarization along
y, which corresponds to M2 only M4 ⊗M2 = M3 bands
contribute.
As for optical matrix elements at the final state Γ that

can couple to the VBM, of Γ5 symmetry, we have that for
E ‖ c which belongs to Γ1 only Γ5 states can contribute
non-zero matrix elements but for E ⊥ c the velocity vec-
tor lies in the xy-plane and thus belongs to Γ5. Since
Γ5 ⊗ Γ5 = Γ1 ⊕ Γ2 ⊕ Γ6, all the latter three symmetry
bands can contribute.
We have verified that these rules are obeyed by the

matrix elements and give their numerical values in Ap-
pendix A for the M -point.
We now consider the electron-phonon coupling matrix

elements that link the intermediate states at M to the

TABLE III. Calculated phonon energies (in meV) with sym-
metry labels at the M point of 4H-SiC and comparison with
results from Ivanov et al. [5] and Klahold et al. [19]. The
value after the + notation corresponds to the spin-orbit split-
ting of the VBM and indicates the assignment by Klahold et

al. . The ? indicates tentative assignments.

This work label Ref. [5] Ref.[6] polarization
32.5 M4 33.2 33.2 E ⊥ c

35.9 M1 36.6 36.6 E ‖ c

40.3 M2 41.1 41.1 E ⊥ c

40.5 M3 40.6 40.6 E ‖ c

40.9 M3 41.9 41.9 E ‖ c

45.4 M4 46.3 46.3 E ⊥ c

50.1 M2 50.9 50.9 E ⊥ c

51.9 M1 52.7 52.7 E ‖ c

67.6 M2 68.1 68.1 E ⊥ c

68.2 M1 68.8 68.8 E ‖ c

75.8 M1 78.2 78.0 E ‖ c

77.5 M2 76.3 76.3 E ⊥ c

94.3 M4 94.5 94.5 E ⊥ c

94.5 M3 94.7? E ‖ c

94.8 M3 94.7 94.7 E ‖ c

94.8 M4 94.5? 94.5? E ⊥ c

95.5 M1 94.7? E ‖ c

95.9 M2 96.0 96.0 E ⊥ c

96.7 M1 96.5 96.5 E ‖ c

98.8 M2 98.9 94.5+6.8 E ⊥ c

103.6 M1 103.5 96.5+7.7 E ‖ c

104.2 M2 103.9 96.0+7.1 E ⊥ c

106.6 M1 106.3 106.3 E ‖ c

106.8 M2 106.8 106.8 E ⊥ c

109.5 E ‖ c

Γ5 VBM. For E ‖ c these are only the M4 states as men-
tioned above. Now, when an M4 band state is combined
with a M1 phonon the overall symmetry is M4 and hence
x-like for the M -point in the x-direction. This is compat-
ible with the Γ5 symmetry of the final state, the VBM.
For a M3 phonon, we obtain M4 ⊗M3 = M2 which is y-
like and that is also compatible with Γ5, so we see indeed
that both M1 and M3 phonons will be allowed for E ‖ c.
Likewise for E ⊥ c, the band states at M to consider are
of symmetry M1 and M3. A phonon of M2 symmetry
combined with a band state of M1 gives M1 ⊗M2 = M2

which is y-like, while for a band ofM3 symmetry the com-
bined state has M3⊗M2 = M4 (which is x-like). Both or
these are compatible with the irreducible representation
Γ5 of the VBM. The same is true for a M4 symmetry
phonon but now the role of x and y are reversed.

For electron-phonon coupling linking the intermediate
states at Γ with the CBM of M4 similar considerations
apply. For example, for E ‖ c only Γ5 intermediate states
need to be considered and these being x or y like they
have non-zero matrix elements with the M4 conduction
band for phonons of symmetry M1 or M3. For E ⊥ c
intermediate states can have Γ1, Γ2 or Γ6 symmetry. For
Γ1 states, only phonon modes of symmetry M4 can link
to the M4 CBM. An M2 vibrational mode will link the
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TABLE IV. Calculated intensity (in arbitrary units) of the
photoluminescence at each phonon mode when E ‖ c.

Phonon energies label relative intensity relative intensity
(DFT eigenvalues) (GW eigenvalues)

35.9 M1 21.83 21.91
40.5 M3 1.00 0.49
40.9 M3 0.10 0.10
51.9 M1 1.31 1.32
68.2 M1 3.53 3.49
75.8 M1 14.75 13.62
94.5 M3 9.46 11.17
94.8 M3 25.24 21.32
95.5 M1 0.34 0.10
96.7 M1 26.35 25.26
103.6 M1 0.40 0.42
106.6 M1 14.75 11.95

TABLE V. Calculated intensity (in arbitrary units) of the
photoluminescence at each phonon mode when E ⊥ c.

Phonon energies label relative intensity relative intensity
(DFT eigenvalues) (GW eigenvalues)

32.5 M4 0.29 0.37
40.3 M2 81.75 66.05
45.4 M4 3.91 3.35
50.1 M2 80.15 80.18
67.6 M2 5.06 2.23
77.5 M2 50.73 38.12
94.3 M4 30.95 35.05
94.8 M4 21.35 19.71
95.9 M2 14.24 14.24
98.8 M2 21.46 9.71
104.2 M2 17.04 17.84
106.8 M2 23.85 28.51

M4 CBM state to an overall symmetry of M3 which is
behaves like a xy product and should thus couple to a Γ6

intermediate state. A Γ2 state on the other hand behaves
like a rotation about the z axis and this cannot be turned
in to M4 by any phonon at M .

F. Simulated photoluminescence spectrum

The calculated relative intensity of the PL spectra for
polarizations E ‖ c and E ⊥ c are presented in Table IV
and V, respectively.
The simulated PL spectra for polizations E ⊥ c and

E ‖ c are shown in Fig. 6 and are compared with the
experimental data of Ivanov et al.[5], reproduced here.
The width of each peak in the PL spectra is related to
the lifetime of the phonon mode. It is presently not cal-
culated. Here we use the same broadening factor (of 0.5
eV) for each phonon mode for simplicity. First we note
that we calculated these either with the GW or with the
LDA bands and both give very similar relative intensi-
ties as is clear from Tables IV,V and from comparison

of the dashed cyan (GW ) and violet solid lines (LDA).
The experimental spectra show both free exciton (FE)
I-lines and N-donor bound exciton (N-BE) (P and Q)
lines. The relative intensity of P , Q, I lines depends on
the concentration of N-impurites in the sample and on
the interaction strength of the excitons with the impu-
rities as discussed in Ivanov et al. [5]. We here include
in dark green the spectrum dominated by P and Q lines
from their paper to help see which lines are P lines and
which are I-lines. The exciton binding energy to the
hexagonal N-donor amounts to about 9 meV as can be
seen from the shift of corresponding lines involving the
same phonon in the indirect recombination. This agrees
well with the value of 7 meV reported by Patrick et al.

[1]. We thus shifted our calculated spectrum by 9 meV
and reduced its intensity by a somewhat arbitrarily cho-
sen factor to simulate the P -lines. This is shown by the
blue lines in Fig. 6. The experimental peaks are labeled
by I or P and the corresponding experimental phonon
energies.

We note that in the experiments the peaks with phonon
energies below about 55 meV are all much weaker than
in the energy range above it. The experimental spectrum
in this range was thus multiplied by a factor 10 for E ‖
c to make it better visible and this is here shown by
the red and orange lines. The calculated spectra show a
qualitative agreement but with significant discrepancies
with experiment.

Let us first discuss the E ‖ c case. As mentioned al-
ready, it seems plausible that the strong modes at 94.5,
94.8 and weak one at 95.5 meV for E ‖ c all correspond
to the experimental 94.7 meV peak and their intensities
should be added. We thus see good agreement of the
largest peak with the experimentally largest peak. How-
ever, the calculated peak at 96.7 meV is much stronger
than the experimental I96.5 peak. The calculated 75.8
peak is also more intense than the experimental 78.2 line.
Furthermore the P68.8 line may also contribute to this
peak. Our 103.6 line is much weaker than the exper-
imental I103.5 and conversely our 106.6 line is stronger
than the experimental I106.3. The P94.7 line also con-
tributes at almost the same energy as the I103.5. In view
of the fact that for example the 75.8 (theory) and 78.2
(experimental) phonons can differ by 2–3 meV, it does
not seem implausible that our calculated 103.6 and 106.6
phonons should be interchanged for a proper indentifica-
tion of the modes with experiment. Similarly, if the 95.5
and 96.7 lines in our calculation would be interchanged
the spectrum would agree much better with experiment
because the phonon with strong PL emission would then
just add to what is already the strongest peak.

As already mentioned, it is striking that below ∼55
meV, the experimental peaks are all about a factor 10
smaller whereas in our calculation this is not the case.
Besides this overall reduction of the peaks in experiment,
there are other differences. Our strongest line in this re-
gion is at 35.9 with a weaker peak at (40.5,40.9 giving one
peak) and another weaker one at 51.9. In contrast, in the
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experiment, the strongest peak is the combined I40.6,41.9
one and a relatively strong I52.7 but quite weak I36.6.
Again, although the phonon energies seem to match well,
there appear to be switches of these modes between the-
ory and experiment when one takes into account the rel-
ative intensities.

Next, we move on to the E ⊥ c polarization. In the
experimental results, the highest peak is at 76.3 meV. In
the calculation this peak is at 77.5 meV. The I68.1 peak
nicely agrees with our 67.6 mode. In the experiment,
there are two sets of close peaks I94.5, I96.0 and I103.9,
I106.8 with a weaker one I98.9 in between. In our calcula-
tions there is peak corresponding to the combination of
the 94.3, 94.8 meV phonons which is very strong followed
by a weaker 95.9 meV one. The peaks at 104.2 and 106.8
agree well with the experimental ones in terms of the rel-
ative intensity. Overall the match in this region is fairly
good, when also including the corresponding simulated
P -lines. Again, it is remarkable that the peaks below 55
meV are reduced by a factor of at least 5 with respect
to the higher phonon energy ones in the experiment. In
contrast, in the theory, the two strongest peaks occur in
this energy range. The experiment in this regon shows
two weak peak at I33.2 and I41.1 followed by two larger
peaks at I46.3 and I50.9. In the theory we also find a
weak 32.5 peak but we find a strong 40.3 and 50.1 peak
with a weaker 45.4 in between. Comparing this with the
experiment, it appears that our calculated 40.3 should
be identified with the experimental 46 meV phonon and
our calculated 45.4 should be identified with the experi-
mental 41.1 meV phonon so that their relative intensities
would match.

Thus apart from the overall reduction factor of the
PL replica with energies less than 55 meV in the exper-
iment, there is a reasonable agreement in the relative
intensities of the different phonon replicas when we take
into account an uncertainty of a few meV on our cal-
culated phonons which could lead to some interchanges
compared to experiments in terms of mode ordering. The
polarization dependence is also well described by the the-
ory. This is an indication that the overall computational
approach is valid and the matrix elements involved and
energy band differences involved are sufficiently accurate.
It is thus difficult to explain why our calculated intensi-
ties would be in error by a factor 5-10 for phonon ener-
gies less than 55 meV but not above this energy cut-off.
Therefore we look for an alternative explanation for this
in terms of another recombination channel.

It is noteworthy that the N-donor binding on the
hexagonal site energy is 53 meV [20], which is remarkably
close to the dividing line between weak and strong lines.
The P -lines in the experimental PL spectrum in fact cor-
respond to donor-bound excitons for the N impurity in a
hexagonal N-site. The Q-lines correspond to a N-donor
on the cubic site and is deeper (about 100 meV). The
relative intensity of the phonon replicas of the P - and
Q-lines are discussed by Ivanov et al. [5]. Because the
binding energy of the exciton to the shallower hexagonal

N is weaker, its phonon replicas are stronger but the zero
phonon line is weaker.

If we ignore the exciton binding energy for a moment
and think in terms of free electrons recombining with free
holes via combined electron-phonon and electron-photon
interaction, then we need to also include the possibility
of interacting with the available empty N-donor levels.
If the phonon energy reduces the energy by less than
the donor binding energy, then the electron could still
get trapped by the donor and subsequently recombine
via another phonon and interaction with the radiation
field giving rise to the P -series of PL lines. However, if
the energy loss due emitting a phonon is already larger
than the donor binding energy, then it can no longer be
trapped. Thus it would seem that for low phonon ener-
gies, there is another channel open in the decay process
which is not available for higher phonon energies. To
fully calculate the branching ratios of the different decay
channels, including or not a donor trap level is beyond
the scope of the present paper but at least it seems to
provide a somewhat plausible explanation for the mis-
match between theory and experiment in intensities of
the indirect phonon mediated recombination below and
above ∼ 55 meV.

We note that at the low temperatures of the experi-
ment (2K), in equilibrium, most donors should be neutral
and not be able to capture an electron. However, the PL
experiment has created at least some non-equilibrium to
have excited electrons in the conduction band and holes
in the valence band. Thus, there must then also be some
non-equilibrium in the donor state state occupation and
hence some donors should be in the ionized state and be
able to capture and electron.

On the other hand, in terms of an exciton picture, we
could think of the process as binding a free exciton to a
neutral donor before it recombines. Although this bind-
ing energy is less than the donor binding energy (about
9 meV as mentioned earlier) this results from the more
complex interactions in the four-particle center consist-
ing of the donor, the electron it binds and a conduction
electron and valence band hole already bound into an
exciton state. It is somewhat less clear why the donor
binding energy provides the limiting energy for the two
type of processes in this picture but the essence remains
the same: there is a decay channel for indirect recombina-
tion involving only an emitted phonon and a photon and
another channel for an additional interaction of the ex-
citon with a donor, which is only available if the phonon
does not already carry away too much of the energy. The
branching ratio of these two distinct processes should de-
termine the relative intensities of the P compared to the
I lines for a given concentration of donors.

Our assumption would predict that below the 55 meV
cut-off the ratio of the P -lines to the I-lines should be
higher than above it. Because of the overlap of I and
P -lines this is rather difficult to ascertain. We pick the
well separated I76.3/P76.3 ratio which from the areas un-
der the curve we estimate to be about 7 while for the
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I46.3/P46.3 it is ∼ 2.5. Thus the P -lines are indeed
stronger relative to the I-lines below 55 meV.

Note that we cannot directly compare intensities with
the differential absorption spectra of Klahold et al. [6] be-
cause these correspond to dα/dλ the wave length deriva-
tive of the absorption coefficient.

IV. CONCLUSION

In this work, we simulated the PL sepctra due to the
recombination of a free exciton at low tempeature for the
indirect gap semiconductor 4H SiC from first-principles
calculations. The phonon frequencies and the polariza-
tion dependence of which phonons occur for which po-
larization, which is essentially explained by group the-
ory are in excellent agreement with available experiment
results.[5] The relative intensities which depend on the
actual matrix elements is also in fair agreement if we al-
low some closely lying phonon modes to be interchanged
so that their intensities match better to experiment. In
other words, we match which phonon matches a partic-
ular experimental replica peak not only on the basis of
the best match in phonon frequency value but also on
their relative intensities and their polarization. However,
the free exciton lines corresponding to phonons with fre-

quency below ∼ 55 meV appear to be suppressed in the
experiment by a factor 5–10. We explain that observa-
tion in terms of a competition with trapping the electron
or exciton first at the donor when the phonon energy is
less than the donor binding energy. The relative inten-
sities of the phonon replica were shown not to depend
strongly on the GW corrections to the bands.

Appendix A: Optical Matrix elements

The non-zero optical dipole matrix elements connect-
ing to the CBM at M are given in Table VI. It is in-
teresting to note that only a few states have significantly
larger matrix elements than the other ones.
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TABLE VI. Optical dipole matrix elements of z, x, y at the
M point (along x-axis) connecting to the M4 CBM. For each
matrix element the band number is indicated and on top the
symmetry-label of these bands is indicated.

band z band x band y

symmetry M4 M1 M3

2 -0.0356 1 -0.0283 12 -0.4753
3 -0.0257 4 0.0192 13 0.1814
5 0.0552 6 0.2121 28 0.1104
8 -0.2383 7 0.0530 29 -0.1682
10 -0.0546 9 -0.3071 39 -0.0116
14 0.4705 15 0.1793 40 0.0783
19 0.1041 18 0.0107
21 -0.0144 20 0.0935
25 -0.0802 22 0.0485
26 0.1762 24 -0.0977
30 -0.0854 27 -0.0294
33 -0.0243 31 -0.0072
37 0.0713 34 -0.1072

35 0.0644
36 0.0368


