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We present a first-principles approach for computing the phonon-limited T1 spin relaxation time
due to the Elliott-Yafet mechanism. Our scheme combines fully-relativistic spin-flip electron-phonon
interactions with an approach to compute the effective spin of band electrons in materials with
inversion symmetry. We apply our method to silicon and diamond, for which we compute the tem-
perature dependence of the spin relaxation times and analyze the contributions to spin relaxation
from different phonons and valley processes. The computed spin relaxation times in silicon are in
excellent agreement with experiment in the 50−300 K temperature range. In diamond, we predict
intrinsic spin relaxation times of 540 µs at 77 K and 2.3 µs at 300 K. We show that the spin-flip
and momentum relaxation mechanisms are governed by distinct microscopic processes. Our work
enables precise predictions of spin-phonon relaxation times in a wide range of materials, provid-
ing microscopic insight into spin relaxation and guiding the development of spin-based quantum
technologies.

I. INTRODUCTION

Spin relaxation in centrosymmetric crystals primarily
occurs through the Elliott-Yafet (EY) mechanism [1, 2],
in which spin decoherence can be mediated by electron-
phonon (e-ph) or electron-defect interactions. Phonons
typically dominate EY spin relaxation near room temper-
ature, and often limit the performance of spin-based de-
vices in spintronics [3–5] and quantum technologies [6–9].
Recent advances are pushing spin manipulation to new
frontiers [10–13], so understanding in detail how electron
spins interact with phonons is important for both tech-
nological and fundamental reasons.

Accurately predicting spin-phonon relaxation pro-
cesses remains an open problem, particularly due to the
challenge of quantifying spin-flip e-ph interactions [2].
Calculations of EY spin relaxation have mainly relied on
empirical models [14, 15] and symmetry analysis [16–19],
yet these approaches are laborious even for simple ma-
terials and not geared toward quantitative predictions.
Attempts have also been made to study spin relaxation
from first principles by assuming a direct proportional-
ity between spin-flip and momentum-scattering e-ph in-
teractions [20], or between spin-flip and momentum re-
laxation times [21]. However, these assumptions hold
only for simple model potentials [22–24] as the spin-flip
and momentum-scattering processes can differ greatly de-
pending on the electronic wave function, spin texture and
phonon perturbation [19, 25].

Recently developed first-principles methods for com-
puting e-ph interactions and relaxation times [26] are
promising for studying EY spin-phonon relaxation. Their
typical workflow [27] involves density functional theory
(DFT) calculations of the ground state and electronic
band structure, combined with density functional per-
turbation theory (DFPT) [28] to compute the phonon
dispersions and e-ph perturbation potentials, followed by
interpolation of the e-ph coupling matrix elements to fine
Brillouin zone (BZ) grids. However, this workflow cannot

be applied as is to investigate spin-flip e-ph interactions
because the spin information is lost when one computes
the e-ph matrix elements. For example, the electronic
states in centrosymmetric crystals are at least two-fold
degenerate, and their spin points in an arbitrary direction
due to the freedom in describing the degenerate subspace.
Computing spin-phonon interactions ab initio, especially
in the presence of spin-orbit coupling (SOC) and spinor
wave functions, remains an open challenge.

Here we present a first-principles method for com-
puting the spin-flip e-ph coupling matrix elements and
the T1 spin-phonon relaxation times (SRTs). Our ap-
proach assumes no relationship between the matrix ele-
ments for spin-flip and momentum scattering, and treats
spinor wave functions and SOC through fully-relativistic
DFT and DFPT calculations [29]. These advances en-
able accurate calculations of SRTs and shed light on mi-
croscopic details of spin-phonon interactions. We apply
our method to investigate SRTs in two key materials
for spintronic and quantum technologies, silicon and di-
amond. Our predicted SRTs in silicon are in excellent
agreement with experiment between 50−300 K, while in
diamond, where SRT measurements are missing, we pre-
dict intrinsic-limit SRTs of roughly 0.5 ms at 77 K and
2 µs at 300 K. In both materials, we find that spin-flip
and momentum-scattering e-ph interactions differ widely
and are not directly proportional, and the temperature
dependence of the spin-flip and momentum relaxation
times also differ greatly. Our work demonstrates a pre-
cise first-principles approach for computing SRTs, high-
lighting the limits of widely used simplified analyses and
opening new avenues for microscopic understanding of
spin dynamics.
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II. THEORETICAL FRAMEWORK

A. Spin-flip interactions

In centrosymmetric materials, the Bloch states with
band index n and crystal momentum k can be decom-
posed into effective up and down spin states, denoted as
⇑ and ⇓, which diagonalize the spin operator Ŝα (where
α is the Cartesian direction of the spin quantization axis)
in the Kramers degenerate subspace [1, 2, 30]:

〈nk⇑|Ŝα|nk⇑〉 = −〈nk⇓|Ŝα|nk⇓〉 ,
〈nk⇓|Ŝα|nk⇑〉 = 0.

(1)

The key ingredients for computing the SRTs are the
spin-flip e-ph matrix elements [2],

gflip
mnν(k, q) = 〈mk + q⇓|∆V̂νq|nk⇑〉 , (2)

which quantify the probability amplitude to scatter from
an initial Bloch state |nk⇑〉 to a final state |mk + q⇓〉
with opposite effective spin, by emitting or absorbing a
phonon with mode index ν and wave vector q due to the
Kohn-Sham potential perturbation ∆V̂νq [26], which is a
2× 2 matrix in spin space in the presence of SOC.

To compute the SRTs, we obtain the effective spin
states and from them the spin-flip e-ph matrix elements
gflip
mnν(k, q) on fine BZ grids. We calculate the effective

spin states from the spin matrix S(k), which provides a

matrix representation of the spin operator Ŝα in the wave
function basis [31], Sms′,ns(k) = 〈mks′|Ŝα|nks〉, where
s and s′ denote the spin. We diagonalize separately each
degenerate subspace in the spin matrix at each k-point,
obtaining the unitary matrices Dk that make each of the

subspaces in DkS(k)D†k diagonal, with eigenvalues equal
to the effective spin [32]. The spin-flip e-ph matrix ele-
ments, gflip

mnν(k, q), are then computed using Eq. (2) for
all pairs of states with opposite effective spin.

B. Interpolation

Since DFPT calculations of ∆V̂νq on the fine BZ grids
needed to converge the SRTs are prohibitively expen-
sive, we interpolate the spin-flip e-ph matrix elements
and spin matrices using Wannier functions [33–35]. To
obtain gflip

mnν(k′, q′) at a desired pair of k′ and q′ points
in the BZ, we first apply the usual Wannier interpola-
tion workflow [27, 36] to obtain the e-ph matrix elements

gss
′

mnν(k′, q′) between states with arbitrary spins s and

s′. The e-ph matrix elements gσσ
′

mnν(k′, q′) coupling states
with effective spins σ and σ′ are then computed using the
unitary matrix Dk′ (the latter is obtained from Wannier
interpolation of the spin matrix [31]):

gσσ
′

mnν(k′, q′) =
[
Dk′+q′

]
mσ,ms

[
gss

′

mnν(k′, q′)
] [
D†k′

]
ns′,nσ′

.

(3)

The spin-flip e-ph matrix elements are finally computed
between all pairs of electronic states with opposite sign
of the effective spin. Our interpolation scheme can accu-
rately reproduce spin-flip e-ph matrix elements obtained
by combining effective spin states with perturbation po-
tentials computed directly with DFPT (see the Supple-
mental Material [37]), thus enabling precise calculations
of SRTs.

C. Spin relaxation times

The band- and k-dependent spin-flip e-ph relaxation

times, τflip
nk , are computed using lowest-order perturba-

tion theory [2],

1

τflip
nk

=
4π

~
∑
mνq

∣∣gflip
mnν(k, q)

∣∣2
[(Nνq + 1− fmk+q)δ(εnk − εmk+q − ~ωνq)

+ (Nνq + fmk+q)δ(εnk − εmk+q + ~ωνq)],

(4)

where εnk and ~ωνq are the electron and phonon ener-
gies, respectively, and fnk and Nνq the corresponding
temperature-dependent occupations.

Converging the band- and k-dependent spin-flip e-ph

relaxation times, τflip
nk , is of paramount importance for

precise predictions of T1 spin-phonon relaxation times.

Computing τflip
nk involves a sum over the q-point grid,

which is typically performed by random sampling of
the BZ [59]. However, the spin-flip matrix elements
gflip
mnν(k, q) entering the summation vary by several or-

ders of magnitude throughout the BZ, so converging τflip
nk

is challenging.
Here we develop and employ an importance sampling

approach for efficiently converging the BZ q-point sum-
mation in Eq. (4). We first sample on a regular q-point
BZ grid the quantity

Pnk(q) =
∑
mν

∣∣gflip
mnν(k, q)

∣∣2
[(Nνq + 1− fmk+q)δ(εnk − εmk+q − ~ωνq)

+ (Nνq + fmk+q)δ(εnk − εmk+q + ~ωνq)].

(5)

From Pnk(q), we construct a three-dimensional proba-

bility density function, P̃nk(q), by nearest neighbor in-
terpolation, and then perform an importance sampling

integration for τflip
nk by drawing samples from the proba-

bility density function P̃nk(q). The convergence rate of
the importance sampling approach is orders of magnitude
faster than random sampling (see the Supplemental Ma-
terial [37]). The considerable time-saving afforded by our
importance sampling method allows us to fully converge
the SRTs.

The temperature-dependent SRT, τs(T ), is the main
physical observable computed in this work. It is obtained
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FIG. 1. Computed spin-phonon relaxation times as a function of temperature in (a) silicon and (b) diamond. The experimental
data in (a) are taken from Refs. [39–41]. The lower panels show the process-resolved spin-flip e-ph scattering rates, defined
as the inverse of τs. Shown are the contributions from intravalley processes (blue line), f processes (red line) and g processes
(green line), which add up to the total (gray line). The inset in (a) is a schematic of the intravalley and intervalley processes.

as an ensemble average of the spin-flip relaxation times [2]
by tetrahedron integration [38]:

τs(T ) =

〈
1

τflip
nk

〉−1

T

=


∑
nk

1

τflip
nk

(
−dfnk
dE

)
dk

∑
nk

(
−dfnk
dE

)
dk


−1

.

(6)

D. Numerical methods

We apply our approach to investigate spin relaxation
in silicon and diamond. We obtain their ground state and
band structure using DFT with a plane-wave basis with
the Quantum ESPRESSO code [42]. Briefly, we use re-
laxed lattice constants of 5.43 Å for silicon and 3.56 Å for
diamond, together with a kinetic energy cutoff of 60 Ry
for silicon and 120 Ry for diamond. We employ the
PBEsol exchange-correlation functional [43] and fully-
relativistic norm-conserving pseudopotentials [29] from
Pseudo Dojo [44], which correctly include the SOC. We
use DFPT [28] to compute the phonon dispersions and

the perturbation potential, ∆V̂νq in Eq. (2), on coarse q-
point grids; our in-house developed perturbo code [45]
is employed to compute the spin-dependent e-ph matrix
elements on coarse BZ grids [46]. The DFPT calculations
are done only in the irreducible q-point grid, following

which we extend the coarse-grid e-ph matrix elements to
the full q-point grid in perturbo by rotating the spinor
wave functions with SU(2) matrices. The Wannier func-
tions and spin matrices are computed with the Wan-
nier90 code [31] and employed in perturbo to interpo-
late the spin-flip e-ph matrix elements on fine BZ grids
with up to 2003 k-points to converge the SRTs. The spin
quantization axis is chosen as the [001] direction [47].
We employ a non-degenerate electron concentration of
7.4 × 1014 cm−3 for silicon, which is identical to the ex-
perimental value in Ref. [40], and 1.0× 1017 cm−3 for di-
amond; in each case, the Fermi energy is computed from
the carrier concentration. The carrier concentration de-
pendence of the SRTs is negligible in this non-degenerate
regime.

III. RESULTS

A. Temperature-dependent spin relaxation times

Figure 1(a) shows our calculated SRT as a function of
temperature in silicon, which is in excellent agreement
with experiments [39–41] (see also Ref. [48]) at all tem-
peratures between 50−300 K. For example, our calcu-
lated SRT at room-temperature is 4.9 ns, versus a 6.0
ns value measured by Lancaster et al. [49]. The SRT in
silicon exhibits an approximate T−3 temperature depen-
dence; to explain its origin, we analyze in Fig. 1(a) the
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contributions from the three valley-dependent scattering
processes, including the intravalley and so-called g and
f intervalley processes, which correspond to scattering
between valleys along the same direction (g processes)
or along different directions (f processes). We find that
the SRTs are comparable in magnitude for the three pro-
cesses at all temperatures. The intravalley processes gov-
ern spin relaxation below 60 K, while f intervalley scat-
tering dominates at higher temperatures.

In the conventional theory of spin relaxation, the
power-law temperature behavior of the SRT is typi-
cally attributed to a specific physical origin. For ex-
ample, Yafet’s prediction of a T−2.5 temperature trend
for the SRTs in silicon [2] took into account only acous-
tic phonons and intravalley processes. In our quantita-
tive approach, all phonon modes and valley processes are
taken into account on the same footing and enter the scat-
tering rate in Eq. (4). Each phonon mode has its own
energy dispersion and population factor, and the spin-
flip coupling strength depends on the electronic states
and phonon modes considered in the scattering process.
As a result, the temperature trend emerges not from a
unique origin, but due to a combination of factors due to
all electronic-state and phonon-mode dependent quanti-
ties in Eq. (4). Therefore one cannot attribute a single
physical origin to the approximate T−3 power law depen-
dence of the SRTs.

Due to its weak SOC and correspondingly long SRT,
diamond is a promising material for spintronics and spin-
based quantum technologies. However, SRT measure-
ments have not yet been reported in diamond due to chal-
lenges related to spin injection [50]. Figure 1(b) shows
our computed SRT in diamond as a function of temper-
ature. We find SRTs of 540 µs at 77 K and 2.3 µs at
300 K; these values set an intrinsic limit due to phonons
to the SRTs in diamond. The SRT exhibits a T−2 tem-
perature dependence below ∼170 K and a stronger T−5.5

trend above 170 K. This trend is in contrast with a pre-
vious prediction [20] of a T−5 temperature dependence
throughout the entire temperature range and of an order-
of-magnitude smaller SRT of 180 ns at room tempera-
ture. Ref. [20] assumed a direct proportionality between
the spin-flip and momentum-scattering e-ph matrix el-
ements, but, as we show below, this assumption is in
general incorrect and can lead to inaccurate phonon con-
tributions to the SRT. We analyze the valley scattering
processes in diamond in Fig. 1(b), and find that the in-
travalley processes dominate below 170 K, while the in-
tervalley f processes dominate above 170 K.

B. Spin-flip versus momentum scattering

Our quantitative approach reveals stark differences be-
tween the spin-flip and the momentum-scattering inter-
actions. Figure 2 compares the spin-flip coupling ma-
trix elements,

∣∣gflip
ν (q)

∣∣, with the spin-flip plus spin-
conserving (i.e., momentum-scattering) e-ph matrix el-
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FIG. 2. Phonon dispersions in silicon and diamond, overlaid
with a color map of the ratio

∣∣gflip
ν (q)/gtot

ν (q)
∣∣ between the

spin-flip and the momentum-scattering e-ph matrix elements.
The two matrix elements differ by orders of magnitude for
the branches shown in red. The data shown are the square
root of the gauge-invariant trace of |g|2 for a low-energy spin-
degenerate conduction band [37]. The initial electron momen-
tum is set to the Γ point and we plot the ratio for phonon
wave vectors q along a high-symmetry BZ line.

ements, |gtot
ν (q)|, and resolves their ratio for different

phonon modes. Depending on the phonon branch, we
find that the spin-flip and momentum matrix elements
can differ by several orders of magnitude, as we find for
the longitudinal acoustic (LA) and longitudinal optical
(LO) branches along Γ−X and for the LO and for spe-
cific transverse optical (TO-1) and transverse acoustic
(TA-2) branches along X−K−Γ. For other phonon modes
and BZ directions, the two quantities exhibit smaller −
yet quantitatively important − differences. Only in spe-
cific cases the spin-flip and momentum-scattering inter-
actions are nearly identical, as we find for the TO-2, TA-
1 and LA branches along X−K−Γ. These trends are
common to silicon and diamond. Analogous results are
found when analyzing various initial and final electronic
states [37].

Lastly, we compare the spin-phonon and momentum
relaxation times. The momentum relaxation time τp is
defined as the usual (spin-independent) e-ph relaxation
time [26], thermally averaged using Eq. (6) to make the
comparison meaningful. The conventional wisdom is that
spin and momentum relaxation times are directly pro-
portional [1, 22], an assumption that has been widely
used to analyze spin relaxation mechanisms in experi-
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FIG. 3. Comparison between the temperature dependence of
the SRT (gray squares) and the momentum relaxation time
(red circles) in silicon and diamond. The labels give the expo-
nent n of the SRT temperature dependence, T−n, separately
for each of the spin and momentum relaxation times. Note
that the SRTs are in ns units, and the momentum relaxation
times in fs units.

mental data [51–56]. Figure 3 shows the temperature de-
pendent spin and momentum relaxation times in silicon
and diamond. In silicon, the SRT follows a T−3 tem-
perature dependence, whereas the momentum relaxation
time follows a T−2 trend. In diamond, the SRT makes
a sharp transition from a T−2 trend at low temperature
to a stronger T−5.5 trend above 170 K. In contrast, the
momentum relaxation time exhibits a much weaker tem-
perature dependence, roughly T−1.5 at low temperature
and T−2.5 near room temperature.

There is no discernible direct proportionality between
the spin and momentum relaxation times − rather, they
both exhibit an approximate T−n temperature depen-
dence, but with different values of the exponent n (see
Fig. 3). These differences originate from the different
coupling strengths and phonon mode contributions, as
we illustrate in Fig. 2. For example, we find that for mo-
mentum scattering in diamond the intravalley processes
dominate over the entire temperature range up to 400 K,
as opposed to just below 170 K as we show above for spin
relaxation (see the Supplemental Material [37]).

Simple formulas such as the Elliott approximation [1],
τs = τp/4

〈
b2
〉
T

, where b2 is the spin-mixing parame-

ter [24, 57], also fail in both materials [37], as we show in
Fig. 4. For silicon, the average spin-mixing parameter b2

changes only by a small factor of 2 throughout the entire
temperature range, whereas for diamond the change is
less than 10 %. As a result, the temperature dependence
of the SRTs from the Elliott approximation is weaker
than the temperature dependence of the SRTs from first
principles, and the SRTs computed with the Elliott ap-
proximation exhibit a trend similar to the momentum-
relaxation times. We conclude that a reliable analysis of
SRTs needs atomistic calculations that take into account
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FIG. 4. Comparison between the temperature dependence of
the SRT from first principles (gray squares) and the Elliott
approximation (blue circles) in silicon and diamond.

the different nature of the spin-phonon and momentum-
scattering e-ph interactions, by using accurate spin-flip
e-ph matrix elements as we show in this work.

IV. DISCUSSION

Since SRT calculations involve a subtle interplay be-
tween spin-flip e-ph matrix elements and phonons and
electronic states, the relative magnitude of the spin-
phonon interactions for different phonon modes is of
paramount importance for accurate predictions. Our re-
sults show that the widely used proportionality between
spin and momentum relaxation times can be inaccurate,
highlighting the need for atomistic details such as the
electronic wave function, spin texture, phonon modes
and their mode-dependent spin-flip interactions. When
these microscopic details are captured, as we have shown
above, one can predict the SRTs within ∼10−20% of
experiment over a wide temperature range, and predict
which phonon modes govern spin relaxation. While com-
puting e-ph interactions and carrier relaxation has be-
come a main effort in first-principles calculations [58–62],
SRT calculations are still in their infancy, and more work
is needed to expand their scope beyond the EY mecha-
nism discussed here.

V. CONCLUSION

In summary, we have developed a quantitatively accu-
rate approach for computing spin-flip e-ph interactions
and SRTs due to the EY mechanism. The workflow pro-
posed in this work is general − it can be adapted to differ-
ent perturbation potentials, including perturbations from
defects [63, 64], through which one could study spin-flip
and other defect-induced spin scattering processes. Our
approach can be applied broadly to study spin relaxation
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in materials for spintronics and magnetism, and in topo-
logical materials. It can also be extended to treat spin
states localized at ions or defect, using calculations with
large supercells that at present are still technically chal-
lenging
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