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Abstract

We derive a Kubo-like formula for the thermal Hall conductance of a 2d lattice systems which is

free from ambiguities associated with the definition of energy magnetization. We use it to define a

relative topological invariant of gapped 2d lattice systems at zero temperature. Up to a numerical

factor, it can be identified with the difference of chiral central charges for the corresponding edge

modes. This establishes the bulk-boundary correspondence for the chiral central charge. We also

show that for any Local Commuting Projector Hamiltonian the relative chiral central charge van-

ishes, while for free fermionic systems it is related to the zero-temperature electric Hall conductance

via the Wiedemann-Franz law.
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I. INTRODUCTION

There has been much theoretical as well as experimental interest in the thermal Hall

effect. Just to give a couple of recent examples: (1) thermal Hall effect has been used to

probe the non-Abelian nature of the ν = 5/2 FQHE state [1]; (2) an unusual behavior of

thermal Hall conductivity at low temperatures was observed in cuprate superconductors in

the pseudogap region [2].

Despite many theoretical works on the thermal Hall effect (see e.g. [3–7]), there are

still unresolved issues with the very definition of thermal Hall conductivity. In fact, all

known approaches to defining thermal Hall conductivity as a bulk property are plagued with

ambiguities. To see what the issue is in the simplest possible setting, consider a macroscopic

system where the only conserved quantity carried by the low-energy excitations is energy

(for example, an insulator at temperatures well below the band gap). One could expect that

thermal Hall conductivity appears as a transport coefficient in the hydrodynamic description,

but this is not the case: there is no physical time-reversal-odd transport coefficient at leading

order in the derivative expansion. The conservation law for the energy density ε is

∂ε

∂t
= −∇ · jE. (1)

In the hydrodynamic limit one can expand the energy current jE to first order in derivatives

of ε, or equivalently in derivatives of the temperature T :

jEm = −κm`(T )∂`T. (2)

Hence the conservation law becomes

c(T )
∂T

∂t
= κm`∂m∂`T + κ′m`∂mT ∂`T, (3)

where c(T ) is the heat capacity and the prime denotes derivative with respect to T . The

r.h.s. of this equation depends only on the symmetric part κSm` of the tensor κml, which by

Onsager reciprocity is the same as its time-reversal-even part. The anti-symmetric part κAml

has no observable effect in the bulk. While the energy current through a surface (or, in the

2d context, through a line) depends on the whole tensor κm`, the contribution of κAm` can be

thought of as a boundary effect. Indeed, if we define

βAm`(T ) =

∫ T

κAm`(u)du, (4)
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then in 3d the Stokes’ theorem gives

−
∫

Σ

dΣmκ
A
m`∂`T = −1

2

∫

∂Σ

dlkεkpmβ
A
pm(T ). (5)

Similarly, in 2d the contribution of κAm` to the energy current through a line can be written

as a boundary term. The conclusion seems to be that thermal Hall conductivity has no

meaning as a bulk transport property, either in 3d or 2d. One manifestation of this is

that Kubo-type formulas for thermal Hall conductivity are ambiguous: they involve “energy

magnetization”, which is defined only up to an arbitrary function of temperature and other

parameters [3, 4, 7]. This leaves us with the question of how to describe theoretically the

thermal Hall conductivity measured in experiments.

In the 2d case the tensor κAm` reduces to a single quantity 1, the thermal Hall conductivity

κA = 1
2
εm`κ

A
m`, and there is an alternative line of reasoning which suggests that in certain

circumstances κA can be defined in bulk terms. Consider a material with a bulk energy

gap. There might still be gapless excitations at the edges, and we will assume that they are

described by a 1+1d Conformal Field Theory. Then it seems natural to relate κA(T ) to the

chiral central charge of the edge CFT:

κA(T ) ' πT

6
(cR − cL). (6)

To see why this is natural, recall that a chiral 1+1d CFT at temperature T carries an

equilibrium energy current IE = πT 2

12
(cR − cL) [11, 12]. Thus in a strip of a 2d material

whose boundaries are kept at temperatures T and T + ∆T , where T is much smaller than

the bulk energy gap and ∆T � T , there is a net energy current

IE ' πT

6
(cR − cL)∆T. (7)

If we define κA = IE/∆T , we get (6).

On the other hand, it has been shown in [13] that the chiral central charge of the edge

modes (and more generally, the equilibrium energy current carried by the edge modes) is

independent of the particular edge. Hence the low-temperature thermal Hall conductivity

of a gapped 2d material defined via (6) is a well-defined bulk property.2

1 We use the notation κA instead of the more standard κxy to avoid confusion with the off-diagonal com-

ponent of κS which may be nonzero if rotational invariance is broken.
2 For gapped 2d systems at low temperatures, one can also try to define thermal Hall conductivity as the
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The results of [13] also imply that the chiral central charge of the edge modes does

not vary as one changes the parameters of the Hamiltonian. Therefore the low-T thermal

Hall conductivity is a topological invariant of the gapped 2d material. Finally, the above

arguments make no assumption about the way the temperature varies within the strip. Thus

the low-temperature thermal Hall conductance of a strip of a gapped 2d material coincides

with its thermal Hall conductivity and is a well-defined bulk property as well. One does not

expect this to hold at arbitrary temperatures, or for gapless materials at low T .

This leads us to ask the following questions.

Q1. Is the thermal Hall conductivity measured in experiments (at general temperatures)

a well-defined bulk quantity? If yes, then how is this compatible with the above arguments

that thermal Hall conductivity is not a well-defined bulk transport coefficient?

Q2. Is there a microscopic Kubo-type formula for the thermal Hall conductance and

conductivity measured in experiments (at general temperatures) which makes no reference

to the choice of the edge?

Q3. Is it true that the low-temperature thermal Hall conductance of a gapped 2d material

is independent of the detailed shape of the temperature profile and thus coincides with the

thermal Hall conductivity even if the edge is not described by Conformal Field Theory?

Q4. Is it true that the low-temperature thermal Hall conductance of a gapped 2d material

is linear in T at low T even if the edge is not described by Conformal Field Theory?

Q5. Is it true that the low-temperature thermal Hall conductance of a gapped 2d ma-

terial is a topological invariant of the phase, in the sense that it does not change when

the parameters of the Hamiltonian vary without crossing a bulk zero-temperature phase

transition?

The goal of this paper is to provide answers to the above questions in the case of lattice

2d systems. We show (with varying degree of rigor) that the answers to all these questions

is ”yes”. We also apply our results to two special kinds of 2d systems: Local Commuting

Projector Hamiltonians and class A gapped free fermionic systems. A Local Commuting

Projector Hamiltonian has the form H =
∑

pHp, where the sum is over points of a lat-

coefficient of the gravitational Chern-Simons term in the low-energy effective action [8–10]. As explained

in [5], the energy current corresponding to the gravitational Chern-Simons term is of higher order in

derivatives, in agreement with the above discussion. However, there is no natural way to couple a typical

condensed matter system to gravity, therefore this prescription is ambiguous.
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tice, Hp is a local operator supported near the point p, and all Hp are projectors which

commute between each other. Such model Hamiltonians are exactly soluble and thus very

popular in the literature on topological phases. Levin-Wen models [15] are examples of

Local Commuting Projector Hamiltonians. We show that for systems described by Local

Commuting Projector Hamiltonians thermal Hall conductance vanishes identically for all

temperatures. We also show that for 2d gapped free fermionic systems of class A (that

is, for non-interacting possibly disordered 2d insulators) thermal Hall conductance at low

temperatures and electric Hall conductance are related via the Wiedemann-Franz law.

II. SUMMARY OF RESULTS

Our main observation is that while it is problematic to give a definition of thermal Hall

conductance which is not ”contaminated” with edge effects, there is no such difficulty for

derivatives of the thermal Hall conductance with respect to parameters of the Hamiltonian.

We derive microscopic Kubo-type formulas for all such derivatives in a straightforward man-

ner. A limitation of such formulas is that they hold only away from phase transitions. This

is a common limitation of the usual linear response theory which assumes that correlations

are short-range in order to be able to make a derivative expansion.

Kubo-like formulas for the derivatives of the thermal Hall conductance can be used to

compute the difference of thermal Hall conductances κAMM′ = κAM−κAM′ of two 2d materials

M andM′. One chooses a path in the parameter space connecting the two Hamiltonians and

avoiding bulk phase transitions and integrates the derivative along this path. Specializing

to a linear temperature profile, we also get a formula for the difference of thermal Hall

conductivities.

Our Kubo-like formula satisfies an important consistency check: the integral defining

the ”relative thermal Hall conductance” κAMM′ is independent of the choice of the path.

We give both an intuitive argument based on the absence of macroscopic energy currents in

equilibrium (which has been proved recently [13]) and a more formal mathematical argument

for lattice systems. This allows us to standardize the choice of paths used to compute

κAMM′ . For example, for lattice systems with a finite-dimensional on-site space of states

(such as fermion systems and spin systems) one can use paths which pass through the

infinite-temperature phase. Since the infinite-temperature phase is the same for all lattice
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Hamiltonians, this makes it more plausible that a suitable path can be found for all pairs of

materials M,M′.

One can interpret the integral formula for the relative thermal Hall conductance in more

physical terms if one considers a smooth edge between the materialsM andM′ which inter-

polates between the two Hamiltonians in the physical space. If one applies linear response

theory to this system and assumes that the temperature gradient is negligible in the edge

region, one gets precisely our integral formula. Path-independence of the integral formula is

then equivalent to the independence of the choice of the edge betweenM andM′. The latter

property can be traced again to the absence of macroscopic energy currents in equilibrium.

This physical interpretation clarifies why it is not possible to write a well-defined mi-

croscopic formula for κAM even though it is possible to write down such a formula for the

electric Hall conductance σAM of a single material M. In the electric case, torus geometry

provides a theoretical set-up where σAM can be measured without introducing edges. In

this geometry, electric field is created using a time-dependent vector potential rather than a

scalar potential. There is no thermal analogue of the torus set-up, and this is why only the

relative thermal Hall conductance κAMM′ of two materials has a physical significance.

In most experiments, one of the materials is the vacuum and the difference between the

thermal Hall conductances of the material and the vacuum is measured. If one normalizes

the thermal Hall conductance of the vacuum to be zero, then the thermal Hall conductance

of a material M relative to the vacuum can be declared to be the “absolute” thermal

Hall conductance of M. Nevertheless, it is important to keep in mind that this is just a

normalization condition, not something forced on us by physics.3 One consequence of this

is that there is no microscopic formula for the thermal Hall conductance which is local in

the parameter space (that is, depends only on correlators for a particular Hamiltonian).

The results described above answer questions Q1 and Q2. Specifically, although thermal

Hall conductivity is not a well-defined bulk transport coefficient and can be measured only

in the presence of an edge or another inhomogeneity, thermal Hall energy flux can be shown

to be independent of the properties of the edge, provided the variation of the temperature

3 This was first noticed by H. Casimir in his landmark paper on Onsager reciprocity [14]. Casimir showed

that invariance under time-reversal, strictly speaking, does not require the anti-symmetric part of the

thermal conductivity tensor to vanish. Vanishing is only obtained if one normalizes the thermal Hall

conductivity of the vacuum to be zero.
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on the length scale determined by the edge is negligible.

To answer Q3, Q4 and Q5 we study the low-temperature behavior of our formula for

κAMM′ . Using the same method as in the work of Niu and Thouless on the electric Hall

conductance [20], we show that the low-T behavior of κAMM′ is independent of the precise

temperature profile, up to terms exponentially suppressed in the temperature. This answers

Q3. We also argue that that derivatives of the thermal Hall conductance of a gapped 2d

system with respect to parameters of the Hamiltonian are exponentially small for low T

if there is a bulk energy gap. This answers Q5. Then we explain how to include the

temperature T among the parameters and argue that the T -derivative of the dimensionless

quantity κAMM′/T is also exponentially small at low T if there is an energy gap. This implies

that κAMM′ is linear in T up to exponentially small corrections. This answers Q4. Together

with Q5, this shows that the coefficient of the T -linear term in κAMM′ is a topological invariant

of the phase.

In this paper we focus on lattice 2d systems. This allows to give a completely general

formula for derivatives of the thermal Hall conductance with respect to arbitrary parame-

ters of the Hamiltonian. However, working with lattice systems leads to certain technical

complications. In particular, when working with currents on a lattice it is very convenient

to make use of some mathematical machinery which is not familiar to most physicists, such

as the Vietoris-Rips complex. Without this machinery, computations become very obscure.

To make the paper more accessible, we relegate most mathematical details to appendices.

Since the definition of thermal Hall conductance is rather subtle, we begin with a discus-

sion of the electric Hall conductance. Some of the subtleties arise already in this context.

Then we move on to the thermal case and derive a Kubo-like formula for derivatives of the

thermal Hall conductance with respect to parameters. We argue that the integral defining

the difference of thermal Hall conductances of two materials is independent of the path

used to compute it. Then we discuss the low-temperature behavior of the thermal Hall

conductance and show that for gapped systems it is linear in T up to exponentially small

corrections and that its slope is a topological invariant of the phase. We show that that for

systems described by Local Commuting Projector Hamiltonians thermal Hall conductance

vanishes identically. Therefore they cannot have edge modes described by a CFT with a

nonzero chiral central charge. This is an energy counterpart of the recently proved result

that in such systems the zero-temperature electric Hall conductance vanishes [16]. In one of
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the appendices, we show by a direct computation that for gapped free fermionic systems of

class A the relative thermal Hall conductance of the T = 0 and T = ∞ states is related to

the zero-temperature electric Hall conductance through a version of the Wiedemann-Franz

law. The derivation does not assume translational invariance. Other appendices set up the

mathematical machinery mentioned above and supply some details of the derivation.

We thank Yu-An Chen for participation in the early stages of this work and M. Hastings,

H. Watanabe, A. Kitaev, and H. Edelsbrunner for discussions. This research was supported

in part by the U.S. Department of Energy, Office of Science, Office of High Energy Physics,

under Award Number DE-SC0011632. A.K. was also supported by the Simons Investigator

Award.

III. ELECTRIC HALL CONDUCTANCE

A. Electric currents on a lattice

A lattice system in d-dimensions has a Hilbert space V = ⊗p∈ΛVp, where Λ (“the lattice”)

is a uniformly discrete subset of Rd (that is, there is a minimal distance D > 0 between

all points), and all Vp are finite-dimensional. An observable is localized at a point p ∈ Λ

if it has the form A ⊗ 1Λ\p for some A : Vp → Vp. An observable is localized on a subset

Λ′ ⊂ Λ if it commutes with all observables localized at any p /∈ Λ′. A local observable A is

an observable localized on a finite set Λ′ ⊂ Λ, which will be called the support of A.

Hamiltonian of a lattice system has the form

H =
∑

p∈Λ

Hp, (8)

where the operators Hp : V → V are Hermitian and local. We will assume that the

Hamiltonian has a finite range R, which means that each Hp is a local observable supported

in a ball of radius R centered at p. This implies that [Hp, Hq] = 0 whenever |p − q| > 2R.

We will also assume that the operators Hp are uniformly bounded, i.e. there exists C > 0

such that ||Hp|| < C for all p ∈ Λ.

To define electric currents, we assume that the system has an on-site U(1) symmetry.

Thus we are given a U(1) action on each Vp, with the generator Qp (a Hermitian operator

on Vp with integral eigenvalues). The total U(1) charge is Qtot =
∑

p∈Λ Qp. Further, we
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assume that [Qtot, Hp] = 0 for any p ∈ Λ. Since the time derivative of Qq is

dQq

dt
= i
∑

p∈Λ

[Hp, Qq], (9)

it appears natural to define the U(1) current from q to p by Jpq = −i[Hp, Qq]. However, this

does not satisfy a physically desirable property Jqp = −Jpq. Instead we define

Jpq = i[Hq, Qp]− i[Hp, Qq]. (10)

The lattice current thus defined satisfies Jqp = −Jpq as well as

dQq

dt
= −

∑

p∈Λ

Jpq. (11)

Each of the operators Jpq is local in the above sense (it commutes with operators whose

supports are sufficiently far from both p and q). But the collection of all Jpq is also local

in a different sense: Jpq vanishes when |p− q| is sufficiently large (specifically, greater than

R). Objects depending on two or more points of Λ which vanish when the any of the two

points are sufficiently far will be called finite-range. So one can also say that the current Jpq

is finite-range. The property of being finite-range makes sense not just for operators, but

also for c-number quantities depending on several points of Λ.

While the above definition of the electric current seems natural, it is not completely

unique. Let Upqr be any function of three points which takes values in local operators, is

skew-symmetric in all three variables, and is finite-range. If we define

J ′pq = Jpq +
∑

r

Upqr, (12)

then it is easy to see that J ′pq satisfies the same requirements as Jpq and therefore is also a

physically acceptable current. This is a lattice counterpart of the continuum statement that

only ∇ · j has a physical significance, and thus one can replace j 7→ j +∇ × u, where u is

arbitrary, without affecting any physical predictions. In the lattice case, it is not obvious

that the only ambiguity in the definition of the current is (12). This is shown in Appendix

B under some natural assumptions on Λ.

Suppose Λ is decomposed into a disjoint union of two sets, Λ = A ∪ B, A ∩ B = ∅. The

current from B to A is defined as

J(A,B) =
∑

p∈A

∑

q∈B

Jpq. (13)
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It is not difficult to check that J(A,B) does not change if one replaces Jpq with J ′pq defined

in (12). This is because J(A,B) is physical: it is equal to minus the rate of change of the

electric charge in region B. This is expressed by the equation

dQ(B)

dt
= −J(A,B) (14)

Here Q(B) =
∑

p∈B Qp.

More generally, given a skew-symmetric function η(p, q) : Λ× Λ→ R, one can define

J(η) =
1

2

∑

p,q

η(p, q)Jpq. (15)

In general, this expression is not physical: it changes under the redefinition (12). However,

if η(p, q) satisfies

η(p, q) + η(q, r) + η(r, p) = 0, ∀p, q, r ∈ Λ, (16)

then one can check that J(η) is invariant under substitutions (12) and thus is physical. Such

checks become much easier if one uses the mathematical machinery explained in Appendix

B. In the case η(p, q) = χB(q)−χB(p), where χB(p) = 1 for p ∈ B and χB(p) = 0 otherwise,

J(η) reduces to J(A,B).

B. Kubo formula for the electric Hall conductance

Usually, Kubo formula is written down for conductivity rather than conductance. That

is, it is assumed that the electric field is uniform across all relevant scales. For our purposes,

it will be important to have a formula for the electric Hall current which does not assume

that the electric field is uniform.

Consider a time-dependent perturbation of the Hamiltonian of the form

∆H(t) = εest
∑

p∈Λ

g(p)Qp, (17)

where the real parameter ε is small and g : Λ → R is arbitrary for now. This perturbation

corresponds to adiabatically switching on an electric potential εg. Assuming that at t = −∞
the system is in an equilibrium state at temperature T , at t = 0 the system will be in a

non-equilibrium steady state. The change in the expectation value of an observable A at

t = 0 relative to the expectation value at t = −∞ is given by the general Kubo formula

∆〈A〉 = ε lim
s→0+

β

∫ ∞

0

e−st

〈〈
A(t);

∑

p

1

i
[H, g(p)Qp]

〉〉
dt. (18)
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Here Heisenberg-picture operators are defined as usual, A(t) = eiHtAe−iHt, and double

brackets 〈〈. . . 〉〉 denote Kubo’s canonical pairing, see Appendix B. We also assumed that A

doesn’t have an explicit dependence on ε.

For an infinite system, the existence of the limit s→ 0+ in eq. (18) is far from obvious.

When both the perturbation ∆H and the observable A are supported on a compact set

K ⊂ Λ, the existence of the limit has been proved in [19]. When g is nonzero only on a

compact set K ⊂ Λ, but A is supported on a non-compact set, we still expect the limit to

exist, at least away from phase transitions. Indeed, if the correlation length is finite, the

state of the system far from K is unaffected by the perturbation, and we can effectively

truncate the support A to be compact, thereby reducing to the case when both g and A are

compactly supported. More generally, when the intersection of the supports of g and A is

compact, the same argument suggests that ∆〈A〉 is well-defined.

(a)

y

g(y)

(b)

y

g(y)

I II

λ1

λ2

FIG. 1

From now on we specialize to the 2d case, unless explicitly stated otherwise. To compute

the quantum Hall conductance of an infinite 2d system, we would like A to be the electric

current across a vertical line x = a, and g to be a function which depends only on y, vanishes

at y = +∞ and approaches 1 at y = −∞, see Fig. 1a. Such a function g corresponds to

the net electric potential change −ε from y = −∞ to y = +∞. However, such A and

g do not satisfy the condition on supports explained above. Another way to explain a

potential problem is to note that while the electric field corresponding to such a function

g is vanishingly small for y � 0 and all t, the state of the system at t = 0 and y � 0 is

different from that at t = −∞ and y � 0 because the electrochemical potential changes by

−ε. Since the expectation value of the current density is nonzero even in equilibrium and

may depend on the electrochemical potential, the change in the current density between
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t = 0 and t = −∞ need not vanish at large negative y, and then the change in the net

current across the line x = a will be ill-defined.

One way to avoid this difficulty is to make the y direction periodic and to perturb the

system by a constant vector potential rather than a scalar potential. However, this approach

does not have an analog in the case of thermal transport, which is our primary interest.

Alternatively, one can take g to vanish both for y � 0 and y � 0. For example, one can

take g to look as in Fig. 1b. Then the electric field is smooth in the regions I and II and

has opposite magnitudes there. Elsewhere it is zero. If the system is homogeneous, the net

electric Hall current in the x direction will be zero. However, if the system is inhomogeneous,

then the electric Hall conductance of the two regions may be different, and the net electric

Hall current will be given by

∆〈A〉 = −ε
∫ +∞

−∞
σxy ∂yg dy = ε

∫ +∞

−∞
g ∂yσxydx = ε

∫ λ2

λ1

∂σxy
∂λ

dλ. (19)

Here we assumed that the system is homogeneous in regions I and II, while in the inter-

mediate region some parameter of the Hamiltonian λ varies from λ1 to λ2 as y is increased.

This approach allows one to compute the derivatives of the Hall conductance with respect

to parameters. Integrating these derivatives along a path in the space of parameters, one

can compute the relative electric Hall conductance of two systems, provided the path avoids

phase transitions. This is good enough, since in practice one usually measures the relative

electric Hall conductance of a particular material and vacuum.

As discussed in the previous section, the net current through a vertical line x = a is

defined as

Ja =
1

2

∑

p,q

Jpq(f(q)− f(p)), (20)

where f(p) = θ(a−x(p)) is a step-function. More generally, one can consider the expression

(15) where one sets η(p, q) = f(q)− f(p) for some function f : Λ→ R which is equal to 1 if

x(p)� 0 and equal to 0 if x(p)� 0. That is, f is a smeared step-function in the x-direction.

In what follows, we will use the following notation. Given any function f : Λ → R, we

define a function δf : Λ× Λ → R by (δf)(p, q) = f(q)− f(p). One can view the operation

δ as a lattice analogue of the gradient operator ∇. For more details on this notaton see

Appendix B. Thus the smeared current (15) with η(p, q) = f(q) − f(p) will be denoted

J(δf). While Ja is the rate of change of the charge in the region x > a, J(δf) is the minus
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the rate of change of the operator

Q(f) =
∑

p

f(p)Qp (21)

That is,

i[H,Q(f)] = −J(δf). (22)

It is very important for what follows that when f is a smeared step-function, J(δf) is

a local operator supported in a vertical strip on R2, roughly where f is neither 0 nor 1.

Indeed, on the one hand, Jpq is nonzero only if |p− q| < R. On the other hand, f(q)− f(p)

is zero if both x(p) and x(q) are sufficiently large and positive, as well as when both x(p)

and x(q) are sufficiently large and negative. The combined effect of this is that J(δf) is a

sum of local operators supported in a vertical strip which is infinite in the y-direction but

has a finite width in the x-direction.

Applying the general Kubo formula (18) to A = J(δf), we get

∆〈J(δf)〉 = εβ lim
s→0+

∫ ∞

0

e−st〈〈J(δf, t); J(δg)〉〉 dt. (23)

Here we identified
∑

p
1
i
[H, g(p)Qp] with J(δg) and denoted by J(δf, t) the time-translation

of J(δf) by t. Note that J(δg) is supported in a horizontal strip on R2. More precisely, if g

is as in Fig. 1a, then J(δg) is supported in a horizontal strip. If g depends on y as in Fig.

1b, then J(δg) is supported in two horizontal strips corresponding to regions I and II in Fig.

1b.

Recall now that we consider a Hamiltonian depending on a parameter λ which varies

with y such that in region I λ = λ1, in region II λ = λ2, and in the intermediate region

λ interpolates between these two values without crossing a phase transition. We assume

that λ2 − λ1 is small. We also choose g as in Fig. 1b. Then J(δg) is a sum of operators

supported in regions I and II. We can make this explicit by writing δg = δgI + δgII , where

gII interpolates between 0 and 1 as one moves from y = +∞ to the intermediate region, and

gI interpolates from 1 to 0 as one moves from the intermediate region to y = −∞. If the

electric field in region I is minus the translate of the electric field in region II, then J(δgI)

is minus the translate of J(δgII), and to linear order in ∆λ we get

∆〈J(δf)〉 = ε(λ2 − λ1)
∂

∂λ

[
β lim
s→0+

∫ ∞

0

e−st〈〈J(δf, t); J(δgII)〉〉dt
]

+O
(

(λ2 − λ1)2
)
. (24)
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Here we implicitly assumed that the correlator

lim
s→0+

∫ ∞

0

dte−st〈〈J(δf, t); J(δg)〉〉, (25)

depends only on the Hamiltonian in some neighborhood of the intersection of supports of

J(δf) and J(δg), and thus when evaluating it one may assume that either λ = λ1 or λ = λ2.

Comparing eq. (24) with eq. (19), we get

∂σxy(f, g)

∂λ
=

∂

∂λ

[
β lim
s→0+

∫ ∞

0

e−st〈〈J(δf, t); J(δg)〉〉dt
]
, (26)

where g is now a function depending only on y which interpolates between 1 and 0 as y

varies from −∞ to +∞, and f(p) = θ(a − x(p)). This formula determines the electric

Hall conductance up to an arbitrary constant. If we define the electric Hall conductance of

vacuum to be zero, then we get a Kubo formula for the electric Hall conductance itself:

σxy(f, g) = β lim
s→0+

∫ ∞

0

e−st〈〈J(δf, t); J(δg)〉〉dt. (27)

Note that it still depends on the exact profile of the electric potential g as well as on the

choice of f . To get the electric Hall conductivity one needs to take the limit where g is linear

over a very large region in y. One also has to set f(p) = θ(x(p)− a) and average over a. We

will see in the next section that at T = 0 the precise choice of f and g becomes immaterial.

C. Zero-temperature electric Hall conductance as a topological invariant

In this section we argue that for a gapped system at T = 0 the electric Hall conductance

σxy(f, g) is independent of the precise choice of functions f and g and unchanged under

variations of the Hamiltonian which do not close the gap. This is an adaptation of the

arguments of Niu and Thouless [20]. We will also make use of the recent rigorous results on

the decay of certain correlation functions in gapped systems obtained by H. Watanabe [21].

Ref. [21] assumes that the system is finite, so strictly speaking we need a generalization of

these results to infinite systems. This generalization is straightforward, since Watanabe’s

estimates are uniform in the system’s size.

After specializing to T = 0, we follow Ref. [20] and rewrite σxy(f, g) in terms of the

many-body Green’s function G = (z −H)−1:

σxy(f, g) = −i
∮

z=E0

dz

2πi
Tr
(
GJ(δf)G2J(δg)

)
. (28)
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Here E0 is the energy of the ground state, the contour of integration encloses the point

z = E0 counter-clockwise and trace is taken over the Hilbert space of the whole system.

We also denote by a the x-coordinate of the mid-line of the vertical strip where J(δf) is

supported, and denote by b the y-coordinate of the mid-line of the horizontal strip where

J(δg) is supported.

First we will argue that shifting f 7→ f + f0, where f0(p) depends only on x(p) and is

compactly supported in the x-direction, does not affect σxy(f, g). Under such a shift σxy(f, g)

changes by

−i
∮

z=E0

dz

2πi
Tr
(
GJ(δf0)G2J(δg)

)
= −

∮

z=E0

dz

2πi
Tr
(
G[H,Q(f0)]G2J(δg)

)
. (29)

Using the identity [H,A] = −[G−1, A], this expression can be written as

∮

z=E0

dz

2πi
Tr
(
Q(f0)G2J(δg)

)
−
∮

z=E0

dz

2πi
Tr (GQ(f0)GJ(δg)) . (30)

The first term can be written as

∮

z=E0

dz

2πi

∂

∂z
Tr (Q(f0)GJ(δg)) (31)

and thus vanishes. The second terms is well-defined because according to [21] correlators of

the form ∮

z=E0

Tr (GAGB) (32)

are exponentially small when the supports of A and B are separated by a large distance,

and Q(f0) and J(δg) are sums of local operators supported in a vertical and a horizontal

strip, respectively.

As a matter of fact, the second term in (30) is also zero. To see this, let us replace

the function f0 with a function f̃0 which is equal to f0 for |y − b| < L/2 but vanishes for

|y − b| ≥ L/2. If L is large, the exponential decay of the correlator (32) implies that the

second term in (30) changes by an amount of order L−∞. Let g̃ denote the translate of g in

the y direction by L, see Fig 2. Clearly, g0 = g− g̃ is a function which depends only on y(p)

and is compactly supported in the y direction. Therefore

∮
dz

2πi
Tr (GQ(f0)GJ(δg)) =

=

∮
dz

2πi
Tr
(
GQ(f̃0)GJ(δg̃)

)
− i
∮

dz

2πi
Tr
(
GQ(f̃0)G[H,Q(g0)]

)
+O(L−∞). (33)
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Q(f0) 6= 0

J(δg) 6= 0

(a)

removed

Q(f̃0) 6= 0

(b)

J(δ̃g) 6= 0

(c)

FIG. 2: (a) The red vertical line represents the support of Q(f0), the blue horizontal line represents the

support of J(δg). (b) Grey parts are far away from the blue line, give a negligible contribution and can be

dropped. (c) One can use the conservation law to move the blue line so that the blue and red lines are

separated by a large distance.

The first term here is of order L−∞ since the supports of Q(f̃0) and J(δg̃) are separated by

a distance of order L. The second term is zero, since

∮
dz

2πi
Tr
(
GQ(f̃0)G[H,Q(g0)]

)
= −

∮
dz

2πi
Tr
(
GQ(f̃0)G[G−1, Q(g0)]

)
=

= −
∮

dz

2πi
Tr
(
G[Q(f̃0), Q(g0)]

)
= 0, (34)

due to ultra-locality of the charge. Taking the limit L → ∞, we conclude that the second

term in (30) is zero. This concludes the proof that σxy(f, g) is independent of the precise

choice of f . Independence of g is proved similarly.

Note that the status of f and g was somewhat different until now. The function g describes

the profile of the electric potential and thus is a smeared step-function of nonzero width.

The physically preferred value for f was an unsmeared step-function of the x coordinate.

However, the difference between a smeared and unsmeared step-function is a function f0

supported on an interval. The above argument shows that for T = 0 shifting f 7→ f + f0

does not affect σxy. Thus at T = 0 we can take both f and g to be unsmeared step-

functions centered at x = a and y = b, respectively. Exchanging x and y is then the same

as exchanging a and b. It is easy to see that σxy is anti-symmetric under such an exchange,

hence at T = 0 it coincides with σA. This is to be expected, since at T = 0 the dissipative

part of the conductance tensor vanishes.

Next we show that deformations of the Hamiltonian which do not close the energy gap

do not affect σxy(f, g). It is sufficient to show this for families of Hamiltonians of the form
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H(λ) = H + λV , where V is a local operator supported on a region of a fixed diameter D.

The general case is an immediate consequence, since we can write an arbitrary deformation

as a sum of such deformations.

As explained above, we can choose f and g to be step-functions centered at x = a and

y = b, respectively. We will denote the corresponding current operators Ja and Jb and write

σA = −i
∮

z=E0

dz

2πi
Tr
(
GJaG

2Jb
)
. (35)

Since changing a and b does not affect σA, we can choose them so that the distance between

the support of the perturbation V and the lines x = a and y = b is of order L where

L is arbitrarily large. The variation of (35) under the deformation of the Hamiltonian is

proportional to

∂

∂λ

∮

z=E0

dz

2πi
Tr
(
GJaG

2Jb
)

=

∮

z=E0

dz

2πi
{Tr (GV GJaGGJb)

+Tr (GJaGV GGJb) + Tr (GJaGGV GJb)} ,
(36)

where we have used the fact that variations of Ja, Jb are zero since the supports of Ja and

Jb are more than a distance 2R away from the support of V . We also used

∂G

∂λ
= G

∂H

∂λ
G = GV G. (37)

Subtracting a total derivative

0 =

∮
dz

2πi
Tr

∂

∂z
(GJaGV GJb) =

∮
dz

2πi
{Tr (GGJaGV GJb)

+Tr (GJaGGV GJb) + Tr (GJaGV GGJb)} ,
(38)

from the above expression, we get

∂

∂λ

∮

z=E0

dz

2πi
Tr
(
GJaG

2Jb
)

= −
∮

dz

2πi
Tr ([V,GJaG]GJbG) . (39)

In Appendix C we show that correlators of the form
∮

dz

2πi
Tr ([A,GBG]GCG) , (40)

where A,B,C are local operators and the support of A is away from the support of B, are

exponentially suppressed for gapped systems. Therefore we have

∂σA

∂λ
= −i ∂

∂λ

∮

z=E0

dz

2πi
Tr
(
GJa(x0)G2Jb(y0)

)
= O(L−∞). (41)

Since L can be made arbitrarily large, this concludes the proof.
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IV. THERMAL HALL CONDUCTANCE

A. Energy currents and energy magnetization on a lattice

For a quantum system on a lattice Λ ⊂ Rd, the energy current from site q to site p is an

operator JEpq which satisfies
dHq

dt
= −

∑

p∈Λ

JEpq. (42)

An obvious solution is [22, 23]

JEpq = −i[Hp, Hq]. (43)

Since [Hp, Hq] = 0 whenever |p − q| > 2R, JEpq is nonzero only when p, q are nearby. The

energy current from B to A = Λ\B is defined to be

JE(A,B) =
∑

p∈A

∑

q∈B

JEpq = JE(δχB), (44)

where χB is the same as before.

As in the case of the electric current, the expression for JEpq is not unique. One can always

make a replacement

JEpq 7→ JEpq +
∑

r

UE
pqr, (45)

where the operator UE
pqr is skew-symmetric under the exchange of the points p, q, r and

vanishes if any two of them are farther than some fixed distance. The modified energy current

is physically equivalent to JEpq. Physical quantities, such as JE(A,B), are not affected by such

modifications. It is shown in Appendix B that this is the only ambiguity in the definition of

the energy current, therefore the expression (43) is essentially unique. In contrast, there is

no simple and general expression for the energy current in continuum systems. This is one

of the reasons we prefer to study lattice systems.

From now on we again specialize to 2d lattice systems. In an equilibrium state we have

∑

p

〈JEpq〉 = −
〈
dHq

dt

〉
= 0. (46)

This suggests that there might exist a function ME : Λ×Λ×Λ→ R which is skew-symmetric

under the exchange of the arguments, decays rapidly when any two of the arguments are far

apart, and satisfies

〈JEpq〉 =
∑

r

ME
pqr. (47)
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It is easy to see that this expression automatically satisfies Eq. (46). The decay property is

required to make the sum over r convergent. It is shown in Appendix B that such an ME

always exists.

The equation (47) is a lattice analog of the continuum equation

〈JEk (r)〉 = −εkj∂jME(r), (48)

which defines the “energy magnetization” ME(r) of a 2d system [3, 4]. Thus ME
pqr is a

lattice analog of energy magnetization. Note that in the continuum energy magnetization

is a function of spatial coordinates, while on the lattice it is a functions of three points.

Unfortunately, there is no preferred choice of ME, either in the continuum or on the

lattice. This is more apparent in the continuum, where it is obvious that shifting ME(r) 7→
ME(r)+mE, where mE is independent of coordinates but may depend on parameters of the

system, leaves 〈JE〉 invariant. But the reason is essentially topological, and the ambiguity

is present on a lattice as well. This lattice ambiguity is not the obvious freedom to make a

redefinition

ME
pqr 7→ME

pqr −
∑

s

Npqrs, (49)

where Npqrs is a real-valued function of four points which decays rapidly when any of two

of the points are far apart. The ambiguity (49) is analogous to (although distinct from) the

ambiguity (45) in the definition of the energy current and is harmless. For example, it will

be shown below that it does not affect the thermal Hall energy flux. But for 2d systems

there is a further ambiguity. For simplicity, let us take Λ to be a regular triangular lattice

in R2. Then an obvious solution to the equation
∑

rm
E
pqr = 0 is to take mE

pqr = ±1 for any

three points which are vertices of an elementary triangle of Λ and zero in all other cases.

The sign is determined by the orientation of the triangle [pqr] relative to the orientation of

R2. The freedom to add to ME
pqr a multiple of mE

pqr is analogous to the freedom to add a

constant mE to the continuum energy magnetization ME(r).

One can partially fix the ambiguity by requiring ME to be a local quantity. In the

continuum case, this means that ME(r) cannot depend on the values of the parameters of

the Hamiltonian far from r. This leaves the freedom to shift ME(r) by mE(r) which satisfies

∂jm
E(r) = 0, lim

|r−r′|→∞

δmE(r)

δλ(r′)
= 0, (50)
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where λ(r) is the value of a parameter λ at a point r′. This implies that mE(r) depends

neither on r nor on λ. Still, shifting ME(r) by a constant independent of any parameters is

allowed. This shows that ME(r) is not a physical quantity. The situation on the lattice is

similar.

On the other hand, the above arguments show that derivatives of ME(r) with respect to

parameters of the system are free from ambiguities. Indeed, for a special class of continuum

Hamiltonians, Ref. [4] derived a well-defined microscopic formula for the derivative of the

volume-average of ME(r) with respect to the chemical potential. It was noticed by A.

Kitaev [22] that on the lattice the situation is even better: there is a natural a formula for

the derivatives of ME
pqr with respect to arbitrary variations of the Hamiltonian. That is, if

the Hamiltonian depends on some parameters λ`, then there is a manifestly local solution

of the system of equations
∂

∂λ`
〈JEpq〉 =

∑

r

µEpqr,`. (51)

If we assemble the quantities µEpqr,` into a 1-form µEpqr = µEpqr,`dλ
` on the parameter space,

then the above equation is solved by

µEpqr = −β〈〈dHp; J
E
qr〉〉 − β〈〈dHr; J

E
pq〉〉 − β〈〈dHq; J

E
rp〉〉. (52)

Here d =
∑

l dλ
` ∂
∂λ`

is the exterior derivative on space of local Hamiltonians. The iden-

tity (51) is easily verified using properties of the Kubo pairing (see Appendix A) and the

definition of the energy current (43).

The quantity µEpqr,` has the meaning of the derivative of the energy magnetization with

respect to λ`. If the correlation length is finite, µEpqr is exponentially small when any two of

the points p, q, r are far from each other. It is also apparent that µEpqr,` does not depend on

the state of the system far from the points p, q, r. In other words, it is a local quantity.

The expression µEpqr is not unique: one can always make a replacement

µEpqr 7→ µEpqr −
∑

s

νEpqrs, (53)

where νEpqrs is a 1-form on the parameter space which depends on four lattice points p, q, r, s,

is skew-symmetric under the exchange of these points, and decays rapidly when any two

of the points are far apart. However, as we will see below, this ambiguity does not affect

physical quantities which we compute.
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B. Kubo formula for the derivatives of the thermal Hall conductance

To derive a Kubo formula for derivatives of the thermal Hall conductance we follow the

same strategy as in the case of electric Hall conductance. Following Luttinger [24], we

perturb the Hamiltonian by a term

∆H(t) = εest
∑

p∈Λ

g(p)Hp, t ∈ (−∞, 0]. (54)

It is shown in [24] that this is equivalent to a time-dependent and space-dependent infinites-

imal temperature deformation

δT (t, r) = εTestg(r).

As in the electric case, we cannot take g to be a smeared step-function of y, since then

the change in the expectation value of the net energy current across a line x = a will be

ill-defined. Instead we take g to be a function as in Fig. 1b, and consider an inhomogeneous

system whose Hamiltonian depends on a parameter λ which varies with y as in Fig. 1b.

This allows one to compute the derivative of the thermal Hall conductance with respect to

λ.

One difference compared to the electric case is that the energy current operator A =

JE(δf) now has an explicit dependence on ε (the magnitude of the perturbation). This

happens because [Hp, Hq] 6= 0, in general. The change in A due to this explicit dependence

is

∆A = − ε
2

∑

p,q

i[Hp, Hq](f(q)− f(p))(g(p) + g(q)). (55)

The corresponding change in the expectation value of A is

ε

2

∑

p,q

〈JEpq〉(f(q)− f(p))(g(p) + g(q)) =
ε

3

∑

p,q,r

ME
pqr(f(q)− f(p))(g(q)− g(r)). (56)

Here we used skew-symmetry of ME
pqr with respect to arbitrary permutations of p, q, r.

Since ME
pqr decays rapidly when q and r are far apart, and since g(q)−g(r) vanishes when

q and r are both in a region where g is constant, eq. (56) receives contributions only from

the regions I and II where the temperature gradient is nonzero. We make this explicit by

writing δg = δgI +δgII , where gII(p) depends only on y(p) and interpolates between 0 and 1

as one moves from y = +∞ to the intermediate region, and gI(p) depends only on y(p) and

interpolates between 1 and 0 as one moves from the intermediate region to y = −∞. If the
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temperature gradients in regions I and II are equal and opposite, δgI is minus the translate

of δgII . In these two regions the parameter λ takes constant values λ1 and λ2, respectively.

Therefore the expression (56) can be written as

2ε(λ2 − λ1)µE(δgII ∪ δf) +O
(

(λ2 − λ1)2
)
, (57)

where µEpqr = ∂ME
pqr/∂λ, and we introduced a shorthand

µE(δf1 ∪ δf2) =
1

6

∑

p,q,r

µEpqr(f1(q)− f1(p))(f2(r)− f2(q)) (58)

for any two functions f1, f2 : Λ→ R. For generic functions f1, f2 the triple sum over p, q, r has

a large-volume divergence which arises from the region where p, q, r are all close together.

However, for f1 = gII and f2 = f it is easy to check that the summation is absolutely

convergent, so the expression is well-defined. Using eq. (51) and the skew-symmetry of µEpqr

with respect to p, q, r one can check that the µE(δf1∪δf2) is unchanged under a redefinition

(53) and is skew-symmetric under the exchange of f1 and f2. Such checks become routine if

one uses the machinery of Appendix B.

Combining (57) with the change in 〈A〉 arising from the change in the state of the system,

we get

∆〈A〉 ≈ ε(λ2−λ1)
∂

∂λ

[
β lim
s→0+

∫ ∞

0

e−st〈〈JE(δf, t); JE(δg)〉〉dt
]
+2ε(λ2−λ1)µE(δg∪δf). (59)

Here to simplify notation we denoted by δg what previously was denoted δgII . That is, g(p)

now denotes a function of y(p) which interpolates from 1 at y � 0 to 0 at y � 0. On the

other hand, the expected net energy current across the line x = a is

−εT
∫ +∞

−∞
κxy∂yg dy = εT

∫ λ2

λ1

∂κxy
∂λ

dλ.

Comparing these two expressions we get a formula for the λ-derivative of the thermal Hall

conductance:

dκxy(f, g) = d

[
β2 lim

s→0+

∫ ∞

0

e−st〈〈JE(δf, t); JE(δg)〉〉dt
]
− 2βµE(δf ∪ δg). (60)

Unlike in the electric case, there is no canonical formula for κxy(f, g). We can still define

the difference of thermal Hall conductances of two materials M and M′ by integrating the

1-form dκxy along a path in the parameter space connecting M and M′. This path must

avoid phase transitions, otherwise objects like µE(δf ∪ δg) might diverge.
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C. Path-independence of the thermal Hall conductance

We have defined a 1-form dκxy on the space of parameters of a lattice system whose

integral along a curve Γ can be identified with the difference of thermal Hall conductances

of the initial and final points of Γ. The definition of the 1-form depended on the rapid spatial

decay of the Kubo pairings of local operators. Thus when choosing a curve connecting two

points M and M′ in the parameter space, one needs to avoid loci where phase transitions

occur. Since we are allowed to enlarge the parameter space by adding arbitrary local terms

to the Hamiltonian, it is very plausible that such a curve exists for any two points M
and M′. Indeed, phase transitions at nonzero temperatures are usually associated with

spontaneous symmetry breaking and typically can be turned into cross-overs by adding

suitable symmetry-breaking perturbations. Quantum phase transitions at zero-temperature

defy the symmetry-breaking paradigm, but as explained in the next section temperature can

be considered as one of the parameters of the Hamiltonian, and at non-zero temperature

quantum phase transitions become cross-overs.

An important consistency requirement is that the difference of the thermal Hall con-

ductances thus computed does not depend on the choice of Γ. To show this, consider an

arbitrary closed loop Γ in the parameter space. By assumption, the “Kubo” part of the

thermal Hall conductance

κKubo
xy (f, g) = β2 lim

s→0+

∫ ∞

0

e−st〈〈JE(δf, t); JE(δg)〉〉dt, (61)

is well-defined for each point of Γ. Therefore dκKubo
xy (f, g) is an exact 1-form and its integral

over any closed curve vanishes.

We are going to argue that the energy magnetization contribution µE(δf ∪ δg) is also

exact. This is a 1-form on the parameter space which depends on f and g. Its physical

meaning is the differential of the energy magnetization in the region where both f and g

vary substantially. We would like to show that the integral of this 1-form along any loop

Γ avoiding phase transitions is zero. Heuristically, this must be true in order to avoid

contradiction with the theorem about the absence of net energy currents in equilibrium

quasi-1d systems [13]. Imagine slowly varying the parameters of the system as a function of

y ∈ [0, L] while following a loop Γ. Then we can compactify the y direction with period L,

and regard this as a quasi-1d system. If L is large compared to the correlation length, this

should not affect local properties, including the differential of the energy magnetization µE.
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The energy current in the x direction can be computed using the continuum equation (48).

Since the net energy current should vanish, we get

0 =

∫
〈JEx 〉dy =

∫ L

0

∂yM
Edy '

∫
∂λM

Edλ =

∫

Γ

µE. (62)

The error in this computation should become arbitrarily small for L → ∞, so we get the

desired result. A more precise argument is given in Appendix D.

D. A relative invariant of gapped 2d lattice systems

In this section we use the 1-form dκxy to define a relative topological invariant of gapped

2d lattice systems at zero temperature. We anticipate that in the case when both lattice

systems admit a conformally-invariant edge, the invariant will be equal to π/6 times the

difference of the chiral central charges for the two systems. We cannot necessarily connect

two such systems by a curve Γ in the space of Hamiltonians without encountering a bulk

phase transition. If we could, this would mean that they are in the same zero-temperature

phase, and then by the result of [13] they would have to have the same chiral central charge

for the edge modes, and therefore the relative invariant would vanish. Rather, the idea is

to treat the temperature T as yet another parameter, and connect the two systems in the

enlarged parameter space (T, λ). At positive temperatures quantum phase transitions are

smoothed out into cross-overs, and the two systems can now be deformed into each other

while maintaining a finite correlation length.

Formally, the temperature can be regarded as a parameter because re-scaling the temper-

ature by a positive factor is equivalent to re-scaling the Hamiltonian by the inverse factor.

Therefore one can extend the form κxy(f, g) to the open subset of the enlarged parameter

space given by T > 0. In detail, this is done as follows. Given a Hamiltonian H, we define a

one-parameter family of Hamiltonians by H(λ0) = λ0H (the Hamiltonian H still depends on

other parameters λ` which we collectively call λ opposed to specific overall scaling parameter

λ0). Then the above mentioned scaling symmetry implies

T
d

dT

κKubo
xy (f, g)

T
= − λ0 d

dλ0

∣∣∣∣
λ0=1

κKubo
xy (f, g;λ0)

T
, (63)

where κKubo
xy (f, g;λ0) denotes the Kubo part of κxy computed with the Hamiltonian H(λ0).

We have to divide κxy by T in order to get an observable which is invariant under the
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rescaling H 7→ λ0H,T 7→ λ0T . Similarly, we have

2T
d

dT

(
β2ME

pqr

)
= −2 λ0 d

dλ0

∣∣∣∣
λ0=1

(
β2ME

pqr

)
=

2

T 2
τEpqr, (64)

where τEpqr is −µEpqr with dHp replaced with Hp:

τEpqr = β〈〈Hp; J
E
qr〉〉+ β〈〈Hr; J

E
pq〉〉+ β〈〈Hq; J

E
rp〉〉. (65)

We can now define a 1-form on the subset T > 0 of the enlarged parameter space which

represents the total derivative of κxy(f, g)/T :

Ψ(f, g) =
dκKubo

xy (f, g)

T
− 2

T 2
µE(δf ∪ δg) +

d

dT

(
κKubo
xy (f, g)

T

)
dT − 2τE(δf ∪ δg)

dT

T 3
. (66)

Its integral around any closed curve in the (T, λ) space is zero by the same argument as

before, therefore Ψ is exact.

Given any two gapped zero-temperature lattice systemsM andM′, we would like to de-

fine a relative topological invariant by integrating Ψ along a curve in the enlarged parameter

space which connects M and M′. See Fig. 3b. We need to check three things: that the

integral converges, that it does not change as one deforms M and M′ while keeping T = 0

and finite correlation length, and that result of integration does not change as we modify

the functions f, g while keeping their asymptotic behavior fixed. Neither of these is obvious.

The T -component of the 1-form Ψ is

Ψn(f, g) =
d

dT

(
κKubo
xy (f, g)

T

)
− 2

T 3
τE(δf ∪ δg)

= − 1

T 3

[
d

dλ0

∣∣∣∣
λ0=1

∫ ∞

0

β〈〈JEλ0(δf, t); JEλ0(δg)〉〉λ0dt+ 2τE(δf ∪ δg)

]
. (67)

Here 〈〈. . .〉〉λ0 denotes the Kubo pairing at temperature T with respect to the Hamiltonian

H(λ0) = λ0H, and JEλ0 is the energy current for the Hamiltonian H(λ0). We denoted the

T -component Ψn to emphasize that it is the normal component to the boundary T = 0 of

the enlarged parameter space. The convergence of the integral of Ψ requires the expression

in parentheses to vanish faster than T 2 as T → 0. Similarly, the independence of the integral

of Ψ on the deformation of the endpoints requires the tangential component of Ψ,

Ψt(f, g) =
1

T 2

(
d

∫ ∞

0

β〈〈JE(δf, t); JE(δg)〉〉dt− 2µE(δf ∪ δg)

)
. (68)
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to vanish at T = 0. Thus the expression in parentheses should vanish faster than T 2 as

T → 0.

In Appendix E we argue (not completely rigorously) that both expressions vanish expo-

nentially fast as T → 0. To see why this is plausible, consider eq. (68) for definiteness and

denote the expression in parentheses as Ω(T ). It is a 1-form on the space of parameters of

the Hamiltonian. The first term in Ω(T ) is the exterior derivative of the same kind of current

correlator which defines the electric Hall conductance, except that the electric current J is

replaced with the energy current JE. The key point is that at T = 0 this correlator is sensi-

tive mainly to the state of the system in a compact region S ⊂ R2 which is an intersection

of the vertical strip corresponding to f and the horizontal strip corresponding to g. The

same argument as in Section III C shows that at T = 0 the derivative of this correlator with

respect to a deformation of the Hamiltonian localized at a distance L from S is of order

L−∞. The same is true for the second term, because of the assumed decay of Kubo pairings.

Since the sum of the two terms does not change as one varies f and g, L can be made

arbitrarily large, and we conclude that Ω(0) = 0 when evaluated on any deformation of the

Hamiltonian supported on a quadrant in R2. Therefore Ω(0) = 0 identically. Further, in

the presence of the energy gap one expects the low-temperature expansion to have a finite

radius of convergence, therefore Ω(T ) − Ω(0) is exponentially suppressed for low T (it is

this part of the argument which is not rigorous). Combining these statements, we show

that integral converges and independent of deformations of M and M′ which do not cross

phase transitions. In order to show that the value of integral is independent of the shift of

functions f, g we can use the fact that one form Ψ(f, g) is exact and integral is given by

difference of antiderivatives of Ψ at endpoints. The latter can be shown to vanish if either

f or g is hat-shaped as in Fig. 1b. For more details see Appendix E.

There is another limit where one can evaluate Ψ, namely T → ∞. In this limit the

expectation value 〈A〉 of a local operator A becomes the normalized trace over the local

Hilbert space, while the Kubo pairing becomes

lim
T→∞
〈〈A;B〉〉 = 〈AB〉 − 〈A〉〈B〉. (69)

Thus all components of Ψ are of order 1/T 3 for large T , and therefore the relative thermal

Hall conductance of any two high-temperature states is of order 1/T 2. Hence another natural

choice of a reference state (apart from the trivial insulator at T = 0) is the T = ∞ state.
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(a)

λ

T

T = 0

∮
Ψ = 0

(b)

λ

T

T = 0 M M′

∫M′

M Ψ

(c)

λ

T

T = 0 M M′ M′′

∫M′

M Ψ =
∫M′′

M Ψ

(d)

λ

T

T = 0 M′ M′′

∫M′′

M′ Ψ = 0

FIG. 3: Phase diagrams. The horizontal axis represents a parameter of the Hamiltonian, the vertical axis

is temperature. Dashed lines and crosses represent phase transitions. Blue lines are integration contours.

(a) The integral of Ψ along a loop is zero regardless of whether there are phase transitions in the interior.

(b) The invariant I(M,M′) for zero-temperature phases M and M′ can be computed by integrating Ψ

along the blue line. (c) The points M′ and M′′ are in the same phase, therefore one expects the integrals

along the solid and dotted blue lines to be the same. (d) The difference of the two paths can be deformed

to a near-zero-temperature path from M′′ to M′. Ψ is exponentially small on this path.

That is, one can define an absolute topological invariant of a gapped zero-temperature system

M by integrating the 1-form Ψ along any path connecting M to the T =∞ state.

The case of a Locally Commuting Projector Hamiltonian is particularly simple. In this

case, since JEpq = −i[Hp, Hq] = 0 for all p, q, the T -component of the 1-form Ψ vanishes

identically. Integrating Ψ along a path Γ along which only T changes, we find that κA(T )−
κA(∞) = 0. Thus the thermal Hall conductance relative to the T = ∞ state is zero for all

temperatures.4 This implies that the chiral central charge of the edge modes must vanish for

4 Strictly speaking, to avoid potential phase transitions at T > 0, one needs to work with a finite-volume
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such a Hamiltonian. One can also show that the zero-temperature electric Hall conductance

vanishes for such systems, but the proof is very different [16].

The case of gapped systems of free fermions is also fairly simple, since there are no phase

transitions at any T > 0, and one can again integrate Ψ along a path with only T varying.

Then one only needs to know the T -component of Ψ, which can be evaluated in complete

generality. This computation is performed in Appendix F where it is shown that

∫ T=∞

T=0

Ψ =
κA

T

∣∣∣∣
T=∞

− κA

T

∣∣∣∣
T=0

= −π
2

3
σA, (70)

where σA is the electric Hall conductance at T = 0. If one defines κA/T to vanish at T =∞,

then this can be regarded as a form of the Wiedemann-Franz law. Note however that it

cannot be interpreted too naively. For example, since Ψ is exponentially small for low T ,

most of the contribution to the integral (70) comes from T of order of the energy gap.

Although one can define the absolute thermal Hall conductance at temperature T as

κA(T ) = T

∫ T

∞
Ψ, (71)

and it will obey the Wiedemann-Franz law κA ' π2

3
TσA at low T , κA(T ) is not determined

by correlators measured at temperature T and a fixed Hamiltonian.

V. CONCLUDING REMARKS

We have derived a formula for the derivatives of the thermal Hall conductance with respect

to parameters of the Hamiltonian and temperature. The relative thermal Hall conductance

is obtained by integrating the derivative along a path in parameter space connecting the

two materials. We have argued that this is the best one can do, since only differences of

thermal Hall conductances of materials are well-defined physical quantities. What is usually

measured in experiments is the thermal Hall conductance of a particular material relative

to the vacuum.

We also argued that for gapped 2d lattice systems the thermal Hall conductance at

low T is linear in T up to exponentially small corrections. The slope of the thermal Hall

version of Ψ defined on torus. Its T -component still vanishes for a system described by a Local Commuting

Projector Hamiltonian, so the integral from any T to T =∞ is still zero. Taking the infinite-volume limit

we conclude that the relative thermal Hall conductance is identically zero.
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conductance is a topological invariant, in the sense that it does not change under variations

of the Hamiltonian which keep the correlation length finite. It can change only when the

bulk undergoes a zero-temperature phase transition.

This result can be interpreted as a form of bulk-boundary correspondence. Consider

a strip of a gapped 2d material M at temperatures below the gap as well as below any

temperatures at which bulk phase transitions occur. Suppose there is an effective field

theory description of this system which reproduces all observations. Since there are no bulk

excitations, such an effective field theory describes only edge excitations. Let us assume that

these edge excitations are described by a 1+1d CFT. There may also be terms in the effective

action which describe the bulk response to the external fields, such as the Chern-Simons term

(if the system has a U(1) symmetry and can be coupled to a background electromagnetic

field) and the gravitational Chern-Simons term. However, such terms in the action do not

contribute to the thermal Hall current at leading order in the temperature gradient [5].

Thus the net energy current for the edge modes should be equal to κAMM0
(T )∆T, whereM0

is the vacuum and it is assumed that the temperature difference between the edges ∆T is

much smaller than T . On the other hand, as explained in Section I, the net energy current

computed from CFT is equal to π
6
(cR− cL)T∆T . Therefore the slope of κAMM0

(T ) at low T

is equal to π
6
(cR − cL).

We note that the statement that the chiral central charge of the edge modes is related

to the low-temperature thermal Hall conductance is not new, see e.g. [17] for an early

discussion in the context of an edge described by a Luttinger liquid. What is new is the

statement that thermal Hall conductance relative to the vacuum is independent of the choice

of the edge (this follows from the results of [13]) as well as an explicit formula for the relative

thermal Hall conductance which involves only bulk correlators.

Appendix A: Kubo canonical pairing

Kubo canonical pairing of two operators A,B is defined as follows [18]:

〈〈A;B〉〉 =
1

β

∫ β

0

〈A(−iτ)B〉dτ − 〈A〉〈B〉. (A1)

Here 〈. . .〉 denotes average over a Gibbs state at temperature T = 1/β (or more generally,

over a state satisfying the Kubo-Martin-Schwinger condition), and A(−iτ) = eHτAe−Hτ .
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Kubo paring determines static linear response: if the Hamiltonian is perturbed by λB,

where λ is infinitesimal, then the change in the equilibrium expectation value of A is

∆〈A〉 = 〈∆A〉 − βλ〈〈A;B〉〉+O(λ2). (A2)

Here the first term is due to the possible explicit dependence of A on the Hamiltonian,

while the second term is the change in the expectation value of A due to the change in the

equilibrium state.

Kubo pairing is symmetric, 〈〈A;B〉〉 = 〈〈B;A〉〉, and satisfies

β〈〈i[H,A];B〉〉 = 〈i[B,A]〉. (A3)

In finite volume, one can write it in terms of the energy eigenstates as follows:

〈〈A;B〉〉 = Z−1
∑

n,m

〈n|Ā|m〉〈m|B̄|n〉e
−βEm − e−βEn
β(En − Em)

, (A4)

where Ā = A− 〈A〉, and B̄ = B − 〈B〉.

Appendix B: Some mathematical constructions

1. Chains and cochains

In this paper we have encountered local operators Hp and Qp which depend on a lattice

point p ∈ Λ, operators Jpq and JEpq which depend on a pair of points, and energy magneti-

zation ME
pqr which depends on three points. It is useful to introduce a suitable terminology

for such objects. Let n be a non-negative integer. Consider a quantity A(p0, . . . , pn) which

depends on n + 1 points of Λ, is skew-symmetric under the exchange of points, and decays

rapidly when the distance between any two points becomes large. Given an ordered set of

points p0, . . . , pn ∈ Λ, let [p0, . . . , pn] denote an abstract oriented n-simplex with vertices

p0, . . . , pn. Then one can consider a formal linear combination of simplices

A =
1

(n+ 1)!

∑

p0,...,pn

A(p0, . . . , pn)[p0, . . . , pn]. (B1)

Such a linear combination is called an n-chain, or a chain of degree n. For example, the

operators Jpq form an operator-valued 1-chain J .
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The simplest decay condition one can impose is to require A(p0, . . . , pn) to vanish when-

ever any two of its arguments are separated by more than some finite distance ε. This

distance may be different for different chains. In the body of the paper such chains are

called finite-range. In the mathematical literature they are called controlled chains [26].

The current 1-chain J is finite-range, or controlled, because [Hp, Qq] = 0 for |p− q| > R.

Another natural decay condition is to require A(p0, . . . , pn) to satisfy

∑

p0,p1,...,pn

||A(p0, . . . , pn)|| <∞. (B2)

Here ||·|| denotes operator norm if A is operator-valued and absolute value if A is real-valued

or complex-valued. We will call such chains summable. For example, the real-valued 2-chain

defined in eq. (52) is summable if dHp
dλ

is nonzero only for p in a finite subset and the Kubo

pairings of local operators decay rapidly with distance.

There is an operation ∂ on chains which lowers the degree by 1:

(∂A)(p1, . . . , pn) =
∑

q∈Λ

A(q, p1, . . . , pn). (B3)

Although the sum is infinite, the operation is well-defined for n > 0 since we assumed rapid

decay when q is far away from any of the points p1, . . . , pn. This operation satisfies ∂ ◦∂ = 0.

It maps controlled chains to controlled chains, and summable chains to summable chains.

The chain ∂A is called the boundary of the chain A. A cycle is a chain whose boundary is

zero. Using this notation, the conservation equation (11) can be written as

dQ

dt
= −∂J. (B4)

Dually, an n-cochain is a function of n+ 1 points of Λ which is skew-symmetric, but need

not decay when one of the points is far from the rest. We will only consider real-valued

cochains. A natural operation on cochains is:

(δα)(p0, . . . , pn+1) =
n+1∑

j=0

(−1)jα(p0, . . . , pj−1, pj+1, . . . , pn+1). (B5)

It increases the degree by 1 and satisfies δ ◦ δ = 0. The cochain δα is called the coboundary

of the cochain α. A cocycle is a cochain whose coboundary is zero. The evaluation of an

n-chain A on an n-cochain α is formally defined as

A(α) =
1

(n+ 1)!

∑

p0,...,pn

A(p0, . . . , pn)α(p0, . . . , pn). (B6)
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This definition is formal because without some constraints on the cochain α the infinite sum

will not be absolutely converging. An example of a 1-cochain is a function η(p, q) which

appears in (15), then the operator J(η) is simply the evaluation of the operator-valued

1-chain J on a 1-cochain η.

Suppose all our chains are controlled. Then the problematic contribution in (B6) arises

from the region where all points p0, . . . , pn are nearby but otherwise can be anywhere in

Λ. We will call such a region in the (n + 1)-fold Cartesian product of Λ with itself a

thickened diagonal. To make the evaluation well-defined, it is natural to impose the following

requirement on α: the intersection of the support of α with any thickened diagonal must be

finite. In the mathematical literature such cochains are called cocontrolled [26]. For example,

if we regard χB as a 0-cochain, then η = δχB is cocontrolled if either A or B are compact.

One can evaluate an arbitrary complex-valued controlled n-chain on a cocontrolled n-cochain

and get a well-defined number. Or, when one evaluates an operator-valued controlled chain

on a cocontrolled cochain, one gets a bounded operator.

If our chains are summable, then it is natural to require n-cochains to be bounded func-

tions on the (n+ 1)-fold Cartesian product of Λ with itself. The space of bounded cochains

is the Banach-dual of the space of summable chains, where the norms are the obvious ones.

Thus the evaluation of a chain on a cochain is well-defined and is a continuous function of

both the chain and the cochain.

With this said, we can state a kind of ”Stokes’ theorem”

A(δβ) = ∂A(β). (B7)

It applies to any controlled n-chain A and any cocontrolled (n−1)-cochain β. It also applies

to any summable n-chain and a bounded (n − 1)-cochain. In the special case A = J and

β = χB for some finite set B, combining (B7) and the conservation equation (B4) we get

that the current through the boundary of B (represented by the 1-cocycle δχB) is equal to

minus the rate of change of the total charge in B.

Given an n-cochain α and an m-cochain γ one can define an (n+m)-cochain α ∪ γ by

(α ∪ γ)(p0, . . . , pn+m) =
1

(n+m+ 1)!

∑

σ∈Sn+m+1

(−1)sgnσα(pσ(0), . . . , pσ(n))γ(pσ(n), . . . , pσ(n+m)).

(B8)
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where Sn+m+1 is the permutation group on n+m+ 1 objects. This operation satisfies

α ∪ γ = (−1)nmγ ∪ α, δ(α ∪ γ) = δα ∪ γ + (−1)nα ∪ δγ. (B9)

The operations δ and ∪ on cochains are analogous to operations d and ∧ on differential

forms. In the body of the paper we apply these formulas in the case when α = δf and

γ = δg, where f is a ”smeared step-function” in the x-direction, and g is a ”smeared step-

function” in the y-direction. The chains α and γ are bounded, and so is α ∪ γ. Hence if

dHp
dλ

is nonzero only for a finite subset of Λ, the evaluation of the summable chain (52) on

the bounded cochain δf ∪ δg. More generally, we may consider uniform deformations such

that dHp
dλ

is bounded, but does not vanish at infinity. Then the chain (52) is only locally

summable. Nevertheless, its evaluation on δf ∪ δg is still well-defined because δf ∪ δg is

cocontrolled as well as bounded.

Finally, we note that if an n-chain A(p0, . . . , pn) is nonzero only if |pi−pj| ≤ δ for all i, j,

then its contraction with an n-cochain α is well-defined even if α(p0, . . . , pn) is only defined

for |pi − pj| ≤ δ. We will make occasional use of such partially-defined cochains below.

2. Applications

In this section we discuss some physical application of the machinery of chains and

cochains. As discussed above, electric current is a operator-valued controlled 1-chain satisfy-

ing (B4). A natural solution is given by (10), but there is an obvious ambiguity (12). In the

language of chains, it amounts to J 7→ J + ∂U , where U is an operator-valued controlled 2-

chain. This ambiguity does not affect quantities like J(η), where η is a cocontrolled 1-cycle.

Indeed, using the Stokes’ theorem, we get (J + ∂U)(η) = J(η) + U(δη) = J(η). Similarly,

while the energy current (43) has an obvious ambiguity (45), it does not affect quantities

like JE(η), where η is a cocontrolled 1-cocycle. A special case of this is the electric or energy

current from region B to region A which is denoted J(A,B) or JE(A,B) in the body of the

paper. This is a physically measurable quantity, and it is satisfying that is not affected by

this ambiguity.

A more subtle question is whether there are other ambiguities in the definition of currents.

This is equivalent to asking whether the equation ∂∆J = 0 has solutions other than ∆J =

∂U . To answer this question we need to know the homology of the complex of controlled
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chains in degree 1. More generally, one might want to know the homology of the complex

of controlled chains in all degrees. It turns out that under natural assumptions on the

lattice Λ ⊂ Rd the controlled homology in degree n is independent of Λ and equal to the

locally-finite (Borel-Moore) homology of Rd [27]. The latter is equal to 0 for n 6= d and

isomorphic to R for n = d. The condition on Λ is, roughly speaking, that it fills the whole

Rd uniformly. More precisely, there should exist a number r > 0 such that any point of Rd

is within distance r of some point of Λ. In the terminology of [26], this implies that Λ is

coarsely equivalent to Rd.

Given this result, we see that for d > 1 the only solutions to ∂∆J = 0 have the form

∆J = ∂U , where U is a controlled operator-valued chain. In other words, our formulas for Jpq

and JEpq are essentially unique. The case d = 1 is a bit different, since the degree 1 homology

of controlled chains is nontrivial. In the case d = 1 points of Λ can be naturally labeled by

integers, and a nontrivial solution to ∂∆J = 0 has the form ∆Jpq = J0(δ(p, q−1)−δ(q, p−1)),

where J0 is a fixed local operator. However, if we make a natural assumption that J0 must

be supported in some fixed-size neighborhood of the points p, q for all p, q, then J0 must

be proportional to the identity operator. The same applies to the energy current. Thus for

d = 1 system currents are unique up to an addition of a constant c-number. This c-number,

if present, would violate the conclusion of Bloch’s theorem [28] or its energy counterpart

[13]. It would lead to an unphysical electric or energy current even at T = ∞, when all

degrees of freedom are in a maximally-mixed state. If we normalize the currents so that their

expectation values vanish at T =∞, we eliminate this ambiguity even for d = 1. With this

normalization, both Bloch’s theorem and its energy counterpart hold for all temperatures.

Another application is the definition of magnetization and energy magnetization. The

equilibrium expectation value of the electric current satisfies

∂〈J〉 = 0. (B10)

An obvious solution has the form

〈J〉 = ∂M, (B11)

where M is a real-valued 2-chain. This is a lattice analog of of the continuum equation

〈Jk(r)〉 = −εkj∂jM(r) (B12)

which defines magnetization M(r). Thus one can regard the real-valued 2-chain Mpqr as a

lattice analog of magnetization.
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In order for the magnetization 2-chain to exist, eq. (B11) must be the most general

solution of (B10). Thus magnetization exists if the homology of ∂ in degree 1 is trivial,

or more generally, if the homology class of the 1-chain 〈J〉 is zero. Since the 1-chain 〈Jpq〉
is controlled, it is sufficient to look at the homology of controlled chains. If Λ is coarsely

equivalent to Rd and d > 1, the controlled homology in degree 1 is trivial, as explained above.

Thus magnetization exists. It is not unique, of course, since there is always an ambiguity

M 7→M + ∂P, where P is any real-valued controlled 3-chain. This is a harmless ambiguity

since physical expressions involve expressions like M(ζ), where ζ is a cocontrolled 2-cochain

and are unaffected. A more serious ambiguity arises if controlled homology of Λ in degree

2 is non-trivial. This is the case if Λ is coarsely equivalent to R2. Given any magnetization

2-chain, one can get another acceptable magnetization 2-chain by adding to it a controlled 2-

cycle. Thus magnetization has an unavoidable ambiguity for 2d lattices, but not for lattices

of higher dimensions. The same remarks apply verbatim to energy magnetization.

The case d = 1 is again a bit special. Controlled homology in degree 1 is nontrivial, but

〈J(η)〉 = 0 for any cocontrolled 1-cochain thanks to Bloch’s theorem. Hence the homology

class of 〈J〉 is trivial, and magnetization still exists. The same applies to the energy current

and energy magnetization.

Finally, the homology of summable chains is trivial in degree higher than 0 for any lattice

Λ. This is proved by exhibiting a contracting homotopy for the summable chain complex.

Therefore if dHp
dλ

is supported on a finite set, the chain (52) is unique up to a replacement

µE 7→ µE + ∂N , where N is a summable 3-cochain. This shows that our expression for µE

is essentially unique for deformations of the Hamiltonian which are supported on a finite

set. Since a general bounded deformation can be written as an (infinite) sum of these, we

conclude that our formula for µE is essentially unique.

Appendix C: Exponential decay of certain correlators in a gapped phase

Let A, B, and C be local operators such that the supports of A and B are separated

by at least L. Let G = (z − H)−1 be the Green’s function of a gapped Hamiltonian, and

let E0 be the energy of the ground state. For the time being we assume that the ground

state is unique and comment on the more general case later. We are going to prove that the
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correlator

∮

z=E0

dz

2πi
Tr ([A,GBG]GCG) , (C1)

is exponentially suppressed for large L. Note that the support of the operator C is not

required to be separated from the supports of A and B. By performing the z integration we

get

∮
dz

2πi
Tr ([A,GBG]GCG) = 〈AG0BG

2
0C〉+ 〈BG2

0CG0A〉 − 〈CG2
0AG0B〉

−〈CG0AG
2
0B〉+ 〈BG2

0AG0C〉+ 〈BG0AG
2
0C〉 − 〈AG0CG

2
0B〉

−〈CG2
0BG0A〉+ 2

(
〈CG3

0B〉 − 〈BG3
0C〉
)
〈A〉

+
(
〈AG3

0B〉 − 〈BG3
0A〉
)
〈C〉+

(
〈CG3

0A〉 − 〈AG3
0C〉
)
〈B〉,

(C2)

where 〈. . .〉 denotes the average over the ground state and we have introduced the notation

G0 =
∑

n6=0

|n〉〈n|
E0 − En

. (C3)

Now we use the following facts from [21] and other similar identities:

〈O1G
n
0O2G

m
0 O3〉 = 〈O1G

n+m
0 O3〉〈O2〉+O(e−L/ξ),

〈O2G
n
0O1G

m
0 O3〉 = O(e−L/ξ),

〈O1G
n
0O2〉 = O(e−L/ξ),

(C4)

if n,m > 0 and the support of operator O2 is at least L distance away from the supports of

O1 and O3. Here ξ > 0 is a scale parameter which is finite for gapped systems. See [21] for

the derivation of these identities.

Using these we can simplify the first term in (C2). Separating C (which is by assumption

a sum of local operators) into two parts C = CA + CB where the support of CA is far away

from B and the support of CB is far away from A, we get

〈AG0BG
2
0C〉 = 〈AG0BG

2
0CA〉+ 〈AG0BG

2
0CB〉

= 〈AG3
0CA〉〈B〉+O(e−L/ξ) = 〈AG3

0C〉〈B〉+O(e−L/ξ).
(C5)
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Similarly, we have

〈BG2
0CG0A〉 = 〈BG3

0A〉〈C〉+O(e−L/ξ), (C6)

−〈CG2
0AG0B〉 = −〈CG3

0B〉〈A〉+O(e−L/ξ), (C7)

−〈CG0AG
2
0B〉 = −〈CG3

0B〉〈A〉+O(e−L/ξ), (C8)

〈BG2
0AG0C〉 = 〈BG3

0C〉〈A〉+O(e−L/ξ), (C9)

〈BG0AG
2
0C〉 = 〈BG3

0C〉〈A〉+O(e−L/ξ), (C10)

−〈AG0CG
2
0B〉 = −〈AG3

0B〉〈C〉+O(e−L/ξ), (C11)

−〈CG2
0BG0A〉 = −〈CG3

0A〉〈B〉+O(e−L/ξ). (C12)

These eight terms exactly cancel the remaining six terms in (C2). Putting everything to-

gether, we get

∮

z=E0

dz

2πi
Tr ([A,GBG]GCG) = O(e−L/ξ). (C13)

We have assumed a single ground state in the above derivation. However, as noted in

[21], exactly the same arguments work for a q-fold degenerate ground state assuming that

they are indistinguishable by local operators, i.e. if

〈p|O|q〉 = δpq〈p|O|p〉+O(L−∞) (C14)

where |p〉, |q〉 are ground states, O is a local operator, and L is the size of the system.

Appendix D: On the path-independence of the relative thermal Hall conductance

In this section we give a more detailed argument showing that the the relative thermal

Hall conductance is independent of the choice of the path connecting two points in the

parameter space of 2d systems with finite correlation length. As explained in the body of

the paper, it is sufficient to show that the 1-form µE(δf∪δg) is exact. Here f(p) and g(p) are

smeared step-functions in the x and y directions. Let f(p) be constant except for x(p) ' a,

and g(p) be constant except for y(p) ' b.

The first step is to make the y direction periodic with period L, thereby replacing R2

with a cylinder Rx×S1
y . For L much larger than the correlation length this will change local

quantities such as µEpqr by an amount of order L−∞. One complication is that the function
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g(p) is not periodic in the y direction and thus does not descend to Rx×S1
y . We deal with this

by reinterpreting (δg)(p, q) = g(q)−g(p) as a function on Λ×Λ defined only for |p−q| < L/2.

To make the evaluation of µE on δf ∪ δg well-defined, we truncate µEpqr to zero whenever

any two of the points p, q, r are farther apart than L/2. Let us denote the truncated energy

magnetization by µ̃Epqr. Because of truncation, we now have d〈Jpq〉 =
∑

r µ̃
E
pqr +O(L−∞). Or

using the notation of Appendix B,

d〈J〉 = ∂µ̃E +O(L−∞). (D1)

Naively, one can deduce the desired result using the Stokes’ theorem (B7):
∫

Γ

µ̃E(δf ∪ δg) =

∫

Γ

d〈JE〉(f ∪ δg) +O(L−∞) = O(L−∞). (D2)

This argument is not correct because the 1-cochain f ∪ δg is not cocontrolled (because

(f ∪ δg)(p, q) does not vanish when x(p) ' x(q) and both x(p) and x(q) are large and

negative), and the evaluation of d〈JE〉 on such a 1-cochain is not well-defined. To fix this,

we first modify the Hamiltonian for x < a−L by scaling it to zero. Since there are no phase

transitions in 1d systems, the correlation length remains finite, and therefore the effect of

such a modification on µ̃E(δf ∪δg) will be of order L−∞. Then the operator-valued chain JE

also becomes zero for x� a, and the application of the Stokes’ theorem becomes legitimate.

This concludes the argument.

Since by definition µE(δf ∪ δg) is the differential of energy magnetization in the neigh-

borhood of the point (a, b), this result means that energy magnetization exists as a globally-

defined function on the parameter space. This function is defined up to an additive constant.

Appendix E: The low-temperature behavior of the 1-form Ψ in a gapped system

In this appendix we analyze the properties of the 1-form Ψ(f, g) whose integral defines

the relative invariant of gapped 2d systems. We will have to use estimates on the behavior of

certain correlation functions at low but non-zero temperature. More precisely, we will assume

that if the T → 0 limit of a correlator is well-defined, then at sufficiently low temperature

deviations from the T = 0 value are of order O(e−T
∗/T ) for some T ∗ > 0. Physically, this is

what one expects for a Hamiltonian with a gap for localized excitations.

One could try to prove it by putting the system on a torus of finite size L. Then for a

correlation function C(T ) one can construct a finite-size analog C(T, L) such that C(T ) =

38



limL→∞C(T, L). The correlation function C(T, L) can be rewritten in terms of many-body

Green’s function G = (z −H)−1. For example, one can write

∫ β

0

〈A(−iτ)B〉Ldτ = Z−1

∮
e−βz

dz

2πi
Tr(GAGB), (E1)

where Z is the partition function, and the contour surrounds all the eigenvalues of H.

Now if we deform the contour into a pair of contours, one surrounding z = E0 and the

other surrounding all other eigenvalues, we see that for low T the contribution of the first

contour is exponentially close to its T → 0 limit, while the contribution of the second one is

exponentially small at low T . Thus C(T, L)−C(0, L) is exponentially small at low T . If we

assume that the order of limits T → 0 and L → ∞ can be interchanged, we can conclude

that C(T ) is exponentially small at low T . These arguments are at best heuristic, since it

is far from clear when interchanging the order of limits is legitimate.

For simplicity of presentation we will work on R2 and simply assume that correlation

functions in gapped phase at non-zero temperature are exponentially closed to their zero-

temperature expectation value. Also, we will consider the system at a fixed non-zero tem-

perature T and will vary only the Hamiltonian. As was explained in Section IV D, rescaling

the temperature is equivalent to rescaling the Hamiltonian. Finally, let us fix some L > 0

which is much larger than the correlation length and define the L-support of a 1-cochain α

to be the set of points p ∈ Λ such that α(p, q) 6= 0 for at least for one q such that |p−q| < L.

Consider the integral of Ψ(f, g) along a path connecting two zero-temperature phasesM
and M′:

I(M,M′) =

∫ M′

M
Ψ(f, g). (E2)

We will argue that it converges, does not change under the shift of the end points M,M′

as long as they do not cross zero-temperature phase transitions, and does not change under

suitable deformations of f, g.

Let us start with the last property. We consider adding to f a function of x(p) which has

compact support (as a function of x) . We need to show that

∫ M′

M
Ψ(f0, g) = 0, (E3)

where f0 is as in Fig 1b. Since the path in the parameter space is away from phase transitions,

the correlation length is finite everywhere along the path. Truncating f0 to zero a distance
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L away from the L-support of δg will introduce error of order L−∞. Denote the truncated

cochain f̃0. It has compact support, therefore we can rewrite the magnetization term as

µE
(
δf̃0 ∪ δg

)
= ∂µE

(
f̃0 ∪ δg

)
= d〈JE(f̃0 ∪ δg)〉 = −1

2
d〈i[H(f̃0), H(g)]〉, (E4)

where in the last step we have used the definition of JE and cup product. The Kubo term,

on the other hand, can be rewritten as

κKubo
xy (f̃0, g) = −β2 lim

s→0+

∫ ∞

0

dt e−st〈〈dH(f̃0, t)

dt
; JE(δg)〉〉

= β2〈〈H(f̃0); JE(δg)〉〉+ β2 lim
s→0+

s

∫ ∞

0

dte−st〈〈H(f̃0, t); J
E(δg)〉〉.

(E5)

The last term is in general non-zero since 〈〈H(f̃0, t); J
E(δg)〉〉 does not have to converge

to zero as t → ∞. However, at zero temperature and for a gapped Hamiltonian one can

explicitly check that this term is zero. Indeed, expanding the expression in the energy

eigenbasis we get

lim
s→0+

s

∫ ∞

0

dte−st〈〈H(f̃0, t); J
E(δg)〉〉

= −i lim
s→0+

s
∑

n>0

〈0|H(f̃0)|n〉〈n|JE(δg)|0〉 − 〈0|JE(δg)|n〉〈n|H(f̃0)|0〉
(E0 − En)2

= 0.

Therefore at small but non-zero temperature we expect the second term in (E5) to be

exponentially suppressed. The remaining term can be rewritten as

β2d〈〈H(f̃0); JE(δg)〉〉 = β2d〈〈H(f̃0);−i[H,H(g)]〉〉 = −βd〈i[H(f̃0), H(g)]〉. (E6)

This term cancels the energy magnetization contribution (E4). Therefore Ψ(f̃0, g) is a dif-

ferential of a function which is exponentially small for T → 0. Hence the integral of Ψ(f̃0, g)

along a path connecting two gapped zero-temperature systems is zero. Therefore the integral

of Ψ(f0, g) along the same path is of order L−∞. Since L is arbitrary, we can take the limit

L→∞ and conclude that the integral of Ψ(f0, g) along this path is zero. Similarly, one can

prove that I(M,M′) does not change if we add to g a compactly supported function of y.

It is tempting to use the same argument with f0 replaced with f to show that I(M,M′)

is zero. But the argument cannot be carried through because it is impossible to truncate f

and make its support compact in such a way that the support of δf ∪ δg coincides with the

support of δf̃ ∪ δg. There will necessarily be additional intersections.
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In order to show that the integral (E2) defining I(M,M′) converges and is independent

of the precise choice of endpoints, consider a variation of the Hamiltonian supported in

a quadrant of R2. A general perturbation can be decomposed into a sum of four such

perturbations. As discussed in the body of the paper, in order to show that I(M,M′) is

independent of endpoints and converges it is sufficient to show that all components of the

1-form Ψ(f, g) are exponentially small as T → 0. Following the same logic as before, we

can shift f, g in Ψ(f, g) away from the support of the variation introducing an error which

is exponentially small in temperature. Recall that the 1-form Ψ is defined as

Ψ(f, g) = β2

[
d

∫ ∞

0

βe−st〈〈JE(δα, t); JE(δγ)〉〉dt− 2µE(δα ∪ δγ)

]
. (E7)

Using the same arguments as in Section III C, one can show that expression in square

brackets is zero at T = 0. Therefore, it is exponentially small at zero temperature, and the

same applies to Ψ(f, g).

Appendix F: Free fermion systems

Consider a free fermionic system on a lattice with a Hamiltonian

H =
∑

p,q

a†(p)h(p, q)a(q). (F1)

The infinite matrix h(p, q) is assumed Hermitian, h(p, q)∗ = h(q, p). The energy on site p is

taken to be

Hp =
1

2

∑

m

(
a†(p)h(p,m)a(m) + a†(m)h(m, p)a(p)

)
. (F2)

Defining the charge operator as a 0-chain

Qp = a†(p)a(p), (F3)

we find the electric current 1-chain

Jpq = i(a†(q)h(q, p)a(p)− a†(p)h(p, q)a(q)). (F4)

Contracting it with a 1-cochain α(q)− α(p) for some function α : Λ→ R, we get

J(δα) = −ia†[h, α]a, (F5)

where we now regard α as an operator in the one-particle Hilbert space.
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Similarly, the energy current operator is a 1-chain

JEpq =
−i
4

∑

m

(
a†(p)h(p, q)h(q,m)a(m)− a†(q)h(q, p)h(p,m)a(m)

−a†(m)h(m, q)h(q, p)a(q) + a†(m)h(m, p)h(p, q)a(q)

+a†(p)h(p,m)h(m, q)a(q)− a†(q)h(q,m)h(m, p)a(p)
)
. (F6)

Contracting it with a 1-cochain α(q)− α(p), we get

JE(δα) = − i
2
a†[h2, α]a. (F7)

The Gibbs state at temperature T = 1/β is defined via

〈a(p, t)a†(q, 0)〉 =

〈
p

∣∣∣∣
e−iht

1 + e−βh

∣∣∣∣ q
〉
, (F8)

〈a(p, t)†a(q, 0)〉 =

〈
q

∣∣∣∣
eiht

1 + eβh

∣∣∣∣ p
〉
, (F9)

and Wick’s theorem. Then

〈J(δf, t)J(δg)〉 = −Tr

(
[h, f ]

e−iht

1 + e−βh
[h, g]

eiht

1 + eβh

)
, (F10)

where the trace on the r.h.s. is taken over the 1-particle Hilbert space L2(Λ), and the

functions f : Λ → R and g : Λ → R are regarded as Hermitian operators on this Hilbert

space. The operators [h, f ] and [h, g] are supported on a vertical and a horizontal strips,

respectively.

Going to the energy basis, replacing t→ t− iτ and integrating over τ from 0 to β we get

〈〈J(δf, t); J(δg)〉〉 =
−1

β

∑

n,m

〈n|[h, f ]|m〉〈m|[h, g]|n〉ei(εn−εm)t eβεn − eβεm
(1 + eβεn)(1 + eβεm)(εn − εm)

,

(F11)

where εn are 1-particle energy levels. Note that in the limit T → 0, the fraction in this

equation is equal to θ(εn)−θ(εm)
εn−εm plus exponentially small terms. Thus at zero temperature εm

and εn must have opposite signs. More generally, we can re-write the fraction as

f(εm)− f(εn)

εn − εm
(F12)

where f(ε) = 1
1+eβε

is the Fermi-Dirac distribution.

Integrating over t, we get

σ(f, g) = i
∑

n,m

〈n|[h, f ]|m〉〈m|[h, g]|n〉
εn − εm + is

f(εn)− f(εm)

εn − εm
(F13)
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It is convenient to rewrite this expression using the 1-particle Green’s functions G±(z) =

1/(z − h± i0). The following formulas are useful:

〈a†Aa〉 = − 1

2πi

∫ ∞

−∞
dz f(z)Tr

([
G+ −G−

]
A
)
, (F14)

−β〈〈a†Aa; a†Ba〉〉 = − 1

2πi

∫ ∞

−∞
dzf(z)Tr

([
G+ −G−

]
AG+B +G−A

[
G+ −G−

]
B
)

= − 1

2πi

∫ ∞

−∞
dzf(z)Tr

(
G+AG+B −G−AG−B

)
,

(F15)

where we have suppressed the argument z for G±(z). Here A and B are operators on the

1-particle Hilbert space and we have assumed 〈a†Aa〉 = 〈a†Ba〉 = 0 in the last formula.

Also note that

hG± = G±h = zG± − 1, [G±, A] = G±[h,A]G±. (F16)

Using the Green’s functions, the electric conductance can be rewritten as

σ(f, g) = − 1

2π

∫ ∞

−∞
dz f(z)Tr

{
[h, f ]G2

+[h, g](G+−G−)− [h, f ](G+−G−)[h, g]G2
−
}
, (F17)

and the Kubo part of the thermal conductance as

κKubo
xy (f, g) = − β

8π

∫ ∞

−∞
dz f(z)Tr

{
[h2, f ]G2

+[h2, g](G+−G−)−[h2, f ](G+−G−)[h2, g]G2
−
}
.

(F18)

The value of energy magnetization µE on a 2-cochain δf ∪ δg can be found to be

µE(δf∪δg) =
1

16π

∫ ∞

−∞
dz f(z)Tr

(
G+dhG+

{[
[h, f ], [h, g]

]
+[h2, f ]G+[h, g]+[h, f ]G+[h2, g]

− [h2, g]G+[h, f ]− [h, g]G+[h2, f ]
})
− (G+ → G−), (F19)

where dh is the variation of the 1-particle Hamiltonian. In the translationally invariant case,

one can replace f and g with momentum derivatives.

Using the above formulas, it is straightforward to compute the 1-form Ψ for any free

system. Let us demonstrate this by computing the T -component of the 1-form Ψ.

For a global re-scaling of the Hamiltonian we have dh = h, and eq. (F19) can be simplified

τE(δf ∪ δg) = − 1

16π

∫ ∞

−∞
dzTr

{
2f(z)G2

−[h2, f ](G+ −G−)[h2, g]

− 2f(z)(G+ −G−)[h2, f ]G2
+[h2, g] + 4f′(z)h2(G+ −G−)[h, f ]G+[h, g]

− 4f′(z)G−[h, f ]h2(G+ −G−)[h, g]− f′(z)h(G+ −G−)[[h, f ], [h, β]]
}
. (F20)
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Variation of κKubo
xy (f, g) contains two pieces:

− β

8π
d

(∫ ∞

−∞
dz f(z)Tr

{
[h2, f ]G2

+[h2, g](G+ −G−)
})

=
β

8π

∫ ∞

−∞
dzTr

{
− 2f(z)[h2, f ]G2

+[h2, g](G+ −G−)− 4f′(z)[h, f ]G2
+[h, g]h3(G+ −G−)

+ 4f′(z)[h, f ]G+[h, g]h2(G+ −G−)− f′(z)[h, f ][h, g]h(G+ −G−)
}

(F21)

and

β

8π
d

(∫ ∞

−∞
dz f(z)Tr

{
[h2, g]G2

−[h2, f ](G+ −G−)
})

=
β

8π

∫ ∞

−∞
dzTr

{
2f(z)[h2, g]G2

−[h2, f ](G+ −G−) + 4f′(z)[h, g]G2
−[h, f ]h3(G+ −G−)

− 4f′(z)[h, g]G−[h, f ]h2(G+ −G−) + f′(z)[h, g][h, f ]h(G+ −G−)
}
. (F22)

Inserting these three contributions into eq. (67) we arrive at

d

dT

(
κxy(f, g)

T

)
=

1

2πT 3

∫ ∞

−∞
dzTr

{
f′(z)[h, f ]G2

+[h, g]z3(G+ −G−)

− f′(z)[h, g]G2
−[h, f ]z3(G+ −G−)

}
. (F23)

The right-hand side looks very similar to the electric conductance (F17). Indeed, integrating

it over temperature from 0 to ∞ and using the formula

∫ ∞

0

dT

T 3
f′(z) = − π2

6|z|3 = − π2

3z3

(
f(z)

∣∣∣
T=∞

− f(z)
∣∣∣
T=0

)
(F24)

gives

κA

T

∣∣∣
T=∞

− κA

T

∣∣∣
T=0

=
π2

3

(
σA
∣∣∣
T=∞

− σA
∣∣∣
T=0

)
. (F25)

Since at infinite temperature the electric Hall conductance vanishes, while the thermal Hall

conductance can be defined to vanish, we arrive at the Wiedemann-Franz law.
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