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We investigate in a fully quantum-mechanical manner how the many-body excitation spectrum
of topological insulators is affected by the presence of long-range Coulomb interactions. In the one-
dimensional Su-Schrieffer-Heeger model and its mirror-symmetric variant strongly localized plas-
monic excitations are observed which originate from topologically non-trivial single-particle states.
These “topological plasmons” inherit some of the characteristics of their constituent topological
single-particle states, but they are not equally well protected against disorder due to the admixture
of non-topological bulk single-particle states in the polarization function. The strength of the effec-
tive Coulomb interactions is also shown to have strong effects on the plasmonic modes. Furthermore,
we show how external modifications via dielectric screening and applied electric fields with distinct
symmetries can be used to study topological plasmons, thus allowing for experimental verification
of our atomistic predictions.

I. INTRODUCTION

The experimental observation of the integer [1] and
fractional [2] quantum Hall effects ultimately lead to the
discovery of fundamentally new topologically non-trivial
quantum phases [3–5]. These manifest themselves in sys-
tems with gapped bulk states and symmetry protected
conducting surface states. They can be realized, for ex-
ample, in insulating materials, which are called topo-
logical insulators (TI). TIs have been found in 3D [6]
and 2D [7] materials as well as in 1D meta-materials [8].
These systems have been characterized in great detail,
with a focus on their single-particle electronic proper-
ties [9], but the role of many-body interactions has so
far been widely neglected. Just recently some atten-
tion has been given to the effects of electron-electron
(Coulomb) interactions in these materials with regards
to their plasmonic excitations. These many-body exci-
tations describe collective oscillations of the electronic
sea resulting from the long-range Coulomb interactions.
In 3D TIs the topological surface states are formed by
massless Dirac fermions which host plasmonic excitations
[10–13], similar to those found in graphene. These have
theoretically been described on a macroscopic [14] as well
as on a fully quantum-mechanical microscopic level using
the random phase approximation (RPA) [15]. In two and
one dimensions topological meta-materials have been cre-
ated, which host 1D [11, 16] and 0D [8, 17–20] plasmonic
excitations. The latter have so far been described mostly
on a macroscopic level.

1D TIs are thereby of particular interests due to their
non-continuous edge-state energy spectra. In contrast to
2D or 3D TIs, which show continuous topological con-
ducting edge or surface bands, 1D TIs are characterized
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by degenerate zero-energy single-particle edge states. As
we will show in the following, collective topological plas-
monic excitations in 1D TIs can originate only from vir-
tual excitations between topologically trivial and non-
trivial states, whereas plasmonic excitations from topo-
logically non-trivial states only are forbidden. This ad-
mixture of topologically different states renders the local-
ized plasmonic modes in 1D TIs special, as we will show
in the following for the 1D Su-Schrieffer-Heeger (SSH)
model [21]. Specifically, we calculate the real-space mod-
ulations of plasmons, from which we observe localized
modes only when the 1D system is in a topologically non-
trivial phase. We show in detail how these localized plas-
mons, which originate from constituent topological elec-
tronic states, are affected by bulk electronic states. We
call them topological plasmons in this paper to empha-
size their specific origin and interpret them as topologi-
cal features in the spectrum of collective excitations. We
present an in-depth study of their robustness against dis-
order, whereby we find relatively stable real-space excita-
tion patterns, but strongly varying plasmonic excitation
energies. Furthermore, we investigate how these topo-
logical plasmon modes are affected by Coulomb interac-
tions and how they can be externally tuned by specifically
shaped electromagnetic fields.

The remainder of this paper is organized in the follow-
ing way. In section II, we introduce the models under
consideration, and briefly review their topological prop-
erties, before we discuss the real-space RPA method in
section III. In section IV we present our main results,
including the observation of localized plasmon modes of
topological origin, the robustness of these modes against
disorder, the effects of Coulomb interactions on these
modes and the excitation of these modes subject to dif-
ferent external fields. This is followed by conclusions in
section V.
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FIG. 1. (a) Illustration of the simple SSH model on a bipartite tight-binding chain. (b) Corresponding energy levels of the
SSH model in a 100-site open chain. We observe two zero-energy edge states (s1 and s2) in the topological phase, whereas
no zero-energy edge states are present in the trivial phase. (c-d) Wave functions of the zero-energy states s1 and s2, showing
localization at the edges. (e) Illustration of a mirror SSH model with inversion at the center of the chain. (f) Corresponding
energy levels of the m-SSH model on a 103-site open chain. We observe localized zero-energy interface and edge states (s3−6),
depending on the interface and edge properties of the chain. (g-j) Wave functions of the localized interface state s3 and localized
interface and edge states s4,5,6.

II. MODELS

We start with the simplest one-dimensional topological
insulator, the SSH model [21], whose Hamiltonian can be
written as

Ĥ = t

N∑
m=1

(|m,B〉 〈m,A|+ h.c.)

+t′
N−1∑
m=1

(|m+ 1, A〉 〈m,B|+ h.c.), (1)

where N is the number of unit cells, and A and B label
the two-atomic sub-lattices. Respectively, t and t′ de-
scribe intra- and inter-cell hopping [Fig. 1(a)]. For peri-
odic boundary conditions, we can write this Hamiltonian
in momentum space as [22]

Ĥ(k) =

(
0 h∗(k)

h(k) 0

)
, (2)

where h(k) = hx(k)+ihy(k), hx(k) = Re(t)+|t′| cos[ka+
arg(t′)], hy(k) = −Im(t) + |t′| sin[ka + arg(t′)], and a is
the lattice spacing. The bulk topological invariant of
the SSH model is the winding number W, which can be
obtained via [22]

W =
1

2πi

∫ π

−π
dk

d

dk
ln[h(k)]. (3)

Throughout this paper we choose t and t′ to be real num-
bers and set a = 2Å. For t > t′ we obtainW = 0, and the
system is correspondingly in the trivial phase, whereas for
t < t′ the winding number is non-zero, W = 1, and the

system is in the topological phase. The phase transition
occurs at t = t′, i.e. where the bulk band gap closes.

Bulk-boundary correspondence implies that the topol-
ogy of the SSH model can also be recognized by the num-
ber of zero-energy edge states Nes = 2W in the case of
open boundary conditions. Fig. 1(b) shows the energy
spectrum of the trivial (t = 1.25 eV > 0.75 eV = t′)
and topological (t = 0.75 eV < 1.25 eV = t′) SSH mod-
els with 100 sites. The electronic structure in the trivial
phase corresponds to a gapped particle-hole symmetric
insulator with Nes = 0, whereas in the topological phase
we observe Nes = 2, i.e. we find two degenerate zero-
energy electronic states, denoted as s1 and s2 in Fig. 1(b),
in the center of the band gap. Their wave functions are
localized at the edges of the chain, as shown in Fig. 1(c)
and Fig. 1(d). The appearance of these two zero-energy
edge states is a result of the chiral symmetry of the SSH
model. In this case, the two zero-energy edge states are
chiral partners of each other.

Additionally, we construct a variant of the SSH model
by reflecting the simple SSH chain at one edge site. This
model is mirror-symmetric, with an interface in the cen-
ter [Fig. 1(e)], which we call the mirror-SSH (m-SSH)
model in the remainder of this paper. The interface con-
necting two topologically distinct sub-SSH chains sup-
ports an additional localized zero-energy state. This kind
of topological zero-energy mode was first found by Jackiw
and Rebbi [23], and is called the Jackiw-Rebbi mid-gap
state. By construction, strong t > t′ (weak t < t′) edges
correspond to a strong (weak) interface. In Fig. 1(f) we
show the energy spectrum of the m-SSH model with 103
sites for both scenarios. In both cases, we observe zero-
energy states in the center of the band gap. For t > t′,
there is only one zero-energy state [s3 in Fig. 1(f)], which
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is localized at the interface [Fig. 1(g)]. For t < t′, there
are three zero-energy states [s4, s5 and s6 in Fig. 1(f)],
which are localized at the interface and at the edges of
chain [Fig. 1(h-j)]. [24]

III. METHOD

In order to study plasmonic excitations of these mod-
els, we derive the electron energy loss spectrum (EELS)
from the dielectric function

ε(ω) = I− V χ0(ω), (4)

evaluated in the atomic basis. Here, V is the density-
density Coulomb interaction whose matrix elements are
given by

Vab =

{
e2/(εb|ra − rb|) if a 6= b,

U0/εb if a = b.
(5)

εb is the background dielectric constant, e the elemen-
tary charge, and U0 =

∫
drdr′e2|φ(r)|2|φ(r′)|2/|r− r′| is

the on-site Coulomb interaction evaluated from the 2D
atomic basis function given by φ(r) = (σ

√
π)−1e−r

2/2σ2

(Gaussian orbitals) using a variance of σ = 1 Å. From
this we obtain U0 = 17.38 eV. χ0(ω) is the matrix rep-
resentation of the non-interacting charge susceptibility,
whose matrix elements in the random phase approxima-
tion [25, 26] are given by [27]

[χ0(ω)]ab = 2
∑
i,j

f(Ei)− f(Ej)

Ei − Ej − ω − iγ
ψ∗iaψibψ

∗
jbψja, (6)

with a and b labeling atomic positions, γ = 0.01 eV is
a finite broadening, and Ei, f(Ei), and ψia are the i-th
electronic eigenenergy, the corresponding Fermi function,
and the tight-binding wave function expansion coefficient
of the atomic orbital φa, respectively, as obtained from
diagonalization of the (m-)SSH Hamiltonian.

To extract the macroscopic EELS(ω) = −Im [1/εn(ω)],
we follow the approach from Refs. 27 and 28. Here,
εn(ω) is defined as the eigenvalue of ε(ω) which maxi-
mizes EELS(ω). The corresponding eigenvector yields a
qualitative spatial representation of the induced charge-
density distribution, represented in the atomic basis. Us-
ing this definition, EELS(ω) shows local maxima at every
possible plasmonic excitation energy. To obtain quan-
titative excitation spectra and correspondingly induced
charge distributions ρind(ω) in the atomic basis result-
ing from specific external excitations φext(ω), we also
evaluate

ρind(ω) = χ(ω)φext(ω) (7)

utilizing the interacting charge susceptibility defined by
[28]

χ(ω) = [I− χ0(ω)V ]
−1
χ0(ω). (8)

To obtain the induced charge distribution ρind(r, ω), we
transform ρind(ω) from the atomic basis representation
to the r-space representation according to

ρind(r, ω) =
∑
a

[ρind(ω)]a φa(r) (9)

with φa(r) the atomic orbital centered at site a.
The induced charge generates the induced potential
φind(r, ω) =

∫
dr′ρind(r

′, ω)/|r− r′|, leading to spa-
tially distributed induced electric field Eind(r, ω) =
−∇φind(r, ω). The corresponding excitation spectrum is
finally obtained from the frequency-dependent induced
energy Uind(ω) =

∫
|Eind(r, ω)|2dr [29]. As in the EELS,

the plasmon frequencies maximize Uind(ω).
In contrast to EELS(ω), Uind(ω) and ρind(r, ω) depend

on the actually applied electromagnetic field φext(r, ω),
and result in quantitative induced charge densities, in-
duced electric fields and induced energies, allowing for
direct comparisons to experiments. Throughout this pa-
per we analyze both, EELS(ω) and Uind(ω), depending
on the specific purpose of the calculation.

IV. RESULTS

A. Plasmonic Excitations in the SSH and m-SSH
Models
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FIG. 2. (a) Electron Energy Loss Spectrum (EELS) of the
topologically trivial (blue) and non-trivial (red) SSH models
on an open-ended 100-site chain. (b) Typical charge mod-
ulation of a bulk plasmon in the lower plasmon continuum
(LPC). (c) Typical charge modulation of a bulk plasmon in
the higher plasmon continuum (HPC). (d) and (e) are the
charge modulations of the two-fold degenerate localized plas-
mon, indicated by the red arrow (p1,2) in (a), which is only
observed in the topological phase.

We begin by examining the plasmonic modes in the
SSH model with open boundaries. Fig. 2(a) shows the
corresponding EELS(ω) in the trivial (t = 1.25, t′ =
0.75) and topologically non-trivial (t = 0.75, t′ = 1.25)
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phases. In both phases, we find a low- and a high-energy
plasmonic continuum (LPC/HPC) which are separated
by a plasmonic gap. These continua are bulk proper-
ties, which we can study in momentum space (see Ap-
pendix A1). From this we find that these two continua
result from the two internal degrees of freedom (sub-
lattices A and B) in the unit cell. Plasmons in the LPC
(HPC) have inter- (intra-) unit-cell charge modulations,
showing longer (shorter) oscillation wavelengths over the
entire chain, as depicted in Fig. 2(b) [Fig. 2(c)]. While
the lower bound of the LPC is entirely inherited from
the single-particle band gap, the gap between LPC and
HPC depends on both the single-particle band gap and
the Coulomb interaction details.

In the topologically non-trivial phase, we find an ad-
ditional excitation at ω ≈ 4.63 eV, indicated by the red
arrow in Fig. 2(a). It is a two-fold degenerate collective
mode whose real-space charge-distribution pattern can
be either even [p1, Fig. 2(d)] or odd [p2, Fig. 2(e)]. In
either case, the charge distribution is highly localized at
the edges of the SSH chain.
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FIG. 3. (a) EELS of the m-SSH model on an open-ended
103-site chain with strong (blue) and weak (red) hopping at
the central mirror interface. (b) and (c) show the charge
modulation of the localized interface plasmon in the m-SSH
model with strong and weak interface hopping, indicated by
the blue (p1) and green (p2) arrows in (a). (d) and (e) are the
charge modulations of the two-fold degenerate localized edge
plasmon, indicated by the red arrow (p3,4) in (a), observed in
the m-SSH model with weak interface hopping.

Fig. 3(a) shows the EELS(ω) of the m-SSH model with
strong (t = 1.25, t′ = 0.75) and weak (t = 0.75, t′ = 1.25)
interface hopping parameters, corresponding to topolog-
ically distinct states. In both cases, we again observe a
LPC, a HPC as well as additional localized plasmonic ex-
citations, labeled by p1,2,3,4. In the strong interface case,
there is just one additional mode p1 at ω1 ≈ 6.0 eV, with
a dipole-like charge distribution localized at the inter-
face, as shown in Fig. 3(b). In the weak interface case,
we find two additional plasmonic excitations, p2 and p3,4,
at ω2 ≈ 5.04 eV and ω3,4 ≈ 4.63 eV, respectively. p2 is an
interface mode [Fig. 3(c)], but with different symmetry

compared to the dipole-like mode shown in Fig. 3(b). p3
and p4 are two-fold degenerate edge-localized plasmons
whose real-space charge-distribution pattern can either
be even [Fig. 3(d)] or odd [Fig. 3(e)]. They are essen-
tially the same as the localized edge plasmons observed
in the simple SSH model because both, the open-ended
topological SSH chain and the open-ended m-SSH chain
with weak interface hoppings, have weakly linked edges
(t = 0.75), leading to dangling bonds at the two ends of
the open chain.

At this point it is important to note, that all of these
plasmonic modes in the (m-)SSH model have already
been theoretically described [8, 17–20] and partially also
experimentally verified [8, 17] in macroscopic 1D chains.
Here we, however, focus on microscopic properties on
smaller length-scale forcing us to use a fully quantum-
mechanical treatment [30]. This allows us to disentangle
non-interacting single-particle states (including their par-
tial topological character) and the resulting many-body
excitations originating from the long-range Coulomb in-
teraction.

B. Topological Origin of Localized Plasmon
Excitations

Noticeable, the localized plasmonic states marked by
arrows in Figs. 2 and 3 resemble the single-particle topo-
logical states shown in Fig. 1. To get a deeper under-
standing of the origin of these localized plasmonic ex-
citations, we decompose the full charge susceptibility
χ0 ≡ χfull

0 = χtopo
0 + χbulk

0 into its topological and bulk
contributions by separating the summation in Eq. (6) as
follows:∑

i,j

. . .︸ ︷︷ ︸
⇒χfull

0

=
∑
i∈TS

∑
j /∈TS

· · ·+
∑
i/∈TS

∑
j∈TS

. . .

︸ ︷︷ ︸
⇒χtopo

0

+
∑
i,j /∈TS

. . .

︸ ︷︷ ︸
⇒χbulk

0

, (10)

where TS is the set of topological zero-energy states. Due
to their degeneracy, there are no virtual excitations be-
tween the topological electronic states, so that we can
ignore the term

∑
i,j∈TS in the above decomposition. We

call the remaining first two terms on the right hand side
of Eq. (10) the topological (χtopo

0 ) and the third term
bulk charge susceptibility (χbulk

0 ).
In order to delineate the bulk and edge state contri-

butions to the plasmon spectrum, we show the EELS of
the topological SSH model using χfull

0 , χbulk
0 and χtopo

0

in Fig. 4(a). As expected, EELSbulk(ω) reproduces just
the LPC and HPC, with no sign of the localized plasmon
at ω ≈ 4.63 eV, as observed in the full EELS(ω). In con-
trast, EELStopo(ω) indicates a plasmon at ω ≈ 4.07 eV
(indicated by the arrow) with strongly localized charge-
distribution patterns [see Figs. 4(b) and (c)], which re-
semble the results shown in Figs. 2(d) and (e), where
the full charge susceptibility was considered. The local-
ized plasmonic excitations in the full EELS thus originate
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from χtopo
0 (ω).
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FIG. 4. EELS decomposition in the SSH model. (a) EELS
of the 100-site open-ended topological SSH chain, calculated
using χfull

0 , χbulk
0 and χtopo

0 respectively. (b) and (c) are
the charge modulations of the two-fold degenerate mode at
ω ≈ 4.07 eV (indicated by the red arrow) observed in the
topological EELS.

This observation becomes plausible by analyzing the
matrix elements of χtopo

0 , which are given by [31][
χtopo

0 (ω)
]
ab

= PabSab(ω) (11)

with

Pab = 〈φa|P |φb〉 =
∑
i∈TS

〈φa|ψi〉 〈ψi|φb〉 (12)

and

Sab(ω) =
∑
i/∈TS

Ei [2f(Ei)− 1]

E2
i − (ω + iγ)2

ψiaψib. (13)

P is the projection operator to the space of topologi-
cal zero-energy states. Each element of χtopo

0 is thus a
product of the projection operator to the space of topo-
logical zero-energy states Pab and Sab(ω), the RPA sum
over all bulk electronic states. The topological electronic
states ψi∈TS(r) are strongly localized at the edges, so
that we find non-zero elements of Pab only for a and b
close to the edges. Sab(ω) does not vary abruptly with
a and b since the bulk states extend across the entire
chain. Sab(ω) thus does not significantly affect the local-
ization of the topological charge susceptibility, yielding a
very sparse matrix χtopo

0 . This also holds for the matrix
representation of the corresponding dielectric function
εtopo(ω) = I − Vcχtopo

0 , which inherits its strongly lo-

calized character from χtopo
0 (ω) (Vc further increases the

localization due to its diagonal-dominant matrix struc-
ture).

Thus, these localized plasmonic excitations indeed
originate from the localized topological electronic states,
which is why we refer to them as topological plasmons
hereafter. It is important to notice that there is still a
bulk-related component in χtopo

0 , as defined by Eq. (13),
as well as in the full χ0 resulting from χbulk

0 . These
bulk contributions strongly affect the topological plas-
mons, i.e., they shift their excitation energy and spread

out their spatial localization. We therefore expect that
the localized topological plasmons are less stable than
their constituent topological single-particle states.

C. Robustness of Localized Topological Plasmons
against Disorder

We numerically study the stability of the topological
plasmon localized at the interface in the m-SSH model
with strong interface hoppings [p1 in Fig. 3(a)] in the
presence of uniformly distributed off-diagonal disorder
δt ∼ U(−a, a) in the hopping matrix elements t and t′.
The strength of the perturbation is limited to a certain
range, i.e., a < |t − t′|/2, such that it will not induce
any topological transition by reversing the order of t and
t′. We consider 500 realizations for each a, ranging from
0.025 eV to 0.2 eV.

These perturbations can affect the single-particle ener-
gies and wave functions as well as the plasmonic excita-
tions and corresponding charge-modulation patterns. To
study the stability of the (excitation) energies, we will
compare the plasmonic electron energy loss spectra with
the electronic density of states. To analyze the disorder-
induced changes to the plasmonic charge-modulation in
comparison to the changes to the electronic wave func-
tions, we will focus on the inverse-participation ratios
(IPR [32]) as measures for the corresponding localization
lengths.

Fig. 5(a) shows the unperturbed and (averaged) per-
turbed electronic DOS. The bulk electronic states are af-
fected by the perturbation, whereas the topological elec-
tronic state at zero energy is unchanged. Fig. 5(b) shows
the averaged EELS around the plasmonic interface mode,
which broadens when disorder is introduced. The ex-
citation energy of this topologically-originated plasmon
is thus less stable against external perturbations than
the topological single-particle state. To quantify this be-
haviour, we plot the relative standard deviation of the
plasmonic excitation energy ωp (R-STD [33]) as a func-
tion of a in Fig. 5(d) (blue dots). From this we clearly
see that ωp gets more and more unstable with increas-
ing disorder. As discussed in the previous section, we
can separate the full polarization χfull

0 = χtopo
0 + χbulk

0

into a “topological” and a “bulk” part. From this we
can calculate the “topological” EELS [Fig. 5(c)] and the
corresponding R-STD [Fig. 5(d), red squares]. The lat-
ter shows a very similar trend of decreasing stability as
discussed before. We can thus conclude that this in-
stability of the excitation energy of the topologically-
originated plasmon is due to bulk electronic states in
χtopo

0 [Eq. (11)]. χbulk
0 does not drastically affect the

stability of the excitation energy, although it shifts the
excitation energy.

Next we examine the stability of the localization of
the topological single-particle wave function (e-IPR) and
the charge-distribution of the interface plasmon (p-IPR)
as a function of a. The results are shown in Fig. 5(e).



6

-2 -1 0 1 2
E (eV)

D
O

S
unperturbed system
a = 0.05 eV
a = 0.10 eV
a = 0.15 eV
a = 0.20 eV

5 5.5 6 6.5 7
ω (eV)

EE
LS

fu
ll (ω

)

4 4.2 4.4 4.6 4.8 5
ω (eV)

EE
LS

to
po

(ω
)

0 0.05 0.1 0.15 0.2
a (eV)

0

2

4

6

R
-S

TD
 (1

0-2
) EELSfull

EELStopo

p-IPRfull

p-IPRtopo

0 0.05 0.1 0.15 0.2
a (eV)

2

3

4

5

IP
R

 (1
0-1

)

p-IPRfull

p-IPRtopo

e-IPR
unperturbed systems
fit

(a)

(b)

(d)

(c)

(e)

FIG. 5. Open m-SSH chain with strong interface hopping, subject to uniform hopping disorder. (a) Averaged single-particle
density of states over 500 realizations with different strengths of hopping disorder a. (b) and (c) are averaged EELS around
the interface topological plasmon over 500 realizations calculated from χfull

0 and χtopo
0 , respectively. (d) Relative standard

deviation (R-STD) of the excitation energies and real-space charge modulations of the topological plasmon modes shown in
(b) and (c) as functions of a. (e) Averaged inverse participation ratio of the topological electronic state (e-IPR) and of the

interface plasmon mode calculated from χ
full/topo
0 as functions of a.

As expected, the e-IPR does not vary at all indicat-
ing the stability of the topological single-particle wave
function. The full p-IPR (red squares) is, however, af-
fected by the perturbation a. The decreasing trend in p-
IPR corresponds to a decreasing localization (i.e. expan-
sion) of the previously strongly localized interface plas-
mon. We fit this decay by an exponential function p-

IPRfull = Ae−a
2/δ with A ≈ 0.5 and δ ≈ 1 (eV)2. As a2

is proportional to the variance of the uniform distribu-
tion U(−a, a), we find that p-IPRfull decays exponentially
with the variance of the perturbation.

In contrast to the plasmonic excitation energy, the
stability of the plasmonic localization is strongly gov-
erned by the bulk polarization χbulk

0 , as we can see from
the comparison of full and the “topological” p-IPR in
Fig. 5(e). The latter (blue triangles) neglects the bulk
polarization and thereby becomes quite stable against
the perturbation a. Thus, the disorder-induced delocal-
ization tendency of the interface plasmon is driven by the
perturbed bulk screening properties. For more details on
the origin of this observation we refer to Appendix B.

In order to quantify whether the plasmonic excitation
energy or its charge-localization is more affected by the
disorder we also plot the R-STD of the p-IPR in Fig. 5(d).
From this we find that the topological plasmon localiza-
tion is less affected than its excitation energy for pertur-
bation strengths of a . 0.15 eV only.

To conclude, it is important to note that δ ≈ 1 (eV)2 is
large compared to the energy scale of the perturbation.
In fact,

√
δ is here of the order of the band gap (1eV),

which is likely beyond the limit of experimentally achiev-
able perturbation levels. Therefore, we expect that the
localization of the topologically-originated plasmon in-
terface mode in the m-SSH model is rather stable when
subjected to sufficiently small hopping noise.

D. Effects of Coulomb Interactions on Topological
Plasmons

In the topological phase of the SSH model, the topo-
logical plasmon at ω ≈ 4.63 eV is a two-fold degener-
ate collective mode whose real-space patterns are local-
ized at the opposite edges of the open chain [Figs. 2(d)
and (e)]. The single-particle topological zero-energy edge
states are also two-fold degenerate. In this case, the de-
generacy of single-particle topological states is fully in-
herited by the topological plasmons due to equivalent
local Coulomb environments at the right and left edges.
In the m-SSH model with weak interface hopping, we
obtain one interface plasmon mode at ω ≈ 5.04 eV in
addition to two two-fold degenerate edge plasmon modes
at ω ≈ 4.63 eV. The constituent single-particle topolog-
ical zero-energy states, on the other hand, are three-fold
degenerate, with wave functions localized at the mirror
interface and at the two chain ends. In this case, the de-
generacy of the constituent single-particle states is only
partly inherited by the derived collective states and split
into “1+2” in the topological plasmons. The interface
mode can now be distinguished from the edge mode in
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FIG. 6. Removal of topological plasmon degeneracy and
enhancement of plasmon localization with locally varying
Coulomb interaction. (a) EELS of the SSH model with
symmetric on-site Coulomb interaction UR

0 = UL
0 , show-

ing a two-fold degenerate plasmon mode. (b) EELS of SSH
models with asymmetric on-site Coulomb interaction UR

0 =
1.2UL

0 , 1.5UL
0 , 2.0UL

0 . In each case, the degenerate mode in
(a) splits into a left edge mode (pL1,2,3, indicated by the solid

arrow) and a right edge mode (pR1,2,3, indicated by dashed
arrows). (c) and (d) are real space charge modulations of
modes pL3 and pR3 , showing that the right edge mode with
larger on-site Coulomb interaction is more localized.

the EELS due to its different local Coulomb environment,
i.e., the interface site is exposed to the Coulomb interac-
tion from the left and right part of the system, while the
edges just feel one tail of the Coulomb interaction.

To verify the above argument we break the Coulomb
environment equivalence of the SSH model by using dif-
ferent local Coulomb potentials on the left and right
edges, i.e. UR0 6= UL0 . Figs. 6(a) and (b) show the re-
sulting EELS(ω) with UR0 = UL0 , 1.2U

L
0 , 1.5U

L
0 , 2U

L
0 .

For UL0 6= UR0 [Fig. 6(b)] the two-fold degenerate edge
plasmon is split into two non-degenerate modes: the left
mode (pL1,2,3) and the right mode (pR1,2,3) with different
excitation energies. By increasing the difference between
UL0 and UR0 we also increase the energy difference be-
tween the two excitation energies. With increasing on-
site Coulomb interaction UR0 , the charge distribution at
the right edge gets more localized in contrast to the mode
localized at the left edge, which, for instance, can be seen
by comparing the mode pL3 [Fig. 6(c)] and the mode pR3
[Fig. 6(d)]. Such a manipulation of the topological plas-
mons by changes to the local Coulomb interactions is
remarkable, since it does not affect other plasmonic exci-
tations in the system. In contrast, global changes to the
Coulomb interaction will affect all plasmons simultane-
ously (see Appendix C).

E. Excitation of Topological Plasmons Subject to
Different External Potentials

While the EELS shows all possible plasmonic excita-
tions of a system, it does not yield any information about
the excitations generated by specific external electromag-
netic fields. In reality the symmetry of the external elec-
tromagnetic field will strongly influence which modes will
and can be excited. Specifically, it depends on whether
χ0(ω)φext(ω) is zero or not [see Eqs. (7) and (8)]. We
therefore turn to the induced energy spectrum Uind(ω),
which renders the realistic response to specific applied
external electromagnetic fields.

Lo
g(

U
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d) linear external potential

0 2 4 6 8
ω (eV)

Lo
g(

U
in

d) centered quadratic external potential

X X

(a)

(b)

(c) (d)
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p1

p2

p2

FIG. 7. Induced energy in the 100-site open-ended topolog-
ical SSH chain, subject to a (a) linear and to a (b) centered
quadratic external electrical potential. The two-fold degener-
ate topological edge plasmon excitation is indicated by a red
dashed line. (c) and (d) show charge-distribution patterns
of this mode corresponding to the linear and the centered
quadratic external potentials.
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FIG. 8. Induced energy in the 103-site open-ended m-SSH
chain with strong interface hoppings, subject to a (a) linear
and to a (b) centered quadratic external electrical potential.
The topological interface plasmon excitation is indicated by
a red dashed line.

To this end we focus on the topological plasmons in
the SSH and m-SSH models subject to linear and cen-
tered quadratic external electrical potentials. The linear
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potential (LP) is an odd function, whereas the centered
quadratic potential (CQP) is an even function in real
space. Figs. 7(a) and (b) show the induced energy spec-
tra of the SSH model subject to both potentials. The
topological plasmon mode at ω ≈ 4.63 eV, as shown in
Fig. 2(a), also appears in the induced energy spectrum
for each of these cases (the red dashed line). Fig. 7(c)
and (d) depict the corresponding real-space charge distri-
butions which inherit the symmetry of the external po-
tential. In more detail, we find an odd real-space charge
distribution by using the LP [Fig. 7(c)] which resembles
the one shown in Fig. 2(e) and an even distribution by us-
ing the CQP [Fig. 7(d)] as found in Fig. 2(d). Therefore,
we can excite either one of these two degenerate modes
by choosing certain external potentials.

Figs. 8(a) and (b) show the induced energy spectra of
the m-SSH model with strong interface hopping, also sub-
ject to LP and CQP. The EELS of this model [Fig. 3(a)]
has a plasmon mode at ω ≈ 6.00 eV with a dipole-
like real-space charge-distribution pattern observed in
Fig. 3(b). Thus, it can be excited by LP but not by
CQP as verified in Fig. 8.

The symmetry of the external perturbation has thus
a strong effect to the topological plasmonic excitations
while the rest of the spectrum is unchanged and is there-
fore well-suited to study these special and highly localized
states.

V. CONCLUSIONS

In summary, we comprehensively studied the plas-
monic excitations in the one-dimensional SSH model and
its mirror-symmetric variant (m-SSH model) using a fully
quantum mechanical approach, with the Coulomb in-
teraction considered on the RPA level. Two gapped
bulk plasmonic branches as well as localized plasmonic
edge states are observed in the topologically non-trivial
phases, showing resemblance to the constituent single-
particle bulk energy bands and topological states. How-
ever, there are notable differences between these collec-
tive excitations compared to the single-particle states,
which have not been fully appreciated before. Due to
the contribution of the bulk single-particle states in the
polarization function, the stability of the localized plas-
mons against disorder is weakened. Furthermore, the
plasmonic band gap, the excitation energies, the degen-
eracies, and the localization of the topologically origi-
nated plasmons are severely affected by the Coulomb in-
teractions in the system. Remarkably, these localized
plasmons can be manipulated by changing the effective
local Coulomb interactions, which provides a promising
tuning knob to experimentally control these modes via
substrate modulations. Finally, we have provided sim-
ple guidelines to selectively excite localized plasmons by
using specifically shaped external electric fields. These
findings can be used to distinguish topologically origi-
nated plasmons from bulk plasmons and to design highly

stable localized plasmons in topologically non-trivial sys-
tems. Furthermore, our RPA analysis of the Coulomb in-
teraction can be used as the foundation for full GW -like
calculations in topologically non-trivial systems.
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Appendix A: Plasmon Dispersion of the SSH Model

The RPA dielectric function of the SSH model in mo-
mentum space is given by

ε(q, ω) = I− V (q)χ0(q, ω), (A1)

where ε(q, ω), V (q) and χ0(q, ω) are matrices in the sub-
lattice basis. We calculate V (q) by Fourier transforming
the real space Coulomb interaction V (R) from Eq. (5)
evaluated on the discrete SSH lattice, as

Vab(q) =
∑
R

Vab(R)e−iqR. (A2)

Here, a and b label the atoms within a unit cell. The
susceptibility matrix in the sub-lattice basis reads

[χ0(q, ω)]ab =
∑
k,n,n′

fn(k + q)− fn′(k)

En(k + q)− En′(k)− ω − iγ

ψ∗n′,a(k)ψn,a(k + q)ψ∗n,b(k + q)ψn′,b(k)

(A3)

where n and n′ are energy band indices. En(k) and
ψn(k) of the SSH model are obtained by diagonalizing the
Hamiltonian from the Eq. (2). ψn,a(k) is the component
of the state ψn(k) on the sublattice a. The plasmon dis-
persions can finally be observed from EELS(q, ω), which
is evaluated from the dielectric matrix ε(q, ω) using the
same method as introduced in the Sec. III.

In Fig. 9 we show the (log-scaled) EELS(q, ω) of the
SSH model for different parameter sets. In Fig. 9(a)
(t 6= t′ and εb = 1) we observe two plasmon branches
corresponding to the in- (LPC) and out-of-phase (HPC)
charge oscillations within the unit cells. The two
branches are separated by a plasmonic energy gap, which
closes when the single-particle gap closes (i.e. t = t′), as
depicted in Fig. 9(b). At the same time, this plasmonic
gap is also strongly affects by the Coulomb interaction,
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FIG. 9. EELS of the SSH model in momentum space for dif-
ferent hopping parameters t and t′ and dielectric constants
εb. Specifically, shown in (a) are two plasmon branches sepa-
rated by a gap, when t 6= t′ and εb = 1. In (b), the plasmonic
gap closes due to the closure of the single-particle energy gap
(t = t′). In (c), the plasmonic gap greatly shrinks with in-
creased environmental screening (εb = 25).

as illustrated in Fig. 9(c), where we use the same t and
t′ as in the Fig. 9(a) but increased the dielectric screen-
ing (εb = 25). In such case, the plasmonic gap greatly
shrinks and the two branches nearly touch.

Appendix B: Plasmonic Excitation Energy &
Localization Stability

To understand our observations from section IV C, we
go back the decomposition of the full charge susceptibility
and the definition of χtopo

0 . p-IPRtopo and EELStopo(ω)

are derived from the perturbed ε̃topo = I−Vcχ̃topo
0 . The

only quantity within this expression which is modulated
by the applied perturbation is S̃(ω), which can be ap-

proximated by S̃(ω) ≈ c(a)S(ω), where c(a) is a scaling
factor depending on the perturbation strength a. Thus
ε̃topo is affected just by a simple scaling factor which
does not change its eigenvector, but its eigenvalue. Cor-
respondingly, the excitation energy [EELStopo(ω)] is af-
fected by the perturbation, but the real-space localization
[p-IPRtopo] is not.

For the full quantities, i.e., p-IPRfull and EELS(ω) de-

rived from the perturbed ε̃ = I− Vcχ̃0 this line of argu-
mentation does not hold anymore. Here, χ̃0 cannot be
described as a scaled version of χ0, so that both eigenvec-
tors and energies are affected by the perturbation. Thus,
χbulk

0 is responsible for the deloclaization of the topolog-
ical plasmon with increasing perturbation, while S(ω) is
the main reason for the destabilization of its excitation
energy.

Appendix C: Global Variation of the Coulomb
Interaction

Globally varying the Coulomb interaction by changing
the background dielectric constant εb will shift the exci-
tation energies of all plasmons including topological ones.
We demonstrate this by showing the EELS(ω) of the SSH
and m-SSH models in their topological non-trivial phase
for varying εb in Fig. 10. The excitation spectra shift
continuously to lower energies with increasing εb and
thus decreasing Coulomb interactions. In more detail,
high-energy modes shift stronger than those with lower
excitation energies.

EE
LS
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εb = 1.1
εb = 1.2
εb = 1.3

3 4 5 6 7 8
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EE
LS
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FIG. 10. Effect of the screening environment on the plasmon
spectrum. Shown are the EELS of (a) the open-ended 100-site
topological SSH chain and (b) the open-ended 103-site m-SSH
chain with strong interface, subject to different background
dielectric constant εb.
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