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We report quantum Hall effect breakdown of a local filling factor vlocal = 1 state formed in a bulk vbulk = 2 

system in an AlGaAs/GaAs heterostructure. When a finite source-drain bias is applied across the local system, 
the breakdown occurs in two steps. At low bias, quantized conductance through the vlocal = 1 system breaks 
down due to inter-edge electron tunneling. At high bias, the incompressibility of the vlocal = 1 system breaks 
down because the spin gap closes. The two steps are resolved by combining measurements of resistively 
detected nuclear magnetic resonance and shot noise, which allows one to evaluate electron spin polarization 
in the local system and spin-dependent charge transport through the system, respectively. 
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In integer quantum Hall (QH) systems, electronic 

current flows along chiral edge channels1,2. When a fine 
gate is used to form a region with local filling factor vlocal 
= 1 so as to traverse a bulk spin-unpolarized vbulk = 2 
system, only spin-up electrons are transmitted through the 
local region along the vlocal = 1 edge channel. The vlocal = 1 
system, thus operating as an ideal (spin) filter for edge 
channels at low bias, has been widely used to study charge 
and spin dynamics in QH systems, such as spin-charge 
separation3, providing insights into edge coherence and 
energy equilibration. When a high bias voltage is applied, 
however, inter-edge scattering sets in, which drives the 
vlocal = 1 system out of equilibrium so that it exhibits 
significant nonlinear behavior that bears a resemblance to 
the QH effect breakdown in macroscopic samples4,5. The 
occurrence of spin-flip scattering as well as 
spin-conserved scattering in the QH effect breakdown has 
been manifested by the dynamic nuclear polarization of 
the host crystal in both integer and fractional regimes6-9. 
Indeed, resistively detected nuclear magnetic resonance 
(NMR) has shown that the electron spin polarization 
decreases under a high bias in both mesoscopic and 
macroscopic systems10-13. On the other hand, inter-edge 
scattering generates shot noise in mesoscopic systems, 
from which the spin polarization of the transmitted current 
can be deduced under the assumption that the scattering 
event is random partitioning of electrons, i.e., with no 
correlation13. The disagreement between the NMR and 
shot-noise results found in Ref. 13, in turn, suggests that 
the charge scattering process generating the shot noise 
does not directly reflect the electron spin population in the 
local system.  

In this paper, we report a two-step breakdown of a vlocal 
= 1 QH state in a narrow constriction of a vbulk = 2 system 
[Fig. 1(a)]. With increasing bias, in the first step, the 
quantized conductance G0 = e2/h (e: elementary charge, h: 
Plank’s constant) of the vlocal = 1 system breaks down due 
to inter-edge electron tunneling. In the second step, the 
incompressibility of the vlocal = 1 system breaks down 
because the spin gap closes. This is induced by the 
suppression of the exchange energy at high bias. We show 
that the deviation between the NMR and shot-noise results 
reported in the previous paper13 appears in the second 
regime. The well-designed combination of the NMR and 
shot-noise measurements presented in this paper enables 
us to gain deep insight into the complicated nonlinear 

response of the vlocal = 1 system, thus opening a way to 
investigate highly nonequilibrium electron dynamics in 
mesoscopic QH systems.  

A schematic of the experiment is shown in Fig. 1(b). 
The sample was fabricated in a two-dimensional electron 
system (2DES) in an AlGaAs/GaAs heterostructure (95 
nm in depth) with electron density ne = 2.5 × 1011 cm−2 
and mobility µ = 3.3 × 106 cm2V−1s−1. Electron 
temperature Te of the sample was reduced to 14 mK in a 
dilution refrigerator (base temperature: 7 mK), and an 
external magnetic field Bext = 5.0 T was applied 
perpendicular to the 2DES to form the vbulk = 2 state. The 
magnetic-field direction was from the back to front of the 
sample so that the chirality of the edge states was 
clockwise. A gate voltage Vg was applied to the split gate 
(length: 200 nm, width: 300 nm) to form a narrow 
constriction (inset), where a vlocal = 1 state is formed. We 
applied a source-drain voltage Vin to drive a current Iin 
through the ohmic contact Ω0. The dc transport 
characteristics through the constriction were evaluated by 
measuring backscattered current I1 through contact Ω1. In 

Figure 1. (a) Local vlocal = 1 QH system formed in a 
bulk vbulk = 2 system. (b) Schematic of experimental 
setup. (Inset) scanning electron micrograph of the 
device. (c) Pinch-off traces of the split gate measured 
at several Vin values.



addition to the conductance G = (Iin – I1)/Vin = G0(T↑ + T↓), 
we measured the differential conductance g = dIin/dVin – 
dI1/dVin using a standard lock-in technique with a small ac 
modulation of Vin (15 µV, 37 Hz). Here, T↑(↓) is the 
transmission probability for spin-up (-down) electrons. 
The shot noise was evaluated by measuring current 
fluctuation S2 = 〈(ΔI2)2〉 through contact Ω2 using an LC 
circuit and a cryogenic amplifier. The resistively detected 
NMR of 75As nuclei was measured using a conventional 
three-step procedure12-14 by applying a radio-frequency 
in-plane magnetic field Brf with a four-turn coil. Further 
details of the measurements are described in 
Supplemental material (S.M.)15.  

The gate voltage Vg dependence of g measured at 
several Vin values is shown in Fig. 1(c). At Vin = 0 mV, a 
well-developed g = e2/h plateau is observed over a wide 
range of −1.0 V < Vg < −0.7 V, indicating spin-resolved 
transport in the lowest Landau level. The νlocal = 1 system 
is formed in this g = e2/h plateau region. When Vin is 
increased to 0.3 mV, the g = e2/h plateau disappears, 
signaling nonlinear transport through the constriction.  
When Vin is further increased to 1.05 mV, the pinch-off 
trace changes further to show a monotonic decrease in g 
with decreasing Vg. 

The nonlinear nature of the breakdown becomes more 
evident by color plotting g in the Vin-Vg plane [Fig. 2(a)]. 
The g = e2/h plateau, which appears as a white area around 
Vin = 0 mV extending over −1.0 V < Vg < −0.7 V, is 
suddenly terminated at |Vin| = 0.25 mV. To provide more 
details, in Fig. 2(b) we plot g traces at several fixed Vg 
values. The g = e2/h plateau appears as accumulated traces 
around |Vin| = 0 mV. Complex nonlinear behavior is seen at 
|Vin| > 0.25 mV. For example, at Vg = –0.96 V (red solid 
curve), g first starts to increase from e2/h at |Vin| ≅ 0.25 mV 
and then begins to decrease before it saturates at g ≅ 
0.85e2/h for |Vin| > 0.7 mV. It should be noted that the 
nonlinear behavior is seen in the regime where the bias 
energy |eVin| is considerably larger than the Zeeman 
energy EZ = |g*μBB| (≅ 0.12 meV) and much smaller than 
the exchange-enhanced spin gap EZ + Eex (≅ 2 meV) in 
bulk 2DES samples16-18.  

The nonlinear behavior in the low-bias regime (|Vin| < 
0.45 mV) can be understood by considering the inter-edge 
electron tunneling illustrated in Figs. 2(c) and 2(d). The 
tunneling is manifested in the Vg dependence of g. For 
example, when Vg is slightly increased from –0.96 to 
–0.90 V [blue solid line in Fig. 2(b)], g starts to increase 
from e2/h at a lower |Vin|. This indicates the enhanced 
forward scattering of spin-down electrons, which can be 
explained by the shorter distance between the νbulk = 2 
edges at a higher Vg [Fig. 2(c)]. When Vg is slightly 
lowered to –0.98 V instead (green solid line), g turns to 
decrease from e2/h, reflecting the reduced distance 
between the νlocal = 1 edges and the resultant enhanced 
backscattering of spin-up electrons [Fig. 2(d)].  

To unravel the complex behavior at high bias (|Vin| > 
0.45 mV), we analyze the shot noise and NMR results 
measured over the entire |Vin| range. Figures 3(a), (b), and 
(c) plot, as a function of Vin, the results of three different 

measurements, (a) conductance G, (b) excess current noise 
ΔS2 = S2(Vin) – S2(0), and (c) NMR Knight shift K, which 
were obtained at the same Vg of –0.96 V. The nonlinear 
behavior of G, similar to that of g, is evident in Fig. 3(a), 
where G first increases at |Vin| ≅ 0.25 mV and then begins 

Figure 2. (a) Color plot of g as a function of Vg and Vin. 
(b) Vin dependence of g measured in 20-mV (solid 
lines: 0 V ≤ Vg ≤ −1.1 V) and 4-mV (dashed lines: 
−1.024 V ≤ Vg ≤ −1.036 V) steps of Vg. Each trace was 
measured by sweeping Vin with a slow speed of 0.067 
mV/min. (c)(d) Schematics of the inter-edge tunneling 
at (c) high and (d) low Vg.

Figure 3. (a) Vin dependence of G at Vg = −0.96 V. (b) 
Vin dependence of ΔS2. Solid and dashed curves are Sshot 
calculated assuming Fc = 1 for fully spin-degenerate 
and spin-resolved transport, respectively. In general 
cases, Sshot appears in the green area. (c) Vin dependence 
of Pn = K/Kmax. Error bars indicate fitting errors for the 
NMR spectra in Fig. 3(d). (d) Representative NMR 
spectra. Blue lines are fitted curves. 



to decrease above |Vin| ≅ 0.45 mV. ΔS2, which vanishes at 
low |Vin|, starts to increase above |Vin| ≅ 0.25 mV [Fig. 
3(b)]. K monotonically decreases with increasing |Vin| [Fig. 
3(c)]. 

We first compare the observed Vin dependence of ΔS2 
with the theoretical shot noise expected for the two 
limiting cases—spin-degenerate and fully spin-resolved 
transport—shown as the solid and dashed curves in Fig. 
3(b), respectively. Shot-noise power can be expressed as19  

shot 0 2 0 in coth inB Bin , (1)  

where kB is the Boltzmann constant and the factor F 
represents the shot-noise reduction due to various 
mechanisms. To disentangle spin-dependent mechanisms 
from other ones, here we express F as F = FsFc, with Fs = 
ΣσTσ(1 − Tσ) representing spin-dependent mechanism (σ = 
↑or ↓). The factor Fc accounts for other mechanisms, such 
as the anti-bunching of tunneling electrons. For the 
moment, we set Fc = 1, assuming the electron scattering at 
the constriction to be random partitioning. The Sshot vs Vin 
curves for (i) spin-degenerate and (ii) fully spin-resolved 
transport, shown in Fig. 3(b), were obtained by setting (i) 
T↑ = T↓ = G/2G0 so that Fs = 2(G/2G0)[1 – (G/2G0)] and 
(ii) Fs = [G/G0 – floor(G/G0)]{1 – [G/G0 – floor(G/G0)]}, 
respectively. In general cases, Sshot takes intermediate 
values between the two curves (green area). Indeed, the 
measured ΔS2 values fall inside this area. 

In the linear-response regime (|Vin| < 0.25 mV), we 
observe ΔS2 ≅ 0, in line with spin-resolved transport (Fs ≅ 
0, dashed curve). This unambiguously shows that the 
transport through the vlocal = 1 region is fully spin resolved. 
As |Vin| is increased, ΔS2 starts to increase at |Vin| = 0.25 
mV. Note that this threshold for finite shot noise is 
considerably lower than that expected for the 
spin-resolved transport (0.5 mV, dashed curve). This 
indicates that the system has entered a different regime 
where both spin-up and spin-down electrons are involved 
in the inter-edge scattering. We evaluate the spin 
polarization PT ≡ (T↑ − T↓)/(T↑ + T↓) of the transmitted 
current from the shot-noise result. This is possible when 
the scattering event is random partitioning, i.e. Fc = 1. We 
calculate the quantity αshot = (T↑’ − T↓’)/(T↑’ + T↓’), where 
T↑’ and T↓’ are the quantities obtained by solving the 
coupled equations T↑’ + T↓’ = G/G0 and ΣσTσ’(1 − Tσ’) = 
ΔS2/S0. Note that when Fc = 1, T↑(↓)’ = T↑(↓) so that αshot = 
PT. In Fig. 4(a), the obtained αshot is plotted as a function 
of Vin. The plot reveals the existence of thresholds at Vin ≅ 
0.25 mV (≡ Vth1) and 0.45 mV (≡ Vth2). At Vin = Vth1, αshot 
starts to decrease from 1 and then, at Vin = Vth2, it stops 
decreasing linearly and starts saturating toward αshot ≅ 0.9. 
We note that Vth1 and Vth2 are close to the Vin values at 
which G starts to increase and decrease, respectively [Fig. 
3(a)]. Below, we compare αshot with the spin polarization 
evaluated from NMR measurements. 

The Knight shift K of the NMR is proportional to the 
electron-spin imbalance Δn = n↑ – n↓ in the constriction, 
where n↑ and n↓ are spin-up and spin-down electron 

densities, respectively12-14. Here, we assume n↑ + n↓ to be 
constant at a given Vg and evaluate the spin polarization Pn 
≡ (n↑ – n↓)/(n↑ + n↓) at Vg = –0.96 V as Pn = K/Kmax, where 
Kmax is the Knight shift for the fully spin-polarized case. 
Figure 3(d) shows representative NMR spectra and fitted 
curves [for the fitting function, see eq. (S1) in S.M.15]. 
When the 2DES in the local region is completely depleted 
at Vg = –1.2 V, a peak is observed at 36.399 MHz, which 
we use as the reference resonance frequency fref of 75As 
nuclei at Bext = 5.0 T. The spectra obtained at Vg = –0.96 V 
show finite shifts to lower frequencies. From the fitting at 
Vin ≅ 0 mV, where the 2DES in the constriction is fully 
spin polarized, Kmax ≅ 25 kHz is obtained. When Vin is 
increased, the NMR spectra shift to a higher frequency 
toward fref, indicating a decrease in K (∝ Pn) due to the 
tunneling of spin-down electrons across the constriction. 
Figure 3(c) summarizes the Vin dependence of K/Kmax (= 
Pn). We fit the data at Vin > 0.25 mV by a linear function 
(Pn = –772 |Vin| + 1.17) with the constraint that Pn = 1 in 
the linear-response regime (|Vin| < 0.25 mV)20. Thus, we 
obtain Pn over the entire Vin range, as shown by the blue 
curve. 

We compare the Vin dependence of αshot and Pn in Fig. 
4(a). At Vin < Vth2, αshot agrees well with Pn, suggesting 
αshot = PT ≅ Pn in this regime. In contrast, αshot tends to 
saturate at αshot ≅ 0.9 for Vin > Vth2, while Pn monotonically 
decreases with increasing Vin. The deviation between αshot 
and Pn at high bias clearly shows that the electron 
dynamics at low and high bias are distinct from each other.  

Figures 4(b) and 4(c) present the Vg dependence of Vth1, 
Vth2, and αth (αshot value at Vin = Vth2) extracted from the 
shot-noise results (see S.M. for details of the analysis15). 
While Vth1 and Vth2 vary depending on Vg, αth remains 
almost constant at αth ≅ 0.9 independent of Vg. This 
implies that the second step of the breakdown is triggered 
when the spin polarization drops to Pn ≅ 0.9 due to 
spin-down electron tunneling. The decrease in Pn leads to 
the suppression of the exchange-enhanced spin gap [inset 
in Fig. 4(a)]. As a result, the incompressible vlocal = 1 state 
breaks down at |Vin| > Vth2, leading to highly 

Figure 4. (a) Vin dependence of αshot and Pn. (Inset) 
schematics of the lowest Landau levels in the 
constriction at low- (left) and high-bias (right) regimes. 
(b) Vg dependence of Vth1 and Vth2. (c) Vg dependence 
of αth. 



nonequilibrium electron dynamics that is distinct from the 
inter-edge electron tunneling. The complete disappearance 
of the g = e2/h plateau at Vin = 1.05 mV supports the 
breakdown picture [Fig. 1(c)]. In addition, the 
bias-induced exchange-energy suppression can explain 
why eVth1 and eVth2 are larger than the Zeeman energy and 
smaller than the exchange-enhanced spin-gap energy. 

 We observe that Vth2 is significantly enhanced with 
decreasing Vg, whereas Vth1 increases only slightly. The 
strong Vg dependence of Vth2 is linked to the Vg 
dependence of Pn. That is, at lower Vg, higher |Vin| is 
required to attain a sufficient spin-down tunneling rate 
[Fig. 3(d)]. This is consistent with the observation that 
under a finite bias K increases with decreasing Vg (see Fig. 
S5 in S.M.15). In contrast, Vth1 depends on Vg only weakly 
because it indicates the onset of inter-edge tunneling for 
either spin-up or spin-down electrons.  

In the second breakdown regime, the deviation 
between Pn and αshot suggests Fc < 1 at Vin > Vth2. In the 
following, we analyze the shot-noise data at Vg = –0.96 V, 
with the Fc = 1 constraint removed and, instead, with the 
assumption Pn = PT introduced. With this assumption, T↑ 
and T↓ can be calculated from the measured Pn and G. The 
T↑ and T↓ values obtained in this way are plotted in Fig. 
5(a) as a function of Vin, along with T↑ + T↓. We use these 
T↑ and T↓ traces to calculate Fs as a function of Vin, which 
in turn allows one to simulate Sshot for arbitrary Fc. In Fig. 
5(b), we compare the Sshot curves simulated for Fc = 1 and 
Fc = 1/3 with the experimental ΔS2 data shown in Fig. 3(b). 
In this plot, we again observe the two-step behavior of the 
breakdown: in the low-bias regime (Vth1 < |Vin| < Vth2), ΔS2 

follows the Fc = 1 shot-noise curve; and at higher bias 
(Vth2 < |Vin|), it deviates from the Fc = 1 curve and 
approaches the Fc = 1/3 curve. Figure 5(c) summarizes the 
Vin dependence of Fc obtained from the relation Fc = 
ΔS2/FsS0. Above |Vin| = Vth2, we find a significant decrease 
in Fc from Fc ≅ 1 to 1/3. Thus, the nonequilibrium 
transport in the second breakdown regime can be 
evaluated as a change in Fc. 

Although electron dynamics in the second 
nonequilibrium regime is unclear, the shot-noise results 
provide important insights into the second breakdown 
process. One possible scenario inferred from the 
experimental data is the formation of compressible 
electron liquid. Transport through the compressible liquids 
of nearly half-filled spin-up and spin-down Landau levels 
may cause the Fc ≅ 1/3 shot noise21-25. Another possible 
scenario is the fractional charge tunneling through the 
local fractional QH system26-29. For both scenarios, the 
incompressibility of the vlocal = 1 state needs to break 
down. Further experimental and theoretical studies will 
clarify the electron dynamics in the highly nonequilibrium 
regime. 

In summary, we have investigated the nonlinear 
behavior of the vlocal = 1 state formed in the vbulk = 2 
system. A two-step breakdown process was successfully 
identified through NMR and shot-noise measurements. In 
the first step, inter-edge electron tunneling breaks down 
the vlocal = 1 conductance plateau. The second step is 
caused by the closing of the spin gap due to the 
suppression of the exchange energy. Shot-noise reduction 
toward Fc ≅ 1/3 is observed in the second regime, 
indicating the breakdown of the incompressible vlocal = 1 
state.  
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