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Abstract: The traditional atomistic Green’s function (AGF) was formulated in the harmonic 
regime, preventing it from capturing the role of anharmonicity in interfacial thermal transport. 
Incorporating anharmonicity into AGF has long been desired but remains challenging. In this 
work, we developed an anharmonic AGF model to incorporate anharmonicity at interfaces in 3-
D structures rigorously. Without any fitting parameters, we can obtain the thermal interface 
conductance using first-principle force constants as the only inputs. This work represents a 
significant step forward for AGF.  
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Introduction  

Heat dissipation in microelectronics is a critical issue that limits their performance and 
reliability [1]. Massive resistance at solid-solid interfaces often presents the major bottleneck for 
heat removal [2]. Therefore, understanding interfacial thermal transport and engineering 
interfaces to reach ultrahigh thermal conductance are in great demand. Atomistic Green’s 
function (AGF) has been a powerful tool to study nanoscale thermal transport [3,4], especially 
across interfaces. However, the traditional AGF [3,5–12] was formulated within the harmonic 
regime. The lack of anharmonicity has been a major limitation for AGF to treat interfacial 
thermal transport in the practical temperature ranges [13,14]. Including anharmonicity in AGF is 
in principle possible, but very challenging. Since Mingo included anharmonicity for a 1-D 
atomic junction in 2006 [15], there have been few attempts to include anharmonicity for 3-D 
structures using different levels of approximation, such as obtaining the anharmonic potential 
energy or inelastic phonon scattering rates by fitting the experimental data [16–18]. Those 
studies showed the importance of anharmonicity on interfacial thermal transport and inspired our 
efforts to include anharmonicity in AGF without any approximation.  

In this paper, we developed a rigorous formalism of anharmonic AGF to treat the inelastic 
phonon scattering processes at 3-D interfaces. We explicitly derived all the equations in the fully 
quantum mechanical regime. Without any fitting parameters, we incorporated both harmonic and 
anharmonic first-principles force constants into AGF. To include many-body interactions via 
Keldysh formalism [19–22], we formulated a new Fourier decomposition method for 3rd order 
tensors and defined the many-body self-energy for 3-D structures in reciprocal space. This new 
decomposition method dramatically reduces the otherwise prohibited computational load and 
allows us to accurately account for the inelastic phonon scattering using first-principles force 
constants. We then applied the anharmonic AGF to 3-D silicon- (Si) and aluminum- (Al) based 
interfaces as a demonstration. We obtained a consistent result with earlier studies that 
anharmonicity enhances interfacial thermal transport on Si/germanium (Ge) interfaces [23]. 
Moreover, by employing our method, we demonstrated the increase of heat current at different 
frequencies and quantitatively explained the intrinsic mechanism of this enhancement using the 
overlap of phonon density of states (DoS). The 3-D anharmonic AGF method we present here 
paves the way for AGF studies of interfacial thermal transport when anharmonicity is not 
negligible. 

Method derivation 

1-D harmonic AGF—In a traditional AGF model, the system is composed of two semi-infinite 
leads and one central region. The physical interface is in the central region. Retarded Green’s 
function, ࡳ, describes the dynamics of phonons in the central region, taking the effect of the 
leads into account through self-energies:   

ࡳ  ൌ ሾ߱ଶࡵ െ ࡴ െ ࢳ െ ோࢳ ሿିଵ (1) 

where ࢳሺோሻ ؠ ሺோሻࢍሺோሻࡴ  ሺோሻ are harmonic force constant matricesࡴ ,ሺோሻࡴ .ሺோሻࡴ
connecting the left or right lead to the central region, and ࢍሺோሻ  is the uncoupled retarded Green’s 
function for the semi-infinite leads. For detailed information, please refer to Ref [3].  



3 
 

1-D anharmonic AGF—To account for the contribution from three-phonon scattering for 1-D 
structures, the many-body self-energy, ࢳெ , is added into the total self-energy [15]: ࡳ ൌሾ߱ଶࡵ െ ࡴ െ ࢳ െ ோࢳ െ ெࢳ ሿିଵ. We can obtain ࢳெ  from the coupled non-equilibrium Green’s 
functions, ࡳழ and  ࡳவ (lesser and greater Green’s functions), and the 3rd order anharmonic tensor 
of the central region, ठ (i, j, k are the indices for 3rd order tensor). For non-equilibrium 
Green’s function calculation, the temperature at both leads is different. The temperature 
information of the leads represented by Bose-Einstein distribution is already included in the 
uncoupled Green’s functions,  ࢍሺோሻழ  and ࢍሺோሻவ . As a validation of our method, we reproduced 
Mingo’s results for the 1-D chain in Supplementary Materials [24,25]. 

3-D harmonic AGF—We borrowed the idea of using the P matrix for the Fourier decomposition. 
This method was applied to investigate the harmonic phonon transmission in carbon nanotube 
junctions [10]. We extended the P matrix method to 3-D structures by defining ܲ൫ ሬܴԦ, ሬܳԦఈ൯ ൌଵே ு݁ோሬԦೌ·ொሬԦഀܫ , where ሬܴԦ is the unit cell position vector, ሬܳԦఈ is the transverse wave vector, and N is 
the number of unit cells along the transverse direction. Via the equation ࡴ෩ ൌ   :we have ,ࡼࡴ ଵିࡼ

෩൫ܪ  ሬܳԦఈ൯  ൌ  ∑ ∑ ൫ܪ ሬܴԦ, ሬܴԦ൯݁ିொሬԦഀ ·൫ோሬԦೌିோሬԦ್൯ேమୀଵேమୀଵ  (2) 

Through this method, we only need one wave vector ሬܳԦఈ to represent all the Green’s functions 
and self-energies in reciprocal space. One can find the derivation in Supplementary 
Materials [24,26,27]. 

3-D anharmonic AGF—Instead of approximating the inelastic phonon scattering, we built our 
method upon the 1-D anharmonic AGF method. Well-established tensor decomposition 
methods [28] such as higher-order singular value decomposition (HOSVD) or canonical/parallel 
factor (CP) decomposition all fall short of reducing the dimension of the 3rd order tensor, ठ, 
into the Fourier-component patterns [29]. Therefore, we developed a new 3rd order tensor Fourier 
decomposition using the P matrix from scratch. For any anharmonic tensor ठ or ࣰ൫ ሬܴԦ, ሬܴԦ, ሬܴԦ൯ 
of 3-D structures, the 3rd order tensor Fourier decomposition will be:  

 ठ෩௨௩௪ ൌ ∑ ठࡼ௨ିଵࡼ௩ିଵࡼ௪  or ठ෩ ൌ ∑ ठࡼିଵࡼࡼ  (3) 

By doing so, we only need two wave vectors, ሬܳԦట and ሬܳԦఏ, to represent such 3rd order tensor ࣰ൫ ሬܴԦ, ሬܴԦ, ሬܴԦ൯ in real space as ෨ࣰ ൫ ሬܳԦట, ሬܳԦఏ൯ in reciprocal space. For detailed derivation, please 
refer to Supplementary Materials [24,30].  

Accordingly, we defined the lesser(greater) many-body self-energy in reciprocal space as:  

෨ெ,௨,ழሺவሻߑ ൫߱, ሬܳԦ൯ ൌ ݅ න   ቂ ෨ࣰ௨௩௪൫ ሬܳԦ, ሬܳԦᇱ൯ܩ෨௪ழሺவሻ൫߱ െ ߱ᇱ, ሬܳԦᇱ൯ ࣰ൫ ሬܳԦ, ሬܳԦᇱ൯ܩ෨௩ழሺவሻ൫߱ᇱ, ሬܳԦᇱ൯ቃ௩௪ொሬԦᇲ ݀߱ᇱஶ
ିஶ  

  (4) 

This Fourier decomposition method for 3rd order tensors allows us to rigorously incorporate the 
anharmonic interactions in the central region into AGF for 3-D structures without any 
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approximation. Concise analytic expressions for computing many-body Green’s function and 
self-energy matrices in reciprocal space are given as:  

,෨ழሺவሻ൫߱ܩ  ሬܳሬԦ൯ ൌ ,෨൫߱ܩ ሬܳሬԦ൯ߑ෨ழሺவሻ൫߱, ሬܳሬԦ൯ ቀܩ෨൫߱, ሬܳሬԦ൯ቁற
 (5) 

,෨൫߱ܩ  ሬܳԦ൯ ൌ ൣ߱ଶܫ െ ෩൫ܪ ሬܳԦ൯ െ ,෨൫߱ߑ ሬܳԦ൯ െ ,෨ோ൫߱ߑ ሬܳԦ൯ െ ෨ெߑ ൫߱, ሬܳԦ൯൧ିଵ
 (6) 

෨ெߑൣ݉ܫ  ൫߱, ሬܳԦ൯൧ ൌ ෩ఀಾಭ ൫ఠ,ொሬԦ൯ି෩ఀಾಬ ൫ఠ,ொሬԦ൯ଶ ෨ெߑൣܴ݁ ,  ൫߱, ሬܳԦ൯൧ ൌ  . .ݒ ቀ ଵఠିఠᇲቁ ൈ ିଵగ ෨ெߑൣ݉ܫ ൫߱ᇱ, ሬܳԦ൯൧݀߱ᇱஶିஶ  

(7) 

where the symbol “†” means conjugate transpose and “p.v.” means Cauchy principal value. 
Together with Eq.(4), a self-consistent calculation [15,20] is required to obtain ܩ෨ழሺவሻ, from 
which we can calculate the heat current density on the left or right side of the interface:  

ሺோሻሺ߱ሻܬ  ൌ ሺെሻ ∑ Trൣߑ෨ሺோሻவ ൫߱, ሬܳԦ൯ܩ෨ழ൫߱, ሬܳԦ൯ െ ෨ሺோሻழߑ ൫߱, ሬܳԦ൯ܩ෨வ൫߱, ሬܳԦ൯൧ ఠଶగொሬԦ  (8) 

The integral of current density over frequency yields the total heat current, which is required to 
determine the two-probe thermal conductance:   

ߪ  ൌ ்݈݅݉ಽ՜்ೃ ଵ்ಽି்ೃ ଵேమೞ න ݀߱ ∑ Trൣߑ෨ሺோሻவ ൫߱, ሬܳԦ൯ܩ෨ழ൫߱, ሬܳԦ൯ െ ෨ሺோሻழߑ ൫߱, ሬܳԦ൯ܩ෨வ൫߱, ሬܳԦ൯൧ ఠଶగொሬԦஶ
  (9) 

Note that we set the temperature difference to be a small value (0.01K) in this work. With a finite 
temperature bias, one can even study the thermal rectification effects in the quantum limit.  

Results and Discussions 

We first employed our anharmonic AGF method on the Si/Ge interface in the [100] direction. 
The system is schematically depicted in the inset of Fig. 1(b). We used the lattice constant and 
force constants of Si on both sides, the mass of Si on one side and the mass of Ge on the other 
side. We calculated the 2nd order force constants via QUANTUM ESPRESSO [31,32] along with 
Phonopy [33], and the 3rd order force constants from thirdorder.py [34].  We computed the two-
probe thermal conductance of the central region as a function of temperature in Fig. 1(a). Both 
harmonic and anharmonic conductance first rises with temperature, then stays constant because 
of fully excited modes following the Bose-Einstein distribution. As shown in Fig. 1(b), 
anharmonicity can enhance the thermal conductance at room temperature, which is consistent 
with the very recent observation from non-equilibrium molecular dynamics simulations [23]. 
Due to the anharmonicity, the bulk-like part of the central region also contributes to the total 
thermal resistance. As a result, the thermal resistance of the physical interface will be even 
smaller than the value in Fig. 1(a). The central region was set as one unit-cell length in this work 
just as a demonstration of our method. The bulk-like contribution will not influence the 3-D 
anharmonic AGF method itself or our main conclusions. One can set the central region long 
enough to mimic the real device. The application to real devices and extracting thermal 
resistance of the physical interface will be discussed in our follow-up work.    
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FIG. 1 (a) Conductance of Si/Ge interface, in the absence and presence 
of anharmonicity in the central region, as a function of temperature. (b) 
Conductance ratio versus temperature. Inset is the illustration of the 
system, where the semi-infinite left side (L) is Si meanwhile the right (R) 
is Ge. The central region (C) contains the interface. (c) Heat current 
frequency distribution of the harmonic case, in which heat flow is the 
same on both sides, and the anharmonic heat flow on Si and Ge side.  

Besides the thermal conductance, our 3-D anharmonic AGF gives the frequency-resolved 
anharmonic heat current information without any fitting parameters. In Fig. 1(c), the harmonic 
heat current remains the same before and after the interface because phonons can only propagate 
through the interface via elastic processes. After adding anharmonicity to the central region, the 
current distribution on both sides is no longer the same. On the Si side, the phonon channels with 
frequencies higher than the cutoff frequency of Ge are opened, and the allowed phonon channels 
cover the entire frequency range of pure Si. On the Ge side, even though the frequency range 
remains unchanged, the peaks become more prominent because of the newly opened channels 
via anharmonicity. Here the anharmonic interface acts as a source of phonon-phonon coupling, 
which facilitates the energy communication among different phonon modes and assists those 
blocked phonons in the harmonic limit to propagate through the interface via inelastic scattering.  



6 
 

    
FIG. 2 (a)&(b) Conductance value as a function of mass ratio at 300K, 
for Si (a) and Al (b). The structure models used for anharmonic AGF are 
illustrated in the insets; (c)&(d) Thermal conductance ratio and overlap 
of versus mass ratio, for Si (c) and Al (d).  

In order to explore the generality of the conductance enhancement for different interfaces, we 
performed further calculations on Si- and aluminum (Al)-based interfaces. We kept the left side 
to be Si or Al and varied the atomic mass on the right side by multiplying a mass ratio. As mass 
ratio increases, the absolute values of interfacial thermal conductance reduce in both harmonic 
and anharmonic cases, as shown in Fig. 2(a) and 2(b). When the mass ratio is close to one, the 
interface behaves more like the pure material so that the included three-phonon scattering acts as 
a barrier for phonon transport and inhibits the otherwise perfect transmission. For the Si-based 
interface, as illustrated in Fig. 2(c), the conductance ratio increases to a local maximum and then 
slightly decreases before the conductance ratio keeps increasing. In contrast, the conductance 
ratio of the Al-based interface monotonically increases, as plotted in Fig.2(d). In other words, the 
effects of anharmonicity are strongly system-dependent.  
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FIG. 3 DoS of the Si- or Al-based interface with different mass ratios; 
the blue one is Si or Al, while the red one is the DoS on the other side 
assigned with a different mass.  

To understand the different conductance behaviors between Si and Al, the phonon DoS on both 
sides is shown in Fig. 3. The DoS mismatch will suppress allowed phonon channels in the 
harmonic case. The more disallowed channels in the harmonic regime, the more transmission 
channels anharmonicity can potentially enable. To illuminate the interplay of prohibited phonon 
channels and anharmonic effect, we used the overlap of DoS to represent the available phonon 
channels in the harmonic case. As shown in Fig. 3, different materials have different DoS, and 
this leads to different trends in the overlap area as the mass ratio increases. The thermal 
conductance ratio vs. mass ratio changes in exactly the opposite trend as the overlap of DoS vs. 
mass ratio for both Si and Al cases, as shown in Fig. 2 (c) & (d). In other words, if there are more 
channels for anharmonicity to open, the ratio of anharmonic vs. harmonic conductance is larger. 
As for the local maximum conductance ratio in the Si case is fundamentally due to the shape of 
DoS of silicon, which is an intrinsic material property. In brief, we quantitatively revealed the 
intrinsic mechanism for the enhanced thermal conductance by anharmonicity, for the first time.  

Conclusion  

In summary, we established a rigorous formalism of anharmonic AGF to include the 
anharmonicity at interfaces for the 3-D structures using first-principles force constants. More 
specifically, we developed a new Fourier decomposition method for 3rd order tensors and 
introduced the three-phonon scattering at solid-solid interfaces via the many-body self-energy in 
the reciprocal space without approximation. We observed an increase in thermal conductance at 
the Si/Ge interface due to anharmonicity in the central region. The new 3-D anharmonic AGF 
formalism enabled new understanding of phonon transport at interfaces -- the smaller DoS 
overlap at both the Si-based and Al-based interfaces, the more significant role anharmonicity 
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plays. Except for the case study performed in this work, we will investigate the further 
application of this method to different sizes and types of devices in the future. By overcoming 
the long-standing challenges of including anharmonicity into AGF for 3-D structures, we 
remarkably extended the application scope of AGF.  

 

Acknowledgment 

We thank Renjiu Hu for his help on 1-D anharmonic AGF calculation. We thank Chen Li for 
helping us with the force constants calculations. This work is sponsored by the Department of the 
Navy, Office of Naval Research under ONR award number N00014-18-1-2724. This work used 
the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by 
National Science Foundation grant number ACI-1053575.  

 

Reference 
[1] D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. 

P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, Appl. 
Phys. Rev. 1, 011305 (2014). 

[2] D. Li and A. J. H. McGaughey, Nanoscale Microscale Thermophys. Eng. 19, 166 (2015). 

[3] N. Mingo and L. Yang, Phys. Rev. B 68, 245406 (2003). 

[4] S. Sadasivam, Y. Che, Z. Huang, L. Chen, S. Kumar, and T. S. Fisher, Annu. Rev. Heat 
Transf. 17, pp. 89 (2014). 

[5] W. Zhang, T. S. Fisher, and N. Mingo, J. Heat Transfer 129, 483 (2007). 

[6] D. A. Stewart, I. Savic, and N. Mingo, Nano Lett. 9, 81 (2009). 

[7] Z. Tian, K. Esfarjani, and G. Chen, Phys. Rev. B 86, 235304 (2012). 

[8] Z.-Y. Ong and G. Zhang, Phys. Rev. B 91, 174302 (2015). 

[9] S. Sadasivam, U. V. Waghmare, and T. S. Fisher, Phys. Rev. B 96, 174302 (2017). 

[10] Z. Y. Ong, Phys. Rev. B 98, 195301 (2018). 

[11] X. Li and R. Yang, Phys. Rev. B 86, 054305 (2012). 

[12] X. Li and R. Yang, J. Phys. Condens. Matter 24, 155302 (2012). 

[13] H. K. Lyeo and D. G. Cahill, Phys. Rev. B 73, 144301 (2006). 

[14] J. T. Gaskins, G. Kotsonis, A. Giri, S. Ju, A. Rohskopf, Y. Wang, T. Bai, E. Sachet, C. T. 
Shelton, Z. Liu, Z. Cheng, B. M. Foley, S. Graham, T. Luo, A. Henry, M. S. Goorsky, J. 
Shiomi, J. P. Maria, and P. E. Hopkins, Nano Lett. 18, 7469 (2018). 

[15] N. Mingo, Phys. Rev. B 74, 125402 (2006). 

[16] M. Luisier, Phys. Rev. B 86, 245407 (2012). 



9 
 

[17] K. Miao, S. Sadasivam, J. Charles, G. Klimeck, T. S. Fisher, and T. Kubis, Appl. Phys. 
Lett. 108, 113107 (2016). 

[18] S. Sadasivam, N. Ye, J. P. Feser, J. Charles, K. Miao, T. Kubis, and T. S. Fisher, Phys. 
Rev. B 95, 085310 (2017). 

[19] LV Keldysh, Sov. Phys. JETP 20, 1018 (1965). 

[20] S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge university press, 1997). 

[21] A. P. Jauho, N. S. Wingreen, and Y. Meir, Phys. Rev. B 50, 5528 (1994). 

[22] H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and Opttics of Semiconductors 
(Berlin: Springer, 2008). 

[23] T. Feng, Y. Zhong, J. Shi, and X. Ruan, Phys. Rev. B 99, 045301 (2019). 

[24] See Supplemental Material at [URL] for details about this section. 

[25] N. Mingo, Green’s Function Methods for Phonon Transport Through Nano-Contacts 
(Springer, Berlin, Heidelberg, 2009). 

[26] J. S. Wang, J. Wang, and J. T. Lü, Eur. Phys. J. B 62, 381 (2008). 

[27] F. Guinea, C. Tejedor, F. Flores, and E. Louis, Phys. Rev. B 28, 4397 (1983). 

[28] L. De Lathauwer, 2009 IEEE Int. Symp. Circuits Syst. 2773 (2009). 

[29] M. E. Kilmer and C. D. Martin, Linear Algebra Appl. 435, 641 (2011). 

[30] E. M. Lifshitz and L. P. Pitaevskii, Course of Theoretical Physics: Physical Kinetics 
(Pergamon, Oxford, 1981). 

[31] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, 
R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal 
Corso, S. De Gironcoli, P. Delugas, R. A. Distasio, A. Ferretti, A. Floris, G. Fratesi, G. 
Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H. Y. 
Ko, A. Kokalj, E. Kücükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. 
Nguyen, H. V. Nguyen, A. Otero-De-La-Roza, L. Paulatto, S. Poncé, D. Rocca, R. 
Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, 
P. Umari, N. Vast, X. Wu, and S. Baroni, J. Phys. Condens. Matter 29, 465901 (2017). 

[32] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. 
Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. De Gironcoli, S. Fabris, G. Fratesi, R. 
Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. 
Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. 
Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. 
Wentzcovitch, J. Phys. Condens. Matter 21, 395502 (2009). 

[33] A. Togo and I. Tanaka, Scr. Mater. 108, 1 (2015). 

[34] W. Li, J. Carrete, N. A. Katcho, and N. Mingo, Comput. Phys. Commun. 185, 1747 
(2014). 


