
This is the accepted manuscript made available via CHORUS. The article has been
published as:

How order melts after quantum quenches
Mario Collura and Fabian H. L. Essler

Phys. Rev. B 101, 041110 — Published 23 January 2020
DOI: 10.1103/PhysRevB.101.041110

http://dx.doi.org/10.1103/PhysRevB.101.041110


How order melts after quantum quenches

Mario Collura1, 2 and Fabian H.L. Essler3

1Theoretische Physik, Universität des Saarlandes, D-66123 Saarbrücken, Germany.
2Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, I-35131 Padova, Italy
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Injecting a sufficiently large energy density into an isolated many-particle system prepared in a
state with long-range order will lead to the melting of the order over time. Detailed information
about this process can be derived from the quantum mechanical probability distribution of the
order parameter. We study this process for the paradigmatic case of the spin-1/2 Heisenberg XXZ
chain. We determine the full quantum mechanical distribution function of the staggered subsystem
magnetization as a function of time after a quantum quench from the classical Néel state. We
establish the existence of an interesting regime at intermediate times that is characterized by a very
broad probability distribution. Based on our findings we propose a simple general physical picture
of how long-range order melts.

Introduction. — A fundamental objective of quan-
tum theory is to determine probability distribution func-
tions of observables in given quantum states. In few-
particle systems the time evolution of such probability
distributions provides a lot of useful information beyond
what is contained in the corresponding expectation val-
ues. Recent advances in cold-atom experiments have
made possible not only the study of non-equilibrium time
evolution of (almost) isolated many-particle systems [1–
13], but given access to the full quantum mechanical
probability distributions of certain observables [14–18].
This provides an opportunity to gain new insights about
the coherent dynamics of many-particle quantum sys-
tems. One intriguing question one may ask is how order
melts, or forms, when an isolated many-particle system is
driven across a phase transition. Related questions have
been studied in solids, but there one essentially deals with
open quantum systems and has access to very different
observables, see e.g. [19–21]. The basic setup we have
in mind is as follows. Let us consider a system of quan-
tum spins with Hamiltonian H that is initially prepared
in a state with density matrix ρ(0). In this state there
is long-range order characterized by an order parameter
O =

∑L
j=1Oj , where j runs over the sites of the lat-

tice and Oj is a local operator. We are interested in the
probability distribution function (PDF) PA of the order
parameter OA in a contiguous subsystem of linear size
|A|

PA(m, t) = Tr
[
ρ(t)δ(OA −m)

]
. (1)

Here ρ(t) is the density matrix of the system at time t
and PA(m, t) is the probability that the subsystem or-
der parameter OA takes the value m in the state ρ(t).
We are interested in cases where the system is initially
well ordered at all length scales and PA(m, t) is therefore
narrowly peaked around the average OA. Under time
evolution the order melts and at late times and large sub-
system sizes PA(m, t) is believed to approach a Gaussian
distribution centred around zero [22–28]. The question
of interest is how PA(m, t) evolves as a function of time

and subsystem size |A|. Varying the latter provides in-
formation about how well the system is ordered at length
scale |A|.

We find that when the initially ordered system is
quenched well into the unbroken symmetry phase of the
Hamiltonian, the (local) order quickly disappears and
the PDF acquires a simple Gaussian shape. In contrast,
when the quantum quench is to an energy density where
Hamiltonian eigenstates retain short-range order[29], the
PDF exhibits a complex structure both at finite times
and in the steationay state. In the following we focus on
the example of the spin-1/2 Heisenberg XXZ chain, but
note that the picture we put forward is general and has
a wide range of applicability.
Model and Setup. — We investigate the time evo-

lution of antiferromagnetic (short-ranged) order after a
quantum quench in the spin-1/2 XXZ chain

H∆ =
∑
j

Sxj S
x
j+1 + Syj S

y
j+1 + ∆Szj S

z
j+1. (2)

Here Sαj are spin-1/2 operators acting on the site j and
we restrict our analysis to the range ∆ > 0. The phase
diagram of (2) is well established: at T = 0 there is a
BKT phase transition at ∆ = 1 that separates a quan-
tum critical phase at ∆ < 1 and an antiferromagneti-
cally ordered phase at ∆ > 1. At any finite temper-
ature the antiferromagnetic order melts. The Hamilto-
nian (2) is invariant under rotations by an arbitrary angle
around the z-axis, translations by one site, and rotations
around the x-axis by 180 degrees. In the thermodynamic
limit at ∆ > 1 and zero temperature the last symme-
try gets broken spontaneously and one of the two degen-
erate ground states |GS±∆〉, characterized by equal but
opposite expectation values of the staggered magnetiza-
tion per site, gets selected. In the Ising limit ∆ → ∞
the ground states become the classical Néel states, i.e.
|GS+

∞〉 = | · · · ↑↓↑↓ · · · 〉 and |GS−∞〉 = | · · · ↓↑↓↑ · · · 〉.
In order to investigate the melting of antiferromagnetic
order we consider the following quantum quench proto-
col: (i) we prepare the system in the classical Néel state
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FIG. 1. Density plot of P̃`(m, t) with m ∈ [−`/2, `/2] and
t ∈ [0, 12] for a subsystem size ` = 15, after a quench from the
Néel state |GS+

∞〉 to ∆ = 0, 1, 2, 3. The full line represents
the expectation value m̄(t), the dashed lines are the standard
deviation from the average, namely m̄(t)± σ(t).

|Φ0〉 = |GS+
∞〉, which exhibits saturated antiferromag-

netic long-ranged order; (ii) We consider unitary time
evolution with Hamiltonian H∆. The state of the sys-
tem at time t is thus |Φt〉 = exp(−iH∆t)|Φ0〉. This
quench is integrable [30–32] and exact results on the sta-
tionary state are available [28, 33–37]. We employ the
infinite Time-Evolving Block-Decimation (iTEBD) algo-
rithm [38, 39] to obtain a very accurate description of |Φt〉
in the thermodynamic limit. However, the growth of the
bipartite entanglement entropy limits the time window
accessible by this method. Retaining up to χmax = 1024
auxiliary states, we are able to reach a time tmax ' 12
without significant error (. 10−3).

PDF dynamics. — Detailed information on how the
antiferromagnetic order melts as the system evolves in
time is provided by the PDF of the staggered magnetisa-
tion M` ≡

∑`
j=1(−1)jSzj of a subsystem of ` neighbour-

ing sites

P`(m, t) ≡ 〈Φt|δ(M` −m)|Φ(t)〉 ,
=
∑
r∈Z

P̃`(m, t)δ
(
m− r − (1− (−1)`)/4

)
, (3)

where second line follows from the fact that the eigen-
values of M` are half-integer numbers. We note that
the probabilities satisfy the normalisation condition∑`/2
m=−`/2 P̃`(m, t) = 1. The initial Néel state is an eigen-

state of the staggered subsystem magnetization M` and
concomitantly the probability distribution is a delta func-
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FIG. 2. Snapshots of the rescaled PDF in Fig. 1 at fixed
times t = 2, 12. The numerical data (symbols/dashed lines)
are compared to the Gaussian approximation (4) (full lines).

tion P`(m, 0) = δ(m− `/2). This reflects the long-range
magnetic order in the initial state. In Fig. 1 we show
the evolution of P`(m, t) in time obtained by iTEBD
for subsystem size ` = 15 and several values of the in-
teraction strength ∆ in the “post-quench” Hamiltonian
(2). We observe that the probability distribution de-
pends strongly on ∆: for small values of ∆ the antiferro-
magnetic short-ranged order melts quickly and P`(m, t)
is narrowly peaked around its average, which exhibits a
damped oscillatory behaviour around zero [40]. The be-
haviour for ∆ & 2 is very different: short-ranged order
persists for some time while the probability distribution
broadens and becomes more symmetric in m. This nicely
chimes with the expectation (see below) that in the sta-
tionary state reached at late times the probability distri-
bution to become symmetric in m. In Fig. 2 we plot the
weights of P`(m, t) at several times and compare them
to a Gaussian approximation based on the first two mo-
ments m̄(t) = 〈Φt|M`|Ψt〉, σ2(t) = 〈Φt|M2

` |Ψt〉 − m̄2(t)

P`(µ, t) =
1√

2πσ2(t)
exp

{
− [µ− m̄(t)]2

2σ2(t)

}
. (4)

We see that at ∆ = 0 the probability distribution is ap-
proximately Gaussian at all times, while for ∆ = 2, 3
it exhibits a pronounced even/odd structure at short
times and even at the latest times shown is strongly
non-Gaussian. As we are dealing with a one dimensional
system at a finite energy density relative to the ground
state, we expect |Φt〉 to exhibit a time-dependent but
finite correlation length. This is borne out by a com-
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putation of 〈Φt|Szj Szj+n|Φt〉, which exhibits exponential
decay in the distance n. At time t = 6 the correla-
tion lengths ξ(t,∆) for the values shown in Fig. 1 are
ξ(6, 0) = 0.424091, ξ(6, 1) = 0.925666, ξ(6, 2) = 3.39616
and ξ(6, 3) = 8.85259 respectively. The qualitative de-
pendence of ξ(t,∆) on ∆ is expected as the energy den-
sity imposed by the quench increases with decreasing ∆.

“Small”- ∆ regime. — At small values of ∆
and short and intermediate times we can use a time-
dependent self-consistent mean-field approximation to
determine the evolution of P`(m, t). We first map the
Hamiltonian (2) to a model of spinless fermions by means
of a Jordan-Wigner transformation, where we use the
positive (negative) z-direction in spin space as quanti-
zation axis for even (odd) sites [56]. This results in a
spinless fermion Hamiltonian

H∆ =
∑
j

1

2

[
c†jc
†
j+1 + h.c.

]
+ ∆nj(1− nj+1), (5)

where nj = c†jcj and {cj , c†k} = δj,k. The staggered sub-

system magnetization maps to M` =
∑`
j=1(1/2 − nj),

while the initial Néel state maps to the fermion vac-
uum |Ψ0〉 = |0〉. Our self-consistent approximation cor-
responds to the replacement

njnj+1 →
[
〈c†jc

†
j+1〉tcj+1cj − 〈c†j+1cj〉tc

†
jcj+1 + h.c.

]
+ 〈nj〉tnj+1 + 〈nj+1〉tnj , (6)

which leads to an explicitly time-dependent Hamiltonian
HMF(t), cf. Ref. 42. The expectation values in (6) are
calculated self-consistently 〈.〉t = 〈Ψt|.|Ψt〉, where

|Ψt〉 = T exp

[
−i
∫ t

0

dt′HMF(t′)

]
|0〉. (7)

Following Ref. 44 we can express the characteristic func-
tion of P`(m, t) as a determinant of a 2`×2` matrix [56],
which is easily evaluated numerically. This provides us
with exact results at ∆ = 0 for all times [56], and a highly
accurate short-time approximation even for ∆ = 3 as is
shown in Fig. 3.

Late times. — We now turn to the behaviour at late
times after the quench. The stationary state is character-
ized by a finite correlation length ξ(∆). On length scales
` . ξ(∆) we expect short-ranged antiferromagnetic order
to remain, while it will have melted at scales ` > ξ(∆).
We also expect the spin-rotational symmetry by π around
the x-axis to be restored in the stationary state as we are
dealing with a one dimensional system with short-range
interactions. The situation is completely analogous to
that at finite temperatures – in fact adding a very small
integrability-breaking term to the Hamiltonian would re-
sult in a steady state that is very close to the thermal
state of the XXZ chain [34]. In contrast to the steady
state after our quench, the probability distribution of the
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FIG. 3. P̃`(m, t) for ` = 20 at times t = 0.2, 0.5, 1
after a quench from the classical Néel state to a Heisen-
berg chain with ∆ = 3. Lines are obtained by the self-
consistent fermionic mean-field approximation and the sym-
bols are iTEBD results.

staggered subsystem magentization at finite temperature
P`(m,β) can be computed by matrix product state meth-
ods and for the aforementioned reasons it is instructive
to consider it. Results for two values of ∆ are shown
in Fig. 4. We see that the probability distributions are
symmetric in m, reflecting the unbroken symmetry of ro-
tations by π around the x-axis. At ∆ = 4 we further ob-
serve that when the subsystem size exceeds the thermal
correlation length ξ∆(β) antiferromagnetic short-ranged
order melts and we obtain a Gaussian probability distri-
bution centred around m = 0. On the other hand, for
` . ξ∆(β) the probability distribution is very broad and
peaked at the maximal values ±`/2, signalling the pres-
ence of both kinds of antiferromagnetic short-ranged or-
der. For ∆ = 1 the thermal correlation length is smaller
than one lattice site in the temperature regime shown,
which is why no traces of short-range order are visible
and the probability distribution is a Gaussian centred
around m = 0. The large-∆ regime is characterized by a
low density of excitations and it is therefore possible to
understand the behaviour observed above by combining
a 1/∆-expansion with a linked-cluster expansion[45–53].
As the physics we wish to describe is not tied to integra-
bility, and the non-integrable case is easier to discuss, we
focus on the latter[54]. We consider the regime ∆ � 1
and break integrability by adding a small perturbation
to the Heisenberg Hamiltonian, e.g. consider time evo-
lution under H = H∆ + ∆−nV , where n is a positive
integer and V some perturbation involving short-ranged
spin-spin interactions that has the same symmetries as
H∆. We define linked clusters following the general for-
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FIG. 4. Density plot of the PDF for the XXZ chain at finite
temperature 1/β for subsystem size ` = 50 and ∆ = 4 (left
panel); ∆ = 1 (right panel).

malism of Ref. 45 and then implement a 1/∆-expansion

through a unitary transformation H̃ = eiSHe−iS [55, 56].
The result is an expansion of the stationary state density
matrix of the form

ρSS =
∑
j≥0

ρ
(j)
SS , ρ

(j)
SS = O

(
e−βeffj∆/2

)
, (8)

where ρ
(j)
SS are given as power series in 1/∆. The leading

term in the expansion is ρ
(0)
SS = 1

2

∑
σ=± |GSσ∆〉〈GSσ∆|,

where |GSσ∆〉 are the two ground states of the model
at anisotropy ∆. The small parameter e−βeff∆/2 is pro-
portional to the density of domain-wall excitations over
the ground states at large ∆. The expansion (8) of the
steady-state density matrix leads to a corresponding ex-
pansion of the probability distribution of the staggered

subsystem magnetization P`(m,∞) =
∑
j P

(j)
` (m) [56]

P
(0)
2` (m) = δ(`− |m|)

[
1

2
− 2`+ 1

8∆2

]
+ δ(`− 1− |m|) 1

4∆2

+ δ(`− 2− |m|)2`− 1

8∆2
+ o(∆−2), (9)

P
(1)
2` (m) = e−

βeff∆

2 I0(βeff)

[
1− `

2
δ(`− |m|)

+
∑̀
j=1

δ(`− j − |m|)
]

+ . . . , (10)

where the dots denote subleading terms in 1/∆. The
expansions (10) hold as long as the subsystem size 2`
is small compared to the correlation length in ρSS and
establish that for large anisotropies ∆ the probability
distribution in the steady state is symmetric in m and
close to the average over the two ground states. In addi-
tion there is an exponentially suppressed “background”
contribution arising from a dilute gas of domain walls.

“Symmetrization” of the PDF in time. — A charac-
teristic feature of the time-evolution of P`(m, t) is that
it becomes increasingly symmetric in m. In order to as-
certain the associated time scale in the most interesting
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FIG. 5. Weights P̃`(m, t) for ` = 10 and a quench from the
classical Néel state to a Heisenberg chain with ∆ = 6. We
observe a linear growth (decrease) in time of the weights for
m = −`/2 (m = `/2), indicating that the symmetrization of
the PDF is driven by ballistic propagation of quasi-particles.

large-∆ regime it is useful to compare the probabilities
for M` to be maximal (`/2) or minimal (−`/2) respec-
tively. Results for ∆ = 6 are shown in Fig. 5. We see that
P`(−`/2, t) grows linearly in time, while P`(`/2, t) shows
a corresponding linear decrease. For the integrable XXZ
chain the associated velocity is expected to be the max-
imal group velocity of elementary excitations over the
stationary state [57]. In presence of weak integrability-
breaking interactions in the large-∆ regime we expect
qualitatively similar prethermal behaviour [58].

Conclusions. — We have considered the full quan-
tum mechanical order parameter probability distribution
P`(m, t) in a subsystem of size ` after a quantum quench
from a classical Néel state to the spin-1/2 Heisenberg
XXZ chain. We have shown that P`(m, t) provides de-
tailed information how short-range antiferromagnetic or-
der melts and have shown how to understand our nu-
merical findings by analytical approaches valid in certain
limits. Our setup should be realizable in cold-atom ex-
periments like the ones by the Harvard group [18]. Our
findings can be understood in terms of a simple physical
picture based on (i) the initial presence of long-ranged
order, (ii) the principle of local relaxation after quan-
tum quenches and (iii) the presence of two length scales,
namely a finite, time-dependent correlation length ξ(t)
and the sub-system size ` in our problem. Initially or-
der is present on all length scales. At sufficiently late
times short-ranged order remains on scales ` < ξ(t) and
is clearly visible in P`(m, t) even though the latter reflects
the eventual restoration of the initially broken symmetry.
On the other hand the order has melted for larger scales
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` > ξ(t) and P`(m, t) is essentially Gaussian. We expect
that this physical picture applies quite generally to the
melting of long-range order and in particular is not re-
stricted to one dimensional systems as long as the time
evolving density matrix is characterized by a finite, time-
dependent correlation length. This is generically the case
in D=1, but equally applies to higher dimensional sys-
tems at energy densities that correspond to temperatures
above any phase transitions. It would be interesting to
study the case of quenches that correspond to energy
densities corresponding to temperatures below a phase
transition.
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